Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas

Diagramas, tablas, gráficas.

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/26167
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/26167
Palabra clave:
570 - Biología::576 - Genética y evolución
570 - Biología
610 - Medicina y salud
1. Ciencias Naturales::1F. Ciencias biológicas::1F03. Bioquímica y biología molecular
3. Ciencias Médicas y de la Salud
Variantes patogénicas
Cáncer
Secuenciación de exoma
Llamadores de variantes
Población de Caldas
Cáncer
Biología molecular
Rights
License
https://creativecommons.org/licenses/by/4.0/
id REPOUCALDA_c99d19934e5a171eb2351e89e1a26a20
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/26167
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
title Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
spellingShingle Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
570 - Biología::576 - Genética y evolución
570 - Biología
610 - Medicina y salud
1. Ciencias Naturales::1F. Ciencias biológicas::1F03. Bioquímica y biología molecular
3. Ciencias Médicas y de la Salud
Variantes patogénicas
Cáncer
Secuenciación de exoma
Llamadores de variantes
Población de Caldas
Cáncer
Biología molecular
title_short Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
title_full Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
title_fullStr Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
title_full_unstemmed Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
title_sort Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas
dc.contributor.none.fl_str_mv Rodríguez-Rey, Ghennie Tatiana
Orjuela Rodríguez, Marcela
dc.subject.none.fl_str_mv 570 - Biología::576 - Genética y evolución
570 - Biología
610 - Medicina y salud
1. Ciencias Naturales::1F. Ciencias biológicas::1F03. Bioquímica y biología molecular
3. Ciencias Médicas y de la Salud
Variantes patogénicas
Cáncer
Secuenciación de exoma
Llamadores de variantes
Población de Caldas
Cáncer
Biología molecular
topic 570 - Biología::576 - Genética y evolución
570 - Biología
610 - Medicina y salud
1. Ciencias Naturales::1F. Ciencias biológicas::1F03. Bioquímica y biología molecular
3. Ciencias Médicas y de la Salud
Variantes patogénicas
Cáncer
Secuenciación de exoma
Llamadores de variantes
Población de Caldas
Cáncer
Biología molecular
description Diagramas, tablas, gráficas.
publishDate 2025
dc.date.none.fl_str_mv 2025-11-13T22:25:11Z
2025-11-13T22:25:11Z
2025-11-13
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/26167
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/26167
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Abildgaard, A. B., Stein, A., Nielsen, S. V., Schultz-Knudsen, K., Papaleo, E., Shrikhande, A., Hoffmann, E. R., Bernstein, I., Gerdes, A., Takahashi, M., Ishioka, C., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2019). Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome. eLife, 8. https://doi.org/10.7554/elife.49138
Abildgaard, A. B., Nielsen, S. V., Bernstein, I., Stein, A., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2022). Lynch syndrome, molecular mechanisms and variant classification. British Journal Of Cancer, 128(5), 726-734. https://doi.org/10.1038/s41416-022-02059-z
Ackerson, S. M., Romney, C., Schuck, P. L., & Stewart, J. A. (2021). To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Frontiers in Cell and Developmental Biology, 9, 708763. https://doi.org/10.3389/fcell.2021.708763
Alvarez-Gomez, R. M., De la Fuente-Hernandez, M. A., Herrera-Montalvo, L., & Hidalgo-Miranda, A. (2021). Challenges of diagnostic genomics in Latin America. Current Opinion In Genetics & Development, 66, 101-109. https://doi.org/10.1016/j.gde.2020.12.010
Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921–R925. https://doi.orgorg/10.1016/j.cub.2020.06.081
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data [Software]. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Angeli, D., Salvi, S., & Tedaldi, G. (2020). Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? International Journal Of Molecular Sciences, 21(3), 1128. https://doi.org/10.3390/ijms21031128
Antoni, L., Sodha, N., Collins, I., & Garrett, M. D. (2007). CHK2 kinase: cancer susceptibility and cancer therapy – two sides of the same coin? Nature Reviews. Cancer, 7(12), 925-936. https://doi.org/10.1038/nrc2251
Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922), 499–506. https://doi.org/10.1038/nature01368
Balthazar, P., Klontzas, M. E., Heng, L. X. X., & Kearns, C. (2022). Cowden Syndrome. Radiographics, 42(2), E44-E45. https://doi.org/10.1148/rg.210230
Berger, A. H., Knudson, A. G., & Pandolfi, P. P. (2011). A continuum model for tumour suppression. Nature, 476(7359), 163-169. https://doi.org/10.1038/nature10275
Bielski, C. M., Donoghue, M. T., Gadiya, M., Hanrahan, A. J., Won, H. H., Chang, M. T., Jonsson, P., Penson, A. V., Gorelick, A., Harris, C., Schram, A. M., Syed, A., Zehir, A., Chapman, P. B., Hyman, D. M., Solit, D. B., Shannon, K., Chandarlapaty, S., Berger, M. F., & Taylor, B. S. (2018). Widespread Selection for Oncogenic Mutant Allele Imbalance in Cancer. Cancer Cell, 34(5), 852-862.e4. https://doi.org/10.1016/j.ccell.2018.10.003
Chernoff, J. (2021). The two-hit theory hits 50. Molecular Biology Of The Cell, 32(22), rt1. https://doi.org/10.1091/mbc.e21-08-0407
Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor–DNA complex: Understanding tumorigenic mutations. Science, 265(5170), 346–355. https://doi.org/10.1126/science.8023157
Clevers, H., & Nusse, R. (2012). Wnt/β-catenin signalling and disease. Cell, 149(6), 1192-1205. https://doi.org/10.1016/j.cell.2012.05.012
Clinical Genome Resource (ClinGen) Dosage Sensitivity Working Group. (n.d.). CDH1 gene dosage sensitivity curation results. Retrieved from https://search.clinicalgenome.org/kb/gene-dosage/HGNC%3A1748
Corso, G., Figueiredo, J., Pietro de Angelis, S., Corso, F., Girardi, A., Pereira, J., Seruca, R., Bonanni, B., Carneiro, P., Pravettoni, G., Rocco, E. G., Veronesi, P., Montagna, G., Sacchini, V., & Gandini, S. (2020). E‐cadherin deregulation in breast cancer. Journal Of Cellular And Molecular Medicine, 24(11), 5930-5936. https://doi.org/10.1111/jcmm.15140
