Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia
Ilustraciones, fotos, mapas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/19798
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/19798
https://repositorio.ucaldas.edu.co/
- Palabra clave:
- Aves Neotropicales
Cobertura vegetal
Éxito reproductivo
Modelo lineales generalizados
Sistema agroforestal
Biología
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUCALDA_b6cd8c47d3e9c55fc2201e53f109dd90 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/19798 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
title |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
spellingShingle |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia Aves Neotropicales Cobertura vegetal Éxito reproductivo Modelo lineales generalizados Sistema agroforestal Biología |
title_short |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
title_full |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
title_fullStr |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
title_full_unstemmed |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
title_sort |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, Colombia |
dc.contributor.none.fl_str_mv |
Gutiérrez Cárdenas, Paul David Alfonso Ocampo Rincón, David BIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1) |
dc.subject.none.fl_str_mv |
Aves Neotropicales Cobertura vegetal Éxito reproductivo Modelo lineales generalizados Sistema agroforestal Biología |
topic |
Aves Neotropicales Cobertura vegetal Éxito reproductivo Modelo lineales generalizados Sistema agroforestal Biología |
description |
Ilustraciones, fotos, mapas |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-15T20:52:38Z 2024-02-15T20:52:38Z 2024-02-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19798 Universidad de Caldas Repositorio Institucional Universidad de Caldas https://repositorio.ucaldas.edu.co/ |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19798 https://repositorio.ucaldas.edu.co/ |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (Editors) (2022). Birds of the World. Cornell Laboratory of Ornithology, USA. https://birdsoftheworld.org/bow/home Borges, F. J. & Marini, M. A. (2010). Birds nesting survival in disturbed and protected Neotropical savannas. Biodiversity and Conservation, 19: 223-236. Burnham, K. P & Kenneth, D. R. (2004). Model selection and multimodel inference. Springer. https://doi.org/10.1007/b97636 Cockle, K. (2010). Nesting ecology and community structure of cavity-nesting birds in the Neotropical Atlantic Forest. Doctoral thesis. The University of British Columbia Cockle, K., Martin, k. & Wiebe, K. (2011). Selection of nest trees by cavity-nesting birds in the Neotropical Atlantic Forest. Biotropica, 43(2): 228-236. Doi: 10.1111/j.1744- 7429.2010.00661.x Cornelius, C., Cockle, K., Politi, N., Berkunsky, I., Sandoval, L., Ojeda, V., Rivera, L., Hunter, M. & Martin, K. (2008). Cavity-nesting birds in neotropical forest: Cavities as a potentially limiting resource. Ornitología Neotropical, 19: 253-268 DeCesare, N. J., Hebblewhite, M., Bradley, M., Hervieux, D., Neufeld, L. & Musiani, M. (2014). Linking habitat selection and predation risk to spatial variation in survival. Journal of Animal Ecology, 83(2): 343-352. doi: 10.1111/1365-2656.12144 Deeming & Mainwaring (2015). Functional properties of nests. In Eds. Deeming, D. C. & Reynolds, S. J. Nest, eggs and incubation. Oxford University Press. Expósito-Granados, M., Parejo, D., Martínez, J. G., Precioso, M., Molina-Morales, M. & Avilés, J. M. (2017). Host nest site choice depends on risk of cuckoo parasitism in magpie hosts. Behavioral Ecology, 28(6): 1492-1497. doi:10.1093/beheco/arx113 Forstmeier W. & Weiss, I. (2004). Adaptive plasticity in nest-site selection in response to changing predation risk. Oikos, 104: 487-499. Fournier, A. M., Lancaster, J. D., Yetter, A. P., Hine, C. S., Beckerman, T., Figge, J., Gioe, A., Greider-Wagner, M., Jen, D., Johnson, C., Larreur, M. R., Shaw, A., Wolter, K., Wood, M., Wu, D. K., O’Neal, B. J. & Hagy, H. M. (2021). Nest success and nest site selection of wetland birds in a restored wetland system. Avian Conservation & Ecology, 16(1): 6. Fretwell, S. D. & Lucas, H. L. (1969). On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica, 19(1): 16-36. DOI: 10.1007/bf01601953 Hansell, M. (2000). Bird nests and construction