Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre
La producción de cueros se constituye como una actividad de vital importancia económica, social y cultural. Sin embargo, la calidad de los cuerpos de agua en los cuales son vertidas las aguas residuales procedentes de esta industria se ven afectados por el aporte de carga contaminante. ...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/23550
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/23550
https://doi.org/10.17151/luaz.2020.50.11
- Palabra clave:
- DQO
industria
radiación
sulfuro de hidrógeno
tratamiento de aguas residuales
COD
industry
radiation
sulfur
wastewater treatment
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
REPOUCALDA_b5fae5a38864a604946f1af8b0a1095a |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/23550 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre Applicability of photo-fenton process (visible-light) in the degradation of sulfur and cod from tannery wastewater |
| title |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| spellingShingle |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre DQO industria radiación sulfuro de hidrógeno tratamiento de aguas residuales COD industry radiation sulfur wastewater treatment |
| title_short |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| title_full |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| title_fullStr |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| title_full_unstemmed |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| title_sort |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembre |
| dc.subject.none.fl_str_mv |
DQO industria radiación sulfuro de hidrógeno tratamiento de aguas residuales COD industry radiation sulfur wastewater treatment |
| topic |
DQO industria radiación sulfuro de hidrógeno tratamiento de aguas residuales COD industry radiation sulfur wastewater treatment |
| description |
La producción de cueros se constituye como una actividad de vital importancia económica, social y cultural. Sin embargo, la calidad de los cuerpos de agua en los cuales son vertidas las aguas residuales procedentes de esta industria se ven afectados por el aporte de carga contaminante. Objetivo: demostrar la reducción en la concentración de sulfuros y DQO evaluando las condiciones físicas y químicas del agua de curtiembre sin tratamiento, clarificada y tratada. Materiales y métodos: se propone un proceso de oxidación de avanzada, mediante la adición de peróxido de hidrógeno y cloruro férrico como catalizador (reactivo de Fenton), utilizando lámparas LED de luz visible como fuente de energía para la fotólisis de los contaminantes, el diseño experimental se realizó con tiempos de reacción fijo de seis horas, se analizó el efecto del pH y la dosis de peróxido (H2O2 y FeCl3) y como superficie de respuesta se obtuvo porcentaje de remoción en términos de sulfuros y DQO. Resultados: Se obtuvo una remoción de 73,5% para sulfuros en condiciones de pH inicial de solución de 5 y dosis de H2O2 al 30% de 40µl, y 56% de remoción de DQO para un pH inicial de 6 con dosis de H2O2 al 30% de 60µl, aunque se evidencia que las variables de respuesta dependen o varían respecto a las variables o factores de proceso según los resultados estadísticos de la ANOVA. Conclusiones: se alcanza mayor porcentaje de remoción de sulfuros cuando el pH inicial se encuentra entre cinco y seis unidades, mientras que la remoción de DQO depende de la concentración de H2O2 aplicada, además, el uso de radiación visible suministrada por lámparas LED para intensificar el proceso de oxidación resulta favorable de acuerdo con el análisis estequiométrico realizado de conformidad con la dosis de agente oxidante empleado. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-01-01T00:00:00Z 2020-01-01T00:00:00Z 2020-01-01 2025-10-08T21:12:26Z 2025-10-08T21:12:26Z |
| dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 Text info:eu-repo/semantics/article Journal article info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
0122-5391 https://repositorio.ucaldas.edu.co/handle/ucaldas/23550 10.17151/luaz.2020.50.11 1909-2474 https://doi.org/10.17151/luaz.2020.50.11 |
| identifier_str_mv |
0122-5391 10.17151/luaz.2020.50.11 1909-2474 |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/23550 https://doi.org/10.17151/luaz.2020.50.11 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