Cui, M., Liu, Y., Yu, X., Guo, H., Jiang, T., Wang, Y., & Liu, B. (2024). miniSNV: accurate and fast single nucleotide variant calling from nanopore sequencing data. Briefings In Bioinformatics, 25(6). https://doi.org/10.1093/bib/bbae473
Dakal, T. C., Dhabhai, B., Pant, A., Moar, K., Chaudhary, K., Yadav, V., Ranga, V., Sharma, N. K., Kumar, A., Maurya, P. K., Maciaczyk, J., Schmidt‐Wolf, I. G. H., & Sharma, A. (2024). Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm, 5(6). https://doi.org/10.1002/mco2.582
Ding, S. L., Sheu, L. F., Yu, J. C., Yang, T. L., Chen, B. F., Leu, F. J., & Shen, C. Y. (2004). Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. British Journal Of Cancer, 90(10), 1995-2001. https://doi.org/10.1038/sj.bjc.6601804
Dragoo, D. D., Taher, A., Wong, V. K., Elsaiey, A., Consul, N., Mahmoud, H. S., Mujtaba, B., Stanietzky, N., & Elsayes, K. M. (2021). PTEN Hamartoma Tumor Syndrome/Cowden Syndrome: Genomics, Oncogenesis, and Imaging Review for Associated Lesions and Malignancy. Cancers, 13(13), 3120. https://doi.org/10.3390/cancers13133120
Edge, P., & Bansal, V. (2019). Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nature Communications, 10(1), 4660. https://doi.org/10.1038/s41467-019-12493-y
Edeline, J., Vauléon, E., Rioux-Leclercq, N., Perrin, C., Bensalah, C. V. K., & Laguerre, B. (2012). Safety and Efficacy of Sorafenib in Renal Cell Carcinoma. Cancer Growth And Metastasis, 5, CGM.S7526. https://doi.org/10.4137/cgm.s7526
Edeline, J., Vauléon, E., Rioux-Leclercq, N., Perrin, C., Bensalah, C. V. K., & Laguerre, B. (2012b). Safety and Efficacy of Sorafenib in Renal Cell Carcinoma. Cancer Growth And Metastasis, 5, CGM.S7526. https://doi.org/10.4137/cgm.s7526
El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W., Kinzler, K. W., & Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817-825. https://doi.org/10.1016/0092-8674(93)90500-p
Fabregat, A., Sidiropoulos, K., Viteri, G., Marin-Garcia, P., Ping, P., Stein, L., D'Eustachio, P., & Hermjakob, H. (2018). Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics, 34(7), 1208–1214. https://doi.org/10.1093/bioinformatics/btx752
Foulkes, W. D., Priest, J. R., & Duchaine, T. F. (2014). DICER1: mutations, microRNAs and mechanisms. Nature Reviews. Cancer, 14(10), 662-672. https://doi.org/10.1038/nrc3802
Franco-Rocha, O. Y., Carillo-Gonzalez, G. M., Garcia, A., & Henneghan, A. (2021). Cancer Survivorship Care in Colombia: Review and Implications for Health Policy. Hispanic Health Care International, 20(1), 66-74. https://doi.org/10.1177/15404153211001578
Gargallo, P., Yáñez, Y., Segura, V., Juan, A., Torres, B., Balaguer, J., Oltra, S., Castel, V., & Cañete, A. (2019). Li–Fraumeni syndrome heterogeneity. Clinical & Translational Oncology, 22(7), 978-988. https://doi.org/10.1007/s12094-019-02236-2
Grasel, R. S., Felicio, P. S., De Paula, A. E., Campacci, N., De Oliveira Garcia, F. A., De Andrade, E. S., Evangelista, A. F., Fernandes, G. C., Da Silva Sabato, C., De Marchi, P., De Pádua Souza, C., De Paula, C. A. A., Torrezan, G. T., De Campos Reis Galvão, H., Carraro, D. M., & Palmero, E. I. (2020). Using Co-segregation and Loss of Heterozygosity Analysis to Define the Pathogenicity of Unclassified Variants in Hereditary Breast Cancer Patients. Frontiers In Oncology, 10, 571330. https://doi.org/10.3389/fonc.2020.571330
Gregory, S. N., & Davis, J. L. (2023). CDH1 and hereditary diffuse gastric cancer: a narrative review. Chinese Clinical Oncology, 12(3), 25. https://doi.org/10.21037/cco-23-36
Guha, T., & Malkin, D. (2017). InheritedTP53Mutations and the Li–Fraumeni Syndrome. Cold Spring Harbor Perspectives In Medicine, 7(4), a026187. https://doi.org/10.1101/cshperspect.a026187
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
Hanahan, D., & Coussens, L. M. (2012). Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022
Imyanitov, E. N., Kuligina, E. S., Sokolenko, A. P., Suspitsin, E. N., Yanus, G. A., Iyevleva, A. G., Ivantsov, A. O., & Aleksakhina, S. N. (2023). Hereditary cancer syndromes. World Journal of Clinical Oncology, 14(2), 40. https://doi.org/10.5306/WJCO.V14.I2.40
International Agency for Research on Cancer. (2024). Country fact sheet: Colombia. Global Cancer Observatory. https://gco.iarc.who.int/media/factsheets/populations/170-colombia-fact-sheet.pdf
International Agency for Research on Cancer. (2025). Global Cancer Observatory: Cancer Over Time - Colombia. World Health Organization. Recuperado el 23 de septiembre de 2025, de https://gco.iarc.fr/overtime/en
Ismail, T., Alzneika, S., Riguene, E., Al-Maraghi, S., Alabdulrazzak, A., Al-Khal, N., Fetais, S., Thanassoulas, A., AlFarsi, H., & Nomikos, M. (2024). BRCA1 and Its Vulnerable C-Terminal BRCT Domain: Structure, Function, Genetic Mutations and Links to Diagnosis and Treatment of Breast and Ovarian Cancer. Pharmaceuticals, 17(3), 333. https://doi.org/10.3390/ph17030333
Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078. https://doi.org/10.1038/nature08467
Jasperson, K. W., Tuohy, T. M., Neklason, D. W., & Burt, R. W. (2010). Hereditary and Familial Colon Cancer. Gastroenterology, 138(6), 2044-2058. https://doi.org/10.1053/j.gastro.2010.01.054
Kavun, A., Veselovsky, E., Lebedeva, A., Belova, E., Kuznetsova, O., Yakushina, V., Grigoreva, T., Mileyko, V., Fedyanin, M., & Ivanov, M. (2023). Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers, 15(8), 2288. https://doi.org/10.3390/cancers15082288
Kim, H. J., Park, J. W., & Lee, J. H. (2021). Genetic Architectures and Cell-of-Origin in Glioblastoma. Frontiers In Oncology, 10. https://doi.org/10.3389/fonc.2020.615400
Kingdom, R., & Wright, C. F. (2022). Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Frontiers In Genetics, 13. https://doi.org/10.3389/fgene.2022.920390
Knudson, A. G. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823. https://doi.org/10.1073/pnas.68.4.820
Kontomanolis, E.N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z.N. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. AntiCancer Research, 40, 6009 - 6015.
Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178-196. https://doi.org/10.1038/nrm3758
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
Li, G. (2007). Mechanisms and functions of DNA mismatch repair. Cell Research, 18(1), 85-98. https://doi.org/10.1038/cr.2007.115
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Li, X., Liu, G., & Wu, W. (2021). Recent advances in Lynch syndrome. Experimental Hematology And Oncology, 10(1). https://doi.org/10.1186/s40164-021-00231-4
Lim, H. J., Zhuang, L., & Fitzgerald, R. C. (2023). Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. Journal of Experimental & Clinical Cancer Research, 42(1), 57. https://doi.org/10.1186/s13046-023-02622-3
Lim, H.J., Zhuang, L. & Fitzgerald, R.C. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J Exp Clin Cancer Res 42, 57 (2023). https://doi.org/10.1186/s13046-023-02622-3
Liu, Y., & Lu, L. (2020). BRCA1 and homologous recombination: implications from mouse embryonic development. Cell & Bioscience, 10(1), 49. https://doi.org/10.1186/s13578-020-00412-4
Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., Hawkins, C., Ng, H. K., Pfister, S. M., Reifenberger, G., Soffietti, R., Von Deimling, A., & Ellison, D. W. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 23(8), 1231-1251. https://doi.org/10.1093/neuonc/noab106
Luo, Z., Tian, M., Yang, G., Tan, Q., Chen, Y., Li, G., Zhang, Q., Li, Y., Wan, P., & Wu, J. (2022). Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduction And Targeted Therapy, 7(1), 218. https://doi.org/10.1038/s41392-022-01080-1
Ma, X., Tan, Z., Zhang, Q., Ma, K., Xiao, J., Wang, X., Wang, Y., Zhong, M., Wang, Y., Li, J., Zeng, X., Guan, W., Wang, S., Gong, K., Wei, G., & Wang, Z. (2022). VHL Ser65 mutations enhance HIF2α signaling and promote epithelial-mesenchymal transition of renal cancer cells. Cell & Bioscience, 12(1), 52. https://doi.org/10.1186/s13578-022-00790-x
MacRae, I. J., & Doudna, J. A. (2006). Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion In Structural Biology, 17(1), 138-145. https://doi.org/10.1016/j.sbi.2006.12.002
Magaña, M., Landeta-Sa, A. P., & López-Flores, Y. (2022). Cowden Disease: a review. American Journal Of Dermatopathology, 44(10), 705-717. https://doi.org/10.1097/dad.0000000000002234
Magrin, L., Fanale, D., Brando, C., Corsini, L. R., Randazzo, U., Di Piazza, M., Gurrera, V., Pedone, E., Russo, T. D. B., Vieni, S., Pantuso, G., Russo, A., & Bazan, V. (2022). MUTYH-associated tumor syndrome: The other face of MAP. Oncogene, 41(18), 2531-2539. https://doi.org/10.1038/s41388-022-02304-y
Mazumder, S., Higgins, P. J., & Samarakoon, R. (2023). Downstream Targets of VHL/HIF-α Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers, 15(4), 1316. https://doi.org/10.3390/cancers15041316
Miller, D. B., & Piccolo, S. R. (2020). Compound Heterozygous Variants in Pediatric Cancers: A Systematic Review. Frontiers In Genetics, 11, 493. https://doi.org/10.3389/fgene.2020.00493
Mustofa, M. K., Tanoue, Y., Tateishi, C., Vaziri, C., & Tateishi, S. (2020). Roles of Chk2/CHEK2 in guarding against environmentally induced DNA damage and replication‐stress. Environmental And Molecular Mutagenesis, 61(7), 730-735. https://doi.org/10.1002/em.22397
Nandakumar, S., Mehine, M., Kemel, Y., Bandlamudi, C., Mandelker, D., Rosenblum, M. K., Bale, T., Karajannis, M. A., Sait, S. F., Elmore, K. B., Therkelsen, K. E., Chatila, W. K., Muldoon, D., Young, R. J., Imber, B. S., Brennan, C., Moss, N. S., Yu, K. K. H., Tabar, V., . . . Lin, A. L. (2025). Prospective characterization of germline variants in patients with gliomas and glioneuronal tumors. Acta Neuropathologica, 150(1). https://doi.org/10.1007/s00401-025-02935-x
Nenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67-72. https://doi.org/10.1016/j.mpmed.2019.11.001
Nusse, R., & Clevers, H. (2017). Wnt beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985–999. https://doi.org/10.1016/j.cell.2017.05.016
Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., Pekmezci, M., Schwartzbaum, J. A., Turner, M. C., Walsh, K. M., Wrensch, M. R., & Barnholtz-Sloan, J. S. (2014). The epidemiology of glioma in adults: a «state of the science» review. Neuro-Oncology, 16(7), 896-913. https://doi.org/10.1093/neuonc/nou087
Oxford Nanopore Technologies. (2023). Guppy basecalling software release 6.5.7 [Software]. Oxford Nanopore Technologies. https://nanoporetech.com/software/other/guppy/history
Oxford Nanopore Technologies. (2025). Dorado: High-performance neural network basecaller [Software]. Oxford Nanopore Technologies. https://nanoporetech.com/software/other/dorado
Poplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., DePristo, M. A., Poplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983-987. https://doi.org/10.1038/nbt.4235
Quail, D. F., & Joyce, J. A. (2013). The tumor microenvironment: A critical regulator of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437. https://doi.org/10.1038/nm.3394