behavior. The Auk, 119(3): 892-894 IDEAM. (2020). Resultados De Monitoreo Deforestación 2019. http://www.andi.com.co/ Uploads/PRESENTACION%20DEFORESTACION%202019%20(julio%209) _compressed.pdf Kesyser, A. (2002). Nest predation in fragmented forest: Landscape matrix by distance from edge interactions. The Wilson Bulletin, 114(2): 186-191. Lambertchs, M. M., Adriaensen, F., Ardia, D. R., Artemyev, A. V., Atiénzar, F., Bańdura, J., Barba, E., Bouvier, J., Camprodon, J., Cooper, C. B., Dawson, R. D., Eens, M., Eeva, T., Faivre, B., Garamszegi, L. Z., Goodenough, A. E., Gosler, A. G., Grégoire, A., Griffith, S. C.,…, Ziane, N. (2010). The design of artificial nestboxes for the study of secondary hole-nesting birds: A review of methodological inconsistencies and potential biases. Acta Ornithologica, 45(1): 1- 26. Mainwaring & Hartley (2013). The energetic cost of nest building in birds Mainwaring, M. C., Hartley, I. R., Lambrechts, M. M. & Deeming, D. C. (2014). The design and function of birds' nests. Ecology and Evolution, 20(4): 3909-3928. doi: 10.1002/ece3.1054 Martin, T. E. (1993a). Nest predation among vegetation layers and habitat types: Revising the dogmas. The American Naturalist, 141(6): 897-913. Martin, T. E. (1993b). Nest predation and nest sites. BioScience, 43(8): 523-532. Martin, T. E. (1995). Avian life history evolution in relation to nest sites, nest predation and food. Ecological Monographs, 65(1): 101-127. Martin, T. E. (1998). Are microhabitat preferences of coexisting species under selection and adaptative? Ecology, 79(2): 656-670. Martin, T. E. (2001). Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts. Ecology, 82(1): 175-188. Martin, T. E., Boyce, A. J., Fierro-Calderón, K., Mitchell, A. E., Armstad, C. E., Mouton, J. & Bin Soudi, E. E. (2017). Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Functional Ecology, 31(6): 1231-1240. https://doi.org/10.1111/1365-2435.12819 McLaughlin, A. & Mineau, P. (1995). The impact of agricultural practices on biodiversity. Agriculture Ecosystems and Environment, 55: 201-212. Medina, I., Perez, D. M., Afonso Silva, A. C., Cally, J., León, C., Maliet, O. & Quintero, I. (2022). Nest architecture is linked with ecological success in songbirds. Ecology Letters, 25(6): 1365- 1375. DOI: 10.1111/ele.13998 Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICmodavg package. Ocampo, D., De Silva, T. N., Sheard, C. & Stoddard, M. C. (2023). Evolution of nest architecture in tyrant flycatchers and allies. Philosophical Transactions of the Royal Society, 378: 2022.0148. Payne, R. B. (1977). The ecology of brood parasitism in birds. Annual Review of Ecology and Systematics, 8(1): 1-28. doi:10.1146/ANNUREV.ES.08.110177.000245 Piper, S. D. & Catterall, C. P. (2004). Effects of edge type and nest height on predation of artificial nests within subtropical Australian eucalypt forests. Forest Ecology and Management, 203: 361-372. doi:10.1016/j.foreco.2004.08.005 Price, J. J. & Griffith, S. C. (2017). Open cup evolved from roofed nests in the early passerines. Proceeding the Royal Society B, 284: 20162708. http://dx.doi.org/10.1098/rspb.2016.2708 Politi, N., Hunter, M. & Rivera, L. (2012). Assessing the effects of selective logging on birds in Neotropical piedemont and cloud montane forest. Biodiversity and Conservation, 21: 3131- 3155. Rao, S. & Koli, K. (2017). Edge effect of busy high traffic roads on the nest site selection of bird inside the city area: Guild response. Transportation Research Part D Transport and Environment, 51: 94-101. RStudio Team (2023). RStudio: Integrated Development Enviroment for R. Available from: http://www.rstudio.com/ Reif, J. (2013). Long-term trends in bird populations: A review of pattern and potential drivers in North America and Europe. Acta Ornithologica, 48(1): 1-16. DOI: http://dx.doi.org/10.3161/000164513X669955 Robertson, B. A. & Hutto, R. L. (2006). A framework for understanding ecological traps and evaluating existing evidence. Ecology, 87(5): 1075-1085. https://doi.org/10.1890/0012- 9658(2006)87[1075:AFFUET]2.0.CO;2 Schmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265.vSchmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265.Schmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265. Simon, J. E. & Pacheco, S. (2005). On the standardization of nest descriptions of neotropical birds. Revista Brasileira de Ornitologia, 13(2): 