228 50 215 Luna Azul Aboulhassan, M. A., Souabi, S. & Yaacoubi, A. (2008). Pollution reduction and biodegradability index improvement of tannery effluents. Int. J. Environ. Sci. Tech, 5(1), 11–16. Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51–59. https://doi.org/10.1016/S0920-5861(99)00102-9. APHA., AWWA & WPC. (1995). Standard Methods for the Examination of Water and Wastewater (20th Ed). Washington: AMERICAN PUBLIC HEALTH ASSOCIATION. Artuz, L. A., Martínez, M. S. & Morales, C. J. (2011). Las industrias curtiembres y su incidencia en la contaminación del río Bogotá. Isocuanta, 1(1), 43–53. Retrieved from Link. Bajza, E., Hitrec, P. & Muic, M. (2005). Influence of different concentrations of Al2(SO4)3 and anionic polyelectrolytes on tannery wastewater flocculation. Desalination, 171(1), 13–20. https://doi.org/10.1016/J.DESA1.2004.04.003. Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R. & Peralta-Hernández, J. M. (2017). Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Separation and Purification Technology, 172, 296–302. https://doi.org/10.1016/j.seppur.2016.08.029. Cuartas-Uribe, B., Iborra-Clar, A., Bes-Piá, A., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V. & Iborra-Clar, M. I. (2006). Nanofiltration of a simulated tannery wastewater: influence of chlorides concentration. Desalination, 191(1–3), 132–136. https://doi.org/10.1016/J.DESAL.2005.05.025. Deghles, A. & Kurt, U. (2016). Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification, 104, 43–50. https://doi.org/10.1016/j.cep.2016.02.009. Ganesh, R., Balaji, G. & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor—Respirometric assessment. Bioresource Technology, 97(15), 1815–1821. https://doi.org/10.1016/J.BIORTECH.2005.09.003. Gutiérrez-Pulido, H. & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos. Recovered from https://doi.org/10.1017/CBO9781107415324.004. Instituto de Hidrología, Meteorología, y Estudios Ambientales IDEAM. (2007). Toma de muestras de aguas residuales: instructivo para la toma de muestras de aguas residuales. Recuperado de: Link Jian, S., Wenyi, T. & Wuyong, C. (2011). Kinetics of enzymatic unhairing by protease in leather industry. Journal of Cleaner Production, 19(4), 325–331. https://doi.org/10.1016/J.JCLEPRO.2010.10.011. Nivya, T. K. & Pieus, T. M. (2016). Comparison of Photo ElectroFenton Process ( PEF ) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate. Procedia Technology, 24, 224–231. https://doi.org/10.1016/j.protcy.2016.05.030. Rubio-Clemente, A., Chica, E. L. & Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical. Wastewater, 16(2), 211–223. https://doi.org/10.1016/S1135-2523(12)60123- 3. Saxena, S., Rajoriya, S., Saharan, V. K. & George, S. (2018). An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent. Ultrasonics Sonochemistry, 44, 299–309. https://doi.org/10.1016/j.ultsonch.2018.02.035. Schrank, S. G., José, H. J., Moreira, R. F. P. M. & Schröder, H. F. (2005). Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere, 60(5), 644–655. https://doi.org/10.1016/j.chemosphere.2005.01.033. Suthanthararajan, R., Ravindranath, E., Chits, K., Umamaheswari, B., Ramesh, T. & Rajamam, S. (2004). Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination, 164(2), 151–156. https://doi.org/10.1016/S0011-9164(04)00174-2. Tunay, O., Kabdasli, I., Arslan-Alaton, I., & Olmez-Hanci, T. (2010). Chemical Oxidation Applications for Industrial Wastewaters. Reino Unido.IWA. Osorio Muñoz, L.C. (2014). Plan estratégico en las curtiembres de Villapinzón: competitividad e innovación en la cadena productiva del cuero “(Producción más limpia, asociatividad y desarrollo de alternativas de manejo y aprovechamiento de RS)”. Universidad Nacional de Colombia, Bogotá, Colombia. Vilardi, G., Rodriguez-Rodriguez, J., Ochando Pulido, J. M., Verdone, N. & Di Palma, L. (2018). Pilot-Scale application of a real Tannery wastewater treatment by Fenton oxidation: Fe(II) and nZVI catalyst comparison and kinetic modelling. Process Safety and Environmental Protection, 117, 629–638. https://doi.org/10.1016/j.psep.2018.06.007. Núm. 50 , Año 2020 : Enero-Junio https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/4197/3861 https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/4197/7183 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas |
| publisher.none.fl_str_mv |
Universidad de Caldas |