Razack, N. A., & Prabhuswamimath, S. C. (2024). Exploring High-Penetrance Genes in Breast Cancer Associated Genetic Syndromes: Insights into Genetic Predisposition and Clinical Implications. International Journal Of Health & Allied Sciences, 13(1). https://doi.org/10.55691/2278-344x.1091
Robertson, J. C., Jorcyk, C. L., & Oxford, J. T. (2018). DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers, 10(5), 143. https://doi.org/10.3390/cancers10050143
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. Journal Of Biological Chemistry, 273(10), 5858-5868. https://doi.org/10.1074/jbc.273.10.5858
Ryland, G. L., Doyle, M. A., Goode, D., Boyle, S. E., Choong, D. Y., Rowley, S. M., Li, J., Bowtell, D. D., Tothill, R. W., Campbell, I. G., & Gorringe, K. L. (2015). Loss of heterozygosity: what is it good for? BMC Medical Genomics, 8(1), 45. https://doi.org/10.1186/s12920-015-0123-z
Schneider, K., Zelley, K., Nichols, K. E., Levine, A. S., & Garber, J. (2025, 1 mayo). Li-Fraumeni Syndrome. GeneReviews® - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/sites/books/NBK1311/
Shen, C., & Kaelin, W. G. (2012). The VHL/HIF axis in clear cell renal carcinoma. Seminars In Cancer Biology, 23(1), 18-25. https://doi.org/10.1016/j.semcancer.2012.06.001
Smith, J., Tho, L. M., Xu, N., & Gillespie, D. A. (2010). The ATM–Chk2 and ATR–Chk1 Pathways in DNA Damage Signaling and Cancer. Advances In Cancer Research, 108, 73-112. https://doi.org/10.1016/b978-0-12-380888-2.00003-0
Srinivasan, P., Bandlamudi, C., Jonsson, P., Kemel, Y., Chavan, S. S., Richards, A. L., Penson, A. V., Bielski, C. M., Fong, C., Syed, A., Jayakumaran, G., Prasad, M., Hwee, J., Sumer, S. O., De Bruijn, I., Li, X., Gao, J., Schultz, N., Cambria, R., . . . Taylor, B. S. (2021). The context-specific role of germline pathogenicity in tumorigenesis. Nature Genetics, 53(11), 1577-1585. https://doi.org/10.1038/s41588-021-00949-1
Stadler, Z. K., Maio, A., Chakravarty, D., Kemel, Y., Sheehan, M., Salo-Mullen, E., Tkachuk, K., Fong, C. J., Nguyen, B., Erakky, A., Cadoo, K., Liu, Y., Carlo, M. I., Latham, A., Zhang, H., Kundra, R., Smith, S., Galle, J., Aghajanian, C., . . . Robson, M. E. (2021). Therapeutic Implications of Germline Testing in Patients With Advanced Cancers. Journal Of Clinical Oncology, 39(24), 2698-2709. https://doi.org/10.1200/jco.20.03661
Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., ... & Cooper, D. N. (2017). The Human Gene Mutation Database (HGMD®): a comprehensive central resource for germline mutations causing human inherited disease. Human Genetics, 136(6), 619–637. https://doi.org/10.1007/s00439-017-1779-6
Takeichi, M. (2014). Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nature Reviews Molecular Cell Biology, 15(6), 397-410. https://doi.org/10.1038/nrm3802
Theotoki, E. I., Pantazopoulou, V. I., Georgiou, S., Kakoulidis, P., Filippa, V., Stravopodis, D. J., & Anastasiadou, E. (2020). Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. International Journal Of Molecular Sciences, 21(19), 7223. https://doi.org/10.3390/ijms21197223
Thet, M., Plazzer, J., Capella, G., Latchford, A., Nadeau, E. A. W., Greenblatt, M. S., & Macrae, F. (2024). Phenotype Correlations With Pathogenic DNA Variants in the MUTYH Gene: A Review of Over 2000 Cases. Human Mutation, 2024(1). https://doi.org/10.1155/2024/8520275
Torres, D., Bermejo, J. L., Rashid, M. U., Briceño, I., Gil, F., Beltran, A., Ariza, V., & Hamann, U. (2017). Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05056-y
Van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular And Molecular Life Sciences, 65(23), 3756-3788. https://doi.org/10.1007/s00018-008-8281-1
Vedanayagam, J., et al. (2019). Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains disrupt the cleavage of 5' pre-miRNA arms. Nature Communications, 10, 3192. https://doi.org/10.1038/s41467-019-11610-1
Vega, A. (2013). Breast cancer genes: beyond BRCA1 and BRCA2. Frontiers In Bioscience, 18(4), 1358. https://doi.org/10.2741/4185
Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799. https://doi.org/10.1038/nm1087
Wang, B. (2012). BRCA1 tumor suppressor network: focusing on its tail. Cell & Bioscience, 2(1), 6. https://doi.org/10.1186/2045-3701-2-6
Wang, J., Xiu, J., Battaglin, F., Arai, H., Soni, S., Zhang, W., Goldberg, R. M., Philip, P. A., Seeber, A., Hwang, J. J., Shields, A. F., Marshall, J. L., Astaturov, I., Liu, T., Lockhart, A. C., Korn, W. M., Shen, L., & Lenz, H. (2024). Large-scale analysis of CDH1 mutations defines a distinctive molecular subset with treatment implications in gastric cancer. Npj Precision Oncology, 8(1), 214. https://doi.org/10.1038/s41698-024-00694-8
Wei, X., Zheng, Q., Gao, H., Xiao, L., & Wei, W. (2023). The MSH2 c.793-1G>A splice-site mutation disrupts normal mRNA splicing and contributes to Lynch syndrome. Frontiers in Oncology, 13, 1131011. https://doi.org/10.3389/fonc.2023.1131011
Weinberg, R. A. (2014). The Biology of Cancer (2nd ed.). Garland Science.