143-154. Street, S. E., Jaques, R. & De Silva, T. N. (2022). Convergent evolution of elaborate nests as structural defences in birds. Proceedings of the Royal Society B, 289(1989): 20221734. Van de Loock, D., Strubbe, D., Thijs, K. W., Van de Peer, T., De Neve, L., Githiru, M., Matthysen, E. & Lens, L. (2020). Flexible nest-site selection under anthropogenic habitat change in an Afrotropical understorey insectivore. Ibis, 162(1): 187-200. https://doi.org/10.1111/ibi.12691 Weidinger, K. (2002). Interactive effects of concealment, parental behavior and predators on the survival of open passerine nests. Journal of Animal Ecology, 71: 424-437. Wilcove, D. S. (1985). Nest predation in forest tracts and the decline of migratory songbirds. Ecology, 66(4): 1211-1214. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145031051739136 |
spelling |
Efecto de la cobertura vegetal sobre la selección de sitios de anidación de aves en un sistema agroforestal de Manizales, ColombiaAves NeotropicalesCobertura vegetalÉxito reproductivoModelo lineales generalizadosSistema agroforestalBiologíaIlustraciones, fotos, mapasLa selección de sitios de anidación es un comportamiento con consecuencias en el fitness de las aves. Las relaciones entre factores como la arquitectura de nido o cobertura vegetale, pueden representar una compensación que explique esta selección. En la actualidad, la información sobre la ecología reproductiva de las aves en el Neotrópico es limitada y se hace necesario estudiar sus las dinámicas reproductivas. Los objetivos de este estudio son: 1) determinar la variación en la composición de nidos entre coberturas vegetales, 2) evaluar el efecto de la pérdida de complejidad vegetal sobre la diversidad de arquitecturas de nidos, 3) determinar el efecto del sitio de anidación sobre la diversidad de arquitecturas de nidos y 4) evaluar el efecto del sitio de anidación y la arquitectura del nido sobre el éxito reproductivo. Se realizaron análisis descriptivos y análisis de modelos lineales generalizados. Se registraron 176 nidos en una finca en Manizales, Colombia. 47 del total de nidos estaban en etapa reproductiva. La composición de nidos entre coberturas vegetales varió, estando en el sistema agroforestal la mayor representatividad. La diversidad de arquitecturas de nido disminuyó con la pérdida de complejidad vegetal, siendo las aves que anidan en cavidades las más afectadas. La selección de sitios de anidación varió en función a las arquitecturas de nido. Ni las coberturas vegetales ni la altura explicaron el éxito reproductivo, sin embargo, las cavidades en árboles presentaron mayor éxito reproductivo. El entendimiento de la ecología reproductiva de las aves es de vital importancia para plantear estrategias de conservación y delimitación de espacios óptimos para garantizar el éxito reproductivo.Nesting site selection is a behavior that can affect the reproductive success of species. In birds, this selection primarily responds to the relationships between nest architecture (simple, platform, cup, dome, cavity) and available vegetation cover. To understand the effect of changes in vegetation cover on bird nesting site preferences, we need basic information about their reproductive biology at landscape scales; however, such information for Neotropical birds remains limited. In this study, I aimed to 1) determine the distribution of nest architectures in different vegetation covers, 2) evaluate the effect of vegetation complexity loss on nest architecture diversity, 3) estimate the effect of nesting site on nest architecture diversity, and 4) verify if nesting site and nest architecture influence reproductive success. To explore the pattern of nest distribution, I conducted nest searching and descriptive analyses and tested my hypotheses about factors affecting nesting sites using generalized linear models. In an agroforestry system with different vegetation covers, I recorded 176 nests, 47 of which were active. The agroforestry system exhibited the greatest diversity of nest architectures. This diversity decreased with vegetation complexity loss, strongly affecting cavity-nesting birds. Nesting site selection varied for different nest architectures. Reproductive success was not explained by vegetation cover or nest height. However, nests in tree cavities did show higher reproductive success. Understanding the reproductive biology of