| dc.source.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/4197 |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532545315176448 |
| spelling |
Aplicación de foto fenton (VIS) para la remoción de sulfuros y DQO en aguas residuales de curtiembreApplicability of photo-fenton process (visible-light) in the degradation of sulfur and cod from tannery wastewaterDQOindustriaradiaciónsulfuro de hidrógenotratamiento de aguas residualesCODindustryradiationsulfurwastewater treatmentLa producción de cueros se constituye como una actividad de vital importancia económica, social y cultural. Sin embargo, la calidad de los cuerpos de agua en los cuales son vertidas las aguas residuales procedentes de esta industria se ven afectados por el aporte de carga contaminante. Objetivo: demostrar la reducción en la concentración de sulfuros y DQO evaluando las condiciones físicas y químicas del agua de curtiembre sin tratamiento, clarificada y tratada. Materiales y métodos: se propone un proceso de oxidación de avanzada, mediante la adición de peróxido de hidrógeno y cloruro férrico como catalizador (reactivo de Fenton), utilizando lámparas LED de luz visible como fuente de energía para la fotólisis de los contaminantes, el diseño experimental se realizó con tiempos de reacción fijo de seis horas, se analizó el efecto del pH y la dosis de peróxido (H2O2 y FeCl3) y como superficie de respuesta se obtuvo porcentaje de remoción en términos de sulfuros y DQO. Resultados: Se obtuvo una remoción de 73,5% para sulfuros en condiciones de pH inicial de solución de 5 y dosis de H2O2 al 30% de 40µl, y 56% de remoción de DQO para un pH inicial de 6 con dosis de H2O2 al 30% de 60µl, aunque se evidencia que las variables de respuesta dependen o varían respecto a las variables o factores de proceso según los resultados estadísticos de la ANOVA. Conclusiones: se alcanza mayor porcentaje de remoción de sulfuros cuando el pH inicial se encuentra entre cinco y seis unidades, mientras que la remoción de DQO depende de la concentración de H2O2 aplicada, además, el uso de radiación visible suministrada por lámparas LED para intensificar el proceso de oxidación resulta favorable de acuerdo con el análisis estequiométrico realizado de conformidad con la dosis de agente oxidante empleado.Leather production is constituted as an activity of central importance, not only for the economy but for a social and cultural meaning, however, the quality of the waterbodies in which is poured the wastewater proceeded from this industry is affected by the high amount of pollutant load. Objective: decrease the level of concentration of sulfurs and COD, evaluating physical and chemical conditions of the tannery wastewater without treatment, clarified and treated. Materials and methods: an advanced oxidation process is proposed for the degradation of these substances, dosing peroxide of hydrogen and ferric chloride as catalyst (Fenton's reagent) in the presence of LED lamps of visible light as source of energy for the pollutant’s photolysis. The experimental design was realized for a reaction time of 6 hours, there was analyzed the effect of the pH and the dose of peroxide (H2O2 and FeCl3) and the responses surfaces were percentage of sulfur and DQO removal from wastewater treatment. Results: It was obtained an optimal removal of 73,5 % for sulfurs in conditions of initial solution pH of 5 and dose of H2O2 of 40µl and 56 % of COD´s removal for an initial pH of 6 with applied dose of H2O2 of 60µl, although it is remarkable that the response variables depend and change in relation to the processes’ factors according the ANOVA statistics results. Conclusion: For sulfur removal the best results are obtained when the initial pH value range between 5 and 6 units, while for COD, the removal percentage depends on the H2O2 applied doses, besides, the use of visible radiation supplied by LED lamps to intensify the oxidation process turns out favorable according with the stoichiometrical analysis.Universidad de Caldas2020-01-01T00:00:00Z2025-10-08T21:12:26Z2020-01-01T00:00:00Z2025-10-08T21:12:26Z2020-01-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdftext/html0122-5391https://repositorio.ucaldas.edu.co/handle/ucaldas/2355010.17151/luaz.2020.50.111909-2474https://doi.org/10.17151/luaz.2020.50.11https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/4197spa22850215Luna AzulAboulhassan, M. A., Souabi, S. & Yaacoubi, A. (2008). Pollution reduction and biodegradability index improvement of tannery effluents. Int. J. Environ. Sci. Tech, 5(1), 11–16.Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51–59. https://doi.org/10.1016/S0920-5861(99)00102-9.APHA., AWWA & WPC. (1995). Standard Methods for the Examination of Water and Wastewater (20th Ed). Washington: AMERICAN PUBLIC HEALTH ASSOCIATION.Artuz, L. A., Martínez, M. S. & Morales, C. J. (2011). Las industrias curtiembres y su incidencia en la contaminación del río Bogotá. Isocuanta, 1(1), 43–53. Retrieved from Link.Bajza, E., Hitrec, P. & Muic, M. (2005). Influence of different concentrations of Al2(SO4)3 and anionic polyelectrolytes on tannery wastewater flocculation. Desalination, 171(1), 13–20. https://doi.org/10.1016/J.DESA1.2004.04.003.Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R. & Peralta-Hernández, J. M. (2017). Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Separation and Purification Technology, 172, 296–302. https://doi.org/10.1016/j.seppur.2016.08.029.Cuartas-Uribe, B., Iborra-Clar, A., Bes-Piá, A., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V. & Iborra-Clar, M. I. (2006). Nanofiltration of a simulated tannery wastewater: influence of chlorides concentration. Desalination, 191(1–3), 132–136. https://doi.org/10.1016/J.DESAL.2005.05.025.Deghles, A. & Kurt, U. (2016). Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification, 104, 43–50. https://doi.org/10.1016/j.cep.2016.02.009.Ganesh, R., Balaji, G. & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor—Respirometric assessment. Bioresource Technology, 97(15), 1815–1821. https://doi.org/10.1016/J.BIORTECH.2005.09.003.Gutiérrez-Pulido, H. & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos. Recovered from https://doi.org/10.1017/CBO9781107415324.004.Instituto de Hidrología, Meteorología, y Estudios Ambientales IDEAM. (2007). Toma de muestras de aguas residuales: instructivo para la toma de muestras de aguas residuales. Recuperado de: LinkJian, S., Wenyi, T. & Wuyong, C. (2011). Kinetics of enzymatic unhairing by protease in leather industry. Journal of Cleaner Production, 19(4), 325–331. https://doi.org/10.1016/J.JCLEPRO.2010.10.011.Nivya, T. K. & Pieus, T. M. (2016). Comparison of Photo ElectroFenton Process ( PEF ) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate. Procedia Technology, 24, 224–231. https://doi.org/10.1016/j.protcy.2016.05.030.Rubio-Clemente, A., Chica, E. L. & Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical. Wastewater, 16(2), 211–223. https://doi.org/10.1016/S1135-2523(12)60123- 3.Saxena, S., Rajoriya, S., Saharan, V. K. & George, S. (2018). An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent. Ultrasonics Sonochemistry, 44, 299–309. https://doi.org/10.1016/j.ultsonch.2018.02.035.Schrank, S. G., José, H. J., Moreira, R. F. P. M. & Schröder, H. F. (2005). Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere, 60(5), 644–655. https://doi.org/10.1016/j.chemosphere.2005.01.033.Suthanthararajan, R., Ravindranath, E., Chits, K., Umamaheswari, B., Ramesh, T. & Rajamam, S. (2004). Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination, 164(2), 151–156. https://doi.org/10.1016/S0011-9164(04)00174-2.Tunay, O., Kabdasli, I., Arslan-Alaton, I., & Olmez-Hanci, T. (2010). Chemical Oxidation Applications for Industrial Wastewaters. Reino Unido.IWA.Osorio Muñoz, L.C. (2014). Plan estratégico en las curtiembres de Villapinzón: competitividad e innovación en la cadena productiva del cuero “(Producción más limpia, asociatividad y desarrollo de alternativas de manejo y aprovechamiento de RS)”. Universidad Nacional de Colombia, Bogotá, Colombia.Vilardi, G., Rodriguez-Rodriguez, J., Ochando Pulido, J. M., Verdone, N. & Di Palma, L. (2018). Pilot-Scale application of a real Tannery wastewater treatment by Fenton oxidation: Fe(II) and nZVI catalyst comparison and kinetic modelling. Process Safety and Environmental Protection, 117, 629–638. https://doi.org/10.1016/j.psep.2018.06.007.Núm. 50 , Año 2020 : Enero-Juniohttps://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/4197/3861https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/4197/7183https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agudelo Valencia, Rafael NikolayOvalle González, Diana PaolaRodriguez Rodriguez, Luis Felipeoai:repositorio.ucaldas.edu.co:ucaldas/235502025-10-08T21:12:26Z |