Wong, D., Luo, P., Oldfield, L. E., Gong, H., Brunga, L., Rabinowicz, R., Subasri, V., Chan, C., Downs, T., Farncombe, K. M., Luu, B., Norman, M., Sobotka, J. A., Uju, P., Eagles, J., Pedersen, S., Wellum, J., Danesh, A., Prokopec, S. D., Pugh, T. J. (2023). Early Cancer Detection in Li–Fraumeni Syndrome with Cell-Free DNA. Cancer Discovery, 14(1), 104-119. https://doi.org/10.1158/2159-8290.cd-23-0456
Zerdoumi, Y., Lanos, R., Raad, S., Flaman, J., Bougeard, G., Frebourg, T., & Tournier, I. (2017). Germline TP53 mutations result into a constitutive defect of p53 DNA binding and transcriptional response to DNA damage. Human Molecular Genetics, 26(14), 2812. https://doi.org/10.1093/hmg/ddx165
Zhao, B., Rothenberg, E., Ramsden, D. A., & Lieber, M. R. (2020). The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews Molecular Cell Biology, 21(12), 765-781. https://doi.org/10.1038/s41580-020-00297-8
Zheng, Z., Li, S., Su, J., Leung, A. W., Lam, T., Luo, R., Zheng, Z., Li, S., Su, J., Leung, A. W., Lam, T., & Luo, R. (2022). Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nature Computational Science, 2(12), 797-803. https://doi.org/10.1038/s43588-022-00387-x
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 33 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532601253560320
spelling Identificación de variantes genéticas de alta penetrancia de línea germinal asociadas a cáncer a partir de datos exómicos en una muestra de participantes del departamento de Caldas570 - Biología::576 - Genética y evolución570 - Biología610 - Medicina y salud1. Ciencias Naturales::1F. Ciencias biológicas::1F03. Bioquímica y biología molecular3. Ciencias Médicas y de la SaludVariantes patogénicasCáncerSecuenciación de exomaLlamadores de variantesPoblación de CaldasCáncerBiología molecularDiagramas, tablas, gráficas.This study identified pathogenic or likely pathogenic variants using exome data from 250 individuals from Caldas. A comparative analysis of three variant callers was employed, followed by a rigorous two-stage filtering process: first, using a high-penetrance cancer gene panel, and second, by clinical classification according to ClinVar. Although Clair3 initially detected the highest number of variants, clinical filtering drastically reduced these sets. Bioinformatic analysis demonstrated that Longshot, despite its lower initial sensitivity, produced variants with significantly higher Genotype Quality and Depth (p < 0.001) compared to the other two algorithms. The final consolidation strategy, combining quality and consensus filters, resulted in a curated list of 12 variants, contributing to regional genetic knowledge for diagnostic precision.Este estudio identificó variantes patogénicas o probablemente patogénicas utilizando datos de exoma de 250 individuos de Caldas. Se empleó un análisis comparativo de tres llamadores de variantes seguido de un filtrado de dos etapas: primero, por un conjunto de genes de cáncer de alta penetrancia y, segundo, por clasificación clínica según ClinVar. Aunque Clair3 detectó inicialmente la mayor cantidad de variantes, el filtrado clínico redujo drásticamente los conjuntos. El análisis bioinformático demostró que Longshot, a pesar de su menor sensibilidad inicial, produjo variantes con Calidad de Genotipo y Profundidad significativamente superiores (p < 0.001) que los otros dos algoritmos. La estrategia de consolidación final, combinando filtros de calidad y consenso, resultó en una lista depurada de 12 variantes, aportando al conocimiento genético regional para la precisión diagnóstica.Resumen -- Introducción -- Materiales y Métodos -- Procesamiento de muestras, Preparación de Librerías y Secuenciación -- Análisis Bioinformático -- Resultados -- Genes de alta penetrancia asociados con cáncer hereditario -- Análisis entre Llamadores -- Listado de variantes patogénicas o probablemente patogénicas -- Discusión -- Comparación general de resultados entre llamadores -- Consolidación de variantes finales por consenso y calidad -- Posibles implicaciones de las variantes germinales patogénicas en la estabilidad genómica y la proliferación tumoral -- Compromiso de la integridad y estabilidad genómica -- Desregulación de la proliferación y adaptación tumoral -- Implicaciones futuras -- ReferenciasPregradoBiólogo(a)Bioinformática - Biología MolecularUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesBiologíaRodríguez-Rey, Ghennie TatianaOrjuela Rodríguez, MarcelaGómez-Henao, Juan Felipe2025-11-13T22:25:11Z2025-11-13T22:25:11Z2025-11-13Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis33 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26167Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbildgaard, A. B., Stein, A., Nielsen, S. V., Schultz-Knudsen, K., Papaleo, E., Shrikhande, A., Hoffmann, E. R., Bernstein, I., Gerdes, A., Takahashi, M., Ishioka, C., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2019). Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome. eLife, 8. https://doi.org/10.7554/elife.49138Abildgaard, A. B., Nielsen, S. V., Bernstein, I., Stein, A., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2022). Lynch syndrome, molecular mechanisms and variant classification. British Journal Of Cancer, 128(5), 726-734. https://doi.org/10.1038/s41416-022-02059-zAckerson, S. M., Romney, C., Schuck, P. L., & Stewart, J. A. (2021). To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Frontiers in Cell and Developmental Biology, 9, 708763. https://doi.org/10.3389/fcell.2021.708763Alvarez-Gomez, R. M., De la Fuente-Hernandez, M. A., Herrera-Montalvo, L., & Hidalgo-Miranda, A. (2021). Challenges of diagnostic genomics in Latin America. Current Opinion In Genetics & Development, 66, 101-109. https://doi.org/10.1016/j.gde.2020.12.010Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921–R925. https://doi.orgorg/10.1016/j.cub.2020.06.081Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data [Software]. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Angeli, D., Salvi, S., & Tedaldi, G. (2020). Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? International Journal Of Molecular Sciences, 21(3), 1128. https://doi.org/10.3390/ijms21031128Antoni, L., Sodha, N., Collins, I., & Garrett, M. D. (2007). CHK2 kinase: cancer susceptibility and cancer therapy – two sides of the same coin? Nature Reviews. Cancer, 7(12), 925-936. https://doi.org/10.1038/nrc2251Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922), 499–506. https://doi.org/10.1038/nature01368Balthazar, P., Klontzas, M. E., Heng, L. X. X., & Kearns, C. (2022). Cowden Syndrome. Radiographics, 42(2), E44-E45. https://doi.org/10.1148/rg.210230Berger, A. H., Knudson, A. G., & Pandolfi, P. P. (2011). A continuum model for tumour suppression. Nature, 476(7359), 163-169. https://doi.org/10.1038/nature10275Bielski, C. M., Donoghue, M. T., Gadiya, M., Hanrahan, A. J., Won, H. H., Chang, M. T., Jonsson, P., Penson, A. V., Gorelick, A., Harris, C., Schram, A. M., Syed, A., Zehir, A., Chapman, P. B., Hyman, D. M., Solit, D. B., Shannon, K., Chandarlapaty, S., Berger, M. F., & Taylor, B. S. (2018). Widespread Selection for Oncogenic Mutant Allele Imbalance in Cancer. Cancer Cell, 34(5), 852-862.e4. https://doi.org/10.1016/j.ccell.2018.10.003Chernoff, J. (2021). The two-hit theory hits 50. Molecular Biology Of The Cell, 32(22), rt1. https://doi.org/10.1091/mbc.e21-08-0407Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor–DNA complex: Understanding tumorigenic mutations. Science, 265(5170), 346–355. https://doi.org/10.1126/science.8023157Clevers, H., & Nusse, R. (2012). Wnt/β-catenin signalling and disease. Cell, 149(6), 1192-1205. https://doi.org/10.1016/j.cell.2012.05.012Clinical Genome Resource (ClinGen) Dosage Sensitivity Working Group. (n.d.). CDH1 gene dosage sensitivity curation results. Retrieved from https://search.clinicalgenome.org/kb/gene-dosage/HGNC%3A1748Corso, G., Figueiredo, J., Pietro de Angelis, S., Corso, F., Girardi, A., Pereira, J., Seruca, R., Bonanni, B., Carneiro, P., Pravettoni, G., Rocco, E. G., Veronesi, P., Montagna, G., Sacchini, V., & Gandini, S. (2020). E‐cadherin deregulation in breast cancer. Journal Of Cellular And Molecular Medicine, 24(11), 5930-5936. https://doi.org/10.1111/jcmm.15140Cui, M., Liu, Y., Yu, X., Guo, H., Jiang, T., Wang, Y., & Liu, B. (2024). miniSNV: accurate and fast single nucleotide variant calling from nanopore sequencing data. Briefings In Bioinformatics, 25(6). https://doi.org/10.1093/bib/bbae473Dakal, T. C., Dhabhai, B., Pant, A., Moar, K., Chaudhary, K., Yadav, V., Ranga, V., Sharma, N. K., Kumar, A., Maurya, P. K., Maciaczyk, J., Schmidt‐Wolf, I. G. H., & Sharma, A. (2024). Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm, 5(6). https://doi.org/10.1002/mco2.582Ding, S. L., Sheu, L. F., Yu, J. C., Yang, T. L., Chen, B. F., Leu, F. J., & Shen, C. Y. (2004). Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. British Journal Of Cancer, 90(10), 1995-2001. https://doi.org/10.1038/sj.bjc.6601804Dragoo, D. D., Taher, A., Wong, V. K., Elsaiey, A., Consul, N., Mahmoud, H. S., Mujtaba, B., Stanietzky, N., & Elsayes, K. M. (2021). PTEN Hamartoma Tumor Syndrome/Cowden Syndrome: Genomics, Oncogenesis, and Imaging Review for Associated Lesions and Malignancy. Cancers, 13(13), 3120. https://doi.org/10.3390/cancers13133120Edge, P., & Bansal, V. (2019). Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nature Communications, 10(1), 4660. https://doi.org/10.1038/s41467-019-12493-yEdeline, J., Vauléon, E., Rioux-Leclercq, N., Perrin, C., Bensalah, C. V. K., & Laguerre, B. (2012). Safety and Efficacy of Sorafenib in Renal Cell Carcinoma. Cancer Growth And Metastasis, 5, CGM.S7526. https://doi.org/10.4137/cgm.s7526Edeline, J., Vauléon, E., Rioux-Leclercq, N., Perrin, C., Bensalah, C. V. K., & Laguerre, B. (2012b). Safety and Efficacy of Sorafenib in Renal Cell Carcinoma. Cancer Growth And Metastasis, 5, CGM.S7526. https://doi.org/10.4137/cgm.s7526El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W., Kinzler, K. W., & Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817-825. https://doi.org/10.1016/0092-8674(93)90500-pFabregat, A., Sidiropoulos, K., Viteri, G., Marin-Garcia, P., Ping, P., Stein, L., D'Eustachio, P., & Hermjakob, H. (2018). Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics, 34(7), 1208–1214. https://doi.org/10.1093/bioinformatics/btx752Foulkes, W. D., Priest, J. R., & Duchaine, T. F. (2014). DICER1: mutations, microRNAs and mechanisms. Nature Reviews. Cancer, 14(10), 662-672. https://doi.org/10.1038/nrc3802Franco-Rocha, O. Y., Carillo-Gonzalez, G. M., Garcia, A., & Henneghan, A. (2021). Cancer Survivorship Care in Colombia: Review and Implications for Health Policy. Hispanic Health Care International, 20(1), 66-74. https://doi.org/10.1177/15404153211001578Gargallo, P., Yáñez, Y., Segura, V., Juan, A., Torres, B., Balaguer, J., Oltra, S., Castel, V., & Cañete, A. (2019). Li–Fraumeni syndrome heterogeneity. Clinical & Translational Oncology, 22(7), 978-988. https://doi.org/10.1007/s12094-019-02236-2Grasel, R. S., Felicio, P. S., De Paula, A. E., Campacci, N., De Oliveira Garcia, F. A., De Andrade, E. S., Evangelista, A. F., Fernandes, G. C., Da Silva Sabato, C., De Marchi, P., De Pádua Souza, C., De Paula, C. A. A., Torrezan, G. T., De Campos Reis Galvão, H., Carraro, D. M., & Palmero, E. I. (2020). Using Co-segregation and Loss of Heterozygosity Analysis to Define the Pathogenicity of Unclassified Variants in Hereditary Breast Cancer Patients. Frontiers In Oncology, 10, 571330. https://doi.org/10.3389/fonc.2020.571330Gregory, S. N., & Davis, J. L. (2023). CDH1 and hereditary diffuse gastric cancer: a narrative review. Chinese Clinical Oncology, 12(3), 25. https://doi.org/10.21037/cco-23-36Guha, T., & Malkin, D. (2017). InheritedTP53Mutations and the Li–Fraumeni Syndrome. Cold Spring Harbor Perspectives In Medicine, 7(4), a026187. https://doi.org/10.1101/cshperspect.a026187Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013Hanahan, D., & Coussens, L. M. (2012). Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022Imyanitov, E. N., Kuligina, E. S., Sokolenko, A. P., Suspitsin, E. N., Yanus, G. A., Iyevleva, A. G., Ivantsov, A. O., & Aleksakhina, S. N. (2023). Hereditary cancer syndromes. World Journal of Clinical Oncology, 14(2), 40. https://doi.org/10.5306/WJCO.V14.I2.40International Agency for Research on Cancer. (2024). Country fact sheet: Colombia. Global Cancer Observatory. https://gco.iarc.who.int/media/factsheets/populations/170-colombia-fact-sheet.pdfInternational Agency for Research on Cancer. (2025). Global Cancer Observatory: Cancer Over Time - Colombia. World Health Organization. Recuperado el 23 de septiembre de 2025, de https://gco.iarc.fr/overtime/enIsmail, T., Alzneika, S., Riguene, E., Al-Maraghi, S., Alabdulrazzak, A., Al-Khal, N., Fetais, S., Thanassoulas, A., AlFarsi, H., & Nomikos, M. (2024). BRCA1 and Its Vulnerable C-Terminal BRCT Domain: Structure, Function, Genetic Mutations and Links to Diagnosis and Treatment of Breast and Ovarian Cancer. Pharmaceuticals, 17(3), 333. https://doi.org/10.3390/ph17030333Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078. https://doi.org/10.1038/nature08467Jasperson, K. W., Tuohy, T. M., Neklason, D. W., & Burt, R. W. (2010). Hereditary and Familial Colon Cancer. Gastroenterology, 138(6), 2044-2058. https://doi.org/10.1053/j.gastro.2010.01.054Kavun, A., Veselovsky, E., Lebedeva, A., Belova, E., Kuznetsova, O., Yakushina, V., Grigoreva, T., Mileyko, V., Fedyanin, M., & Ivanov, M. (2023). Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers, 15(8), 2288. https://doi.org/10.3390/cancers15082288Kim, H. J., Park, J. W., & Lee, J. H. (2021). Genetic Architectures and Cell-of-Origin in Glioblastoma. Frontiers In Oncology, 10. https://doi.org/10.3389/fonc.2020.615400Kingdom, R., & Wright, C. F. (2022). Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Frontiers In Genetics, 13. https://doi.org/10.3389/fgene.2022.920390Knudson, A. G. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823. https://doi.org/10.1073/pnas.68.4.820Kontomanolis, E.N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z.N. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. AntiCancer Research, 40, 6009 - 6015.Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178-196. https://doi.org/10.1038/nrm3758Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923Li, G. (2007). Mechanisms and functions of DNA mismatch repair. Cell Research, 18(1), 85-98. https://doi.org/10.1038/cr.2007.115Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352Li, X., Liu, G., & Wu, W. (2021). Recent advances in Lynch syndrome. Experimental Hematology And Oncology, 10(1). https://doi.org/10.1186/s40164-021-00231-4Lim, H. J., Zhuang, L., & Fitzgerald, R. C. (2023). Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. Journal of Experimental & Clinical Cancer Research, 42(1), 57. https://doi.org/10.1186/s13046-023-02622-3Lim, H.J., Zhuang, L. & Fitzgerald, R.C. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J Exp Clin Cancer Res 42, 57 (2023). https://doi.org/10.1186/s13046-023-02622-3Liu, Y., & Lu, L. (2020). BRCA1 and homologous recombination: implications from mouse embryonic development. Cell & Bioscience, 10(1), 49. https://doi.org/10.1186/s13578-020-00412-4Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., Hawkins, C., Ng, H. K., Pfister, S. M., Reifenberger, G., Soffietti, R., Von Deimling, A., & Ellison, D. W. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 23(8), 1231-1251. https://doi.org/10.1093/neuonc/noab106Luo, Z., Tian, M., Yang, G., Tan, Q., Chen, Y., Li, G., Zhang, Q., Li, Y., Wan, P., & Wu, J. (2022). Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduction And Targeted Therapy, 7(1), 218. https://doi.org/10.1038/s41392-022-01080-1Ma, X., Tan, Z., Zhang, Q., Ma, K., Xiao, J., Wang, X., Wang, Y., Zhong, M., Wang, Y., Li, J., Zeng, X., Guan, W., Wang, S., Gong, K., Wei, G., & Wang, Z. (2022). VHL Ser65 mutations enhance HIF2α signaling and promote epithelial-mesenchymal transition of renal cancer cells. Cell & Bioscience, 12(1), 52. https://doi.org/10.1186/s13578-022-00790-xMacRae, I. J., & Doudna, J. A. (2006). Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion In Structural Biology, 17(1), 138-145. https://doi.org/10.1016/j.sbi.2006.12.002Magaña, M., Landeta-Sa, A. P., & López-Flores, Y. (2022). Cowden Disease: a review. American Journal Of Dermatopathology, 44(10), 705-717. https://doi.org/10.1097/dad.0000000000002234Magrin, L., Fanale, D., Brando, C., Corsini, L. R., Randazzo, U., Di Piazza, M., Gurrera, V., Pedone, E., Russo, T. D. B., Vieni, S., Pantuso, G., Russo, A., & Bazan, V. (2022). MUTYH-associated tumor syndrome: The other face of MAP. Oncogene, 41(18), 2531-2539. https://doi.org/10.1038/s41388-022-02304-yMazumder, S., Higgins, P. J., & Samarakoon, R. (2023). Downstream Targets of VHL/HIF-α Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers, 15(4), 1316. https://doi.org/10.3390/cancers15041316Miller, D. B., & Piccolo, S. R. (2020). Compound Heterozygous Variants in Pediatric Cancers: A Systematic Review. Frontiers In Genetics, 11, 493. https://doi.org/10.3389/fgene.2020.00493Mustofa, M. K., Tanoue, Y., Tateishi, C., Vaziri, C., & Tateishi, S. (2020). Roles of Chk2/CHEK2 in guarding against environmentally induced DNA damage and replication‐stress. Environmental And Molecular Mutagenesis, 61(7), 730-735. https://doi.org/10.1002/em.22397Nandakumar, S., Mehine, M., Kemel, Y., Bandlamudi, C., Mandelker, D., Rosenblum, M. K., Bale, T., Karajannis, M. A., Sait, S. F., Elmore, K. B., Therkelsen, K. E., Chatila, W. K., Muldoon, D., Young, R. J., Imber, B. S., Brennan, C., Moss, N. S., Yu, K. K. H., Tabar, V., . . . Lin, A. L. (2025). Prospective characterization of germline variants in patients with gliomas and glioneuronal tumors. Acta Neuropathologica, 150(1). https://doi.org/10.1007/s00401-025-02935-xNenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67-72. https://doi.org/10.1016/j.mpmed.2019.11.001Nusse, R., & Clevers, H. (2017). Wnt beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985–999. https://doi.org/10.1016/j.cell.2017.05.016Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., Pekmezci, M., Schwartzbaum, J. A., Turner, M. C., Walsh, K. M., Wrensch, M. R., & Barnholtz-Sloan, J. S. (2014). The epidemiology of glioma in adults: a «state of the science» review. Neuro-Oncology, 16(7), 896-913. https://doi.org/10.1093/neuonc/nou087Oxford Nanopore Technologies. (2023). Guppy basecalling software release 6.5.7 [Software]. Oxford Nanopore Technologies. https://nanoporetech.com/software/other/guppy/historyOxford Nanopore Technologies. (2025). Dorado: High-performance neural network basecaller [Software]. Oxford Nanopore Technologies. https://nanoporetech.com/software/other/doradoPoplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., DePristo, M. A., Poplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983-987. https://doi.org/10.1038/nbt.4235Quail, D. F., & Joyce, J. A. (2013). The