birds and how they respond to habitat transformation during their breeding season is crucial for developing conservation strategies that include spaces ensuring reproductive success.Introducción / Métodos / Área de estudio y muestreo de nidos / Análisis de datos / Variación en la composición de nidos / Efecto de la pérdida de complejidad en vegetación / Selección de sitios de anidación / Éxito reproductivo / Resultados / Variación en la composición de nidos / Efecto de la pérdida de complejidad en vegetación / Selección de sitios de anidación / Éxito reproductivo / Discusión / Conclusiones / Referencias bibliográficas / Material suplementarioUniversitarioBiólogo(a)Biodiversidad y SistemáticaFacultad de Ciencias Exactas y NaturalesManizalesBiologíaGutiérrez Cárdenas, Paul David AlfonsoOcampo Rincón, DavidBIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)León León, Juan Felipe2024-02-15T20:52:38Z2024-02-15T20:52:38Z2024-02-15Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19798Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaBillerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (Editors) (2022). Birds of the World. Cornell Laboratory of Ornithology, USA. https://birdsoftheworld.org/bow/homeBorges, F. J. & Marini, M. A. (2010). Birds nesting survival in disturbed and protected Neotropical savannas. Biodiversity and Conservation, 19: 223-236.Burnham, K. P & Kenneth, D. R. (2004). Model selection and multimodel inference. Springer. https://doi.org/10.1007/b97636Cockle, K. (2010). Nesting ecology and community structure of cavity-nesting birds in the Neotropical Atlantic Forest. Doctoral thesis. The University of British ColumbiaCockle, K., Martin, k. & Wiebe, K. (2011). Selection of nest trees by cavity-nesting birds in the Neotropical Atlantic Forest. Biotropica, 43(2): 228-236. Doi: 10.1111/j.1744- 7429.2010.00661.xCornelius, C., Cockle, K., Politi, N., Berkunsky, I., Sandoval, L., Ojeda, V., Rivera, L., Hunter, M. & Martin, K. (2008). Cavity-nesting birds in neotropical forest: Cavities as a potentially limiting resource. Ornitología Neotropical, 19: 253-268DeCesare, N. J., Hebblewhite, M., Bradley, M., Hervieux, D., Neufeld, L. & Musiani, M. (2014). Linking habitat selection and predation risk to spatial variation in survival. Journal of Animal Ecology, 83(2): 343-352. doi: 10.1111/1365-2656.12144Deeming & Mainwaring (2015). Functional properties of nests. In Eds. Deeming, D. C. & Reynolds, S. J. Nest, eggs and incubation. Oxford University Press.Expósito-Granados, M., Parejo, D., Martínez, J. G., Precioso, M., Molina-Morales, M. & Avilés, J. M. (2017). Host nest site choice depends on risk of cuckoo parasitism in magpie hosts. Behavioral Ecology, 28(6): 1492-1497. doi:10.1093/beheco/arx113Forstmeier W. & Weiss, I. (2004). Adaptive plasticity in nest-site selection in response to changing predation risk. Oikos, 104: 487-499.Fournier, A. M., Lancaster, J. D., Yetter, A. P., Hine, C. S., Beckerman, T., Figge, J., Gioe, A., Greider-Wagner, M., Jen, D., Johnson, C., Larreur, M. R., Shaw, A., Wolter, K., Wood, M., Wu, D. K., O’Neal, B. J. & Hagy, H. M. (2021). Nest success and nest site selection of wetland birds in a restored wetland system. Avian Conservation & Ecology, 16(1): 6.Fretwell, S. D. & Lucas, H. L. (1969). On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica, 19(1): 16-36. DOI: 10.1007/bf01601953Hansell, M. (2000). Bird nests and construction behavior. The Auk, 119(3): 892-894IDEAM. (2020). Resultados De Monitoreo Deforestación 2019. http://www.andi.com.co/ Uploads/PRESENTACION%20DEFORESTACION%202019%20(julio%209) _compressed.pdfKesyser, A. (2002). Nest predation in fragmented forest: Landscape matrix by distance from edge interactions. The Wilson Bulletin, 114(2): 186-191.Lambertchs, M. M., Adriaensen, F., Ardia, D. R., Artemyev, A. V., Atiénzar, F., Bańdura, J., Barba, E., Bouvier, J., Camprodon, J., Cooper, C. B., Dawson, R. D., Eens, M., Eeva, T., Faivre, B., Garamszegi, L. Z., Goodenough, A. E., Gosler, A. G., Grégoire, A., Griffith, S. C.,…, Ziane, N. (2010). The design of artificial nestboxes for the study of secondary hole-nesting birds: A review of methodological inconsistencies and potential biases. Acta Ornithologica, 45(1): 1- 26.Mainwaring & Hartley (2013). The energetic cost of nest building in birdsMainwaring, M. C., Hartley, I. R., Lambrechts, M. M. & Deeming, D. C. (2014). The design and function of birds' nests. Ecology and Evolution, 20(4): 3909-3928. doi: 10.1002/ece3.1054Martin, T. E. (1993a). Nest predation among vegetation layers and habitat types: Revising the dogmas. The American Naturalist, 141(6): 897-913.Martin, T. E. (1993b). Nest predation and nest sites. BioScience, 43(8): 523-532.Martin, T. E. (1995). Avian life history evolution in relation to nest sites, nest predation and food. Ecological Monographs, 65(1): 101-127.Martin, T. E. (1998). Are microhabitat preferences of coexisting species under selection and adaptative? Ecology, 79(2): 656-670.Martin, T. E. (2001). Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts. Ecology, 82(1): 175-188.Martin, T. E., Boyce, A. J., Fierro-Calderón, K., Mitchell, A. E., Armstad, C. E., Mouton, J. & Bin Soudi, E. E. (2017). Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Functional Ecology, 31(6): 1231-1240. https://doi.org/10.1111/1365-2435.12819McLaughlin, A. & Mineau, P. (1995). The impact of agricultural practices on biodiversity. Agriculture Ecosystems and Environment, 55: 201-212.Medina, I., Perez, D. M., Afonso Silva, A. C., Cally, J., León, C., Maliet, O. & Quintero, I. (2022). Nest architecture is linked with ecological success in songbirds. Ecology Letters, 25(6): 1365- 1375. DOI: 10.1111/ele.13998Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICmodavg package.Ocampo, D., De Silva, T. N., Sheard, C. & Stoddard, M. C. (2023). Evolution of nest architecture in tyrant flycatchers and allies. Philosophical Transactions of the Royal Society, 378: 2022.0148.Payne, R. B. (1977). The ecology of brood parasitism in birds. Annual Review of Ecology and Systematics, 8(1): 1-28. doi:10.1146/ANNUREV.ES.08.110177.000245Piper, S. D. & Catterall, C. P. (2004). Effects of edge type and nest height on predation of artificial nests within subtropical Australian eucalypt forests. Forest Ecology and Management, 203: 361-372. doi:10.1016/j.foreco.2004.08.005Price, J. J. & Griffith, S. C. (2017). Open cup evolved from roofed nests in the early passerines. Proceeding the Royal Society B, 284: 20162708. http://dx.doi.org/10.1098/rspb.2016.2708Politi, N., Hunter, M. & Rivera, L. (2012). Assessing the effects of selective logging on birds in Neotropical piedemont and cloud montane forest. Biodiversity and Conservation, 21: 3131- 3155.Rao, S. & Koli, K. (2017). Edge effect of busy high traffic roads on the nest site selection of bird inside the city area: Guild response. Transportation Research Part D Transport and Environment, 51: 94-101.RStudio Team (2023). RStudio: Integrated Development Enviroment for R. Available from: http://www.rstudio.com/Reif, J. (2013). Long-term trends in bird populations: A review of pattern and potential drivers in North America and Europe. Acta Ornithologica, 48(1): 1-16. DOI: http://dx.doi.org/10.3161/000164513X669955Robertson, B. A. & Hutto, R. L. (2006). A framework for understanding ecological traps and evaluating existing evidence. Ecology, 87(5): 1075-1085. https://doi.org/10.1890/0012- 9658(2006)87[1075:AFFUET]2.0.CO;2Schmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265.vSchmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265.Schmidt, K. A., Nelis, L. C., Briggs, N. & Ostfeld, R. S. (2005). Invasive shrubs and songbird nesting success: Effects of climate variability and predator abundance. Ecological Applications, 15(1): 258-265.Simon, J. E. & Pacheco, S. (2005). On the standardization of nest descriptions of neotropical birds. Revista Brasileira de Ornitologia, 13(2): 143-154.Street, S. E., Jaques, R. & De Silva, T. N. (2022). Convergent evolution of elaborate nests as structural defences in birds. Proceedings of the Royal Society B, 289(1989): 20221734.Van de Loock, D., Strubbe, D., Thijs, K. W., Van de Peer, T., De Neve, L., Githiru, M., Matthysen, E. & Lens, L. (2020). Flexible nest-site selection under anthropogenic habitat change in an Afrotropical understorey insectivore. Ibis, 162(1): 187-200. https://doi.org/10.1111/ibi.12691Weidinger, K. (2002). Interactive effects of concealment, parental behavior and predators on the survival of open passerine nests. Journal of Animal Ecology, 71: 424-437.Wilcove, D. S. (1985). Nest predation in forest tracts and the decline of migratory songbirds. Ecology, 66(4): 1211-1214.info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/197982024-07-16T21:41:56Z |