tumor microenvironment: A critical regulator of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437. https://doi.org/10.1038/nm.3394Razack, N. A., & Prabhuswamimath, S. C. (2024). Exploring High-Penetrance Genes in Breast Cancer Associated Genetic Syndromes: Insights into Genetic Predisposition and Clinical Implications. International Journal Of Health & Allied Sciences, 13(1). https://doi.org/10.55691/2278-344x.1091Robertson, J. C., Jorcyk, C. L., & Oxford, J. T. (2018). DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers, 10(5), 143. https://doi.org/10.3390/cancers10050143Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. Journal Of Biological Chemistry, 273(10), 5858-5868. https://doi.org/10.1074/jbc.273.10.5858Ryland, G. L., Doyle, M. A., Goode, D., Boyle, S. E., Choong, D. Y., Rowley, S. M., Li, J., Bowtell, D. D., Tothill, R. W., Campbell, I. G., & Gorringe, K. L. (2015). Loss of heterozygosity: what is it good for? BMC Medical Genomics, 8(1), 45. https://doi.org/10.1186/s12920-015-0123-zSchneider, K., Zelley, K., Nichols, K. E., Levine, A. S., & Garber, J. (2025, 1 mayo). Li-Fraumeni Syndrome. GeneReviews® - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/sites/books/NBK1311/Shen, C., & Kaelin, W. G. (2012). The VHL/HIF axis in clear cell renal carcinoma. Seminars In Cancer Biology, 23(1), 18-25. https://doi.org/10.1016/j.semcancer.2012.06.001Smith, J., Tho, L. M., Xu, N., & Gillespie, D. A. (2010). The ATM–Chk2 and ATR–Chk1 Pathways in DNA Damage Signaling and Cancer. Advances In Cancer Research, 108, 73-112. https://doi.org/10.1016/b978-0-12-380888-2.00003-0Srinivasan, P., Bandlamudi, C., Jonsson, P., Kemel, Y., Chavan, S. S., Richards, A. L., Penson, A. V., Bielski, C. M., Fong, C., Syed, A., Jayakumaran, G., Prasad, M., Hwee, J., Sumer, S. O., De Bruijn, I., Li, X., Gao, J., Schultz, N., Cambria, R., . . . Taylor, B. S. (2021). The context-specific role of germline pathogenicity in tumorigenesis. Nature Genetics, 53(11), 1577-1585. https://doi.org/10.1038/s41588-021-00949-1Stadler, Z. K., Maio, A., Chakravarty, D., Kemel, Y., Sheehan, M., Salo-Mullen, E., Tkachuk, K., Fong, C. J., Nguyen, B., Erakky, A., Cadoo, K., Liu, Y., Carlo, M. I., Latham, A., Zhang, H., Kundra, R., Smith, S., Galle, J., Aghajanian, C., . . . Robson, M. E. (2021). Therapeutic Implications of Germline Testing in Patients With Advanced Cancers. Journal Of Clinical Oncology, 39(24), 2698-2709. https://doi.org/10.1200/jco.20.03661Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., ... & Cooper, D. N. (2017). The Human Gene Mutation Database (HGMD®): a comprehensive central resource for germline mutations causing human inherited disease. Human Genetics, 136(6), 619–637. https://doi.org/10.1007/s00439-017-1779-6Takeichi, M. (2014). Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nature Reviews Molecular Cell Biology, 15(6), 397-410. https://doi.org/10.1038/nrm3802Theotoki, E. I., Pantazopoulou, V. I., Georgiou, S., Kakoulidis, P., Filippa, V., Stravopodis, D. J., & Anastasiadou, E. (2020). Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. International Journal Of Molecular Sciences, 21(19), 7223. https://doi.org/10.3390/ijms21197223Thet, M., Plazzer, J., Capella, G., Latchford, A., Nadeau, E. A. W., Greenblatt, M. S., & Macrae, F. (2024). Phenotype Correlations With Pathogenic DNA Variants in the MUTYH Gene: A Review of Over 2000 Cases. Human Mutation, 2024(1). https://doi.org/10.1155/2024/8520275Torres, D., Bermejo, J. L., Rashid, M. U., Briceño, I., Gil, F., Beltran, A., Ariza, V., & Hamann, U. (2017). Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05056-yVan Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular And Molecular Life Sciences, 65(23), 3756-3788. https://doi.org/10.1007/s00018-008-8281-1Vedanayagam, J., et al. (2019). Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains disrupt the cleavage of 5' pre-miRNA arms. Nature Communications, 10, 3192. https://doi.org/10.1038/s41467-019-11610-1Vega, A. (2013). Breast cancer genes: beyond BRCA1 and BRCA2. Frontiers In Bioscience, 18(4), 1358. https://doi.org/10.2741/4185Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799. https://doi.org/10.1038/nm1087Wang, B. (2012). BRCA1 tumor suppressor network: focusing on its tail. Cell & Bioscience, 2(1), 6. https://doi.org/10.1186/2045-3701-2-6Wang, J., Xiu, J., Battaglin, F., Arai, H., Soni, S., Zhang, W., Goldberg, R. M., Philip, P. A., Seeber, A., Hwang, J. J., Shields, A. F., Marshall, J. L., Astaturov, I., Liu, T., Lockhart, A. C., Korn, W. M., Shen, L., & Lenz, H. (2024). Large-scale analysis of CDH1 mutations defines a distinctive molecular subset with treatment implications in gastric cancer. Npj Precision Oncology, 8(1), 214. https://doi.org/10.1038/s41698-024-00694-8Wei, X., Zheng, Q., Gao, H., Xiao, L., & Wei, W. (2023). The MSH2 c.793-1G>A splice-site mutation disrupts normal mRNA splicing and contributes to Lynch syndrome. Frontiers in Oncology, 13, 1131011. https://doi.org/10.3389/fonc.2023.1131011Weinberg, R. A. (2014). The Biology of Cancer (2nd ed.). Garland Science.Wong, D., Luo, P., Oldfield, L. E., Gong, H., Brunga, L., Rabinowicz, R., Subasri, V., Chan, C., Downs, T., Farncombe, K. M., Luu, B., Norman, M., Sobotka, J. A., Uju, P., Eagles, J., Pedersen, S., Wellum, J., Danesh, A., Prokopec, S. D., Pugh, T. J. (2023). Early Cancer Detection in Li–Fraumeni Syndrome with Cell-Free DNA. Cancer Discovery, 14(1), 104-119. https://doi.org/10.1158/2159-8290.cd-23-0456Zerdoumi, Y., Lanos, R., Raad, S., Flaman, J., Bougeard, G., Frebourg, T., & Tournier, I. (2017). Germline TP53 mutations result into a constitutive defect of p53 DNA binding and transcriptional response to DNA damage. Human Molecular Genetics, 26(14), 2812. https://doi.org/10.1093/hmg/ddx165Zhao, B., Rothenberg, E., Ramsden, D. A., & Lieber, M. R. (2020). The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews Molecular Cell Biology, 21(12), 765-781. https://doi.org/10.1038/s41580-020-00297-8Zheng, Z., Li, S., Su, J., Leung, A. W., Lam, T., Luo, R., Zheng, Z., Li, S., Su, J., Leung, A. W., Lam, T., & Luo, R. (2022). Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nature Computational Science, 2(12), 797-803. https://doi.org/10.1038/s43588-022-00387-xhttps://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/261672025-11-14T08:01:45Z