Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22493
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22493
https://repositorio.ucaldas.edu.co/
Palabra clave:
Espectroscopia de impedancia
Impedancia bioeléctrica
Diseño de dispositivos médicos
Composición corporal
Ingeniería biomédica
Electrónica médica.
Impedance spectroscopy
Bioelectrical impedance
Equipment design
Body compositition
Biomedical engineering
Electronics medical
Ciencias medicas
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_985c8f0c7b4909a68d588e08c9a7b644
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22493
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
title Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
spellingShingle Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
Espectroscopia de impedancia
Impedancia bioeléctrica
Diseño de dispositivos médicos
Composición corporal
Ingeniería biomédica
Electrónica médica.
Impedance spectroscopy
Bioelectrical impedance
Equipment design
Body compositition
Biomedical engineering
Electronics medical
Ciencias medicas
title_short Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
title_full Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
title_fullStr Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
title_full_unstemmed Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
title_sort Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósito
dc.contributor.none.fl_str_mv González-Correa Carlos-Augusto
Minciencias
Bioimpedancia eléctrica (Categoría A)
Taborda Ocampo, Gonzalo
Miranda Mercado, David Alejandro
Simini, Franco
dc.subject.none.fl_str_mv Espectroscopia de impedancia
Impedancia bioeléctrica
Diseño de dispositivos médicos
Composición corporal
Ingeniería biomédica
Electrónica médica.
Impedance spectroscopy
Bioelectrical impedance
Equipment design
Body compositition
Biomedical engineering
Electronics medical
Ciencias medicas
topic Espectroscopia de impedancia
Impedancia bioeléctrica
Diseño de dispositivos médicos
Composición corporal
Ingeniería biomédica
Electrónica médica.
Impedance spectroscopy
Bioelectrical impedance
Equipment design
Body compositition
Biomedical engineering
Electronics medical
Ciencias medicas
description Ilustraciones, gráficas
publishDate 2025
dc.date.none.fl_str_mv 2025-07-02T21:10:10Z
2025-07-02T21:10:10Z
2025-07-01
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
http://purl.org/coar/resource_type/c_db06
Text
info:eu-repo/semantics/doctoralThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/22493
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co/
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22493
https://repositorio.ucaldas.edu.co/
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.relation.none.fl_str_mv Ayllón, D., Gil-Pita, R., Seoane, F.: Detection and classification of measurement errors in bioimpedance spectroscopy. PLoS One 11, e0156522 (2016)
Buendia, R., Seoane, F., Gil-Pita, R.: A novel approach for removing the hook effect artefact from electrical bioimpedance spectroscopy measurements. J. Phys. Conf. Ser. 224, 012126 (2010)
Grimnes, S., Martinsen, O.: Data and Models Bioimpedance and Bielectricity Basics, pp. 283– 332. Elsevier (2008)
Mulasi, U., Kuchnia, A.J., Cole, A.J., Earthman, C.P.: Bioimpedance at the bedside : current applications, limitations, and opportunities. Nutr. Clin. Pract. 30, 180–93 (2015)
Atefi, S.R., Buendia, R., Lindecrantz, K., Seoane, F.: Cole function and conductance-based parasitic capacitance compensation for cerebral electrical bioimpedance measurements. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE), pp. 3368–3371 (2012)
Bellido, D., García-García, C., Talluri, A., Lukaski, H.C., García-Almeida, J.M.: Future lines of research on phase angle: strengths and limitations. Rev. Endocr. Metab. Disord. 24, 563–83 (2023)
Scharfetter, H., Monif, M., László, Z., Lambauer, T., Hutten, H., Hinghofer-Szalkay, H.: Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int. 51, 1078–87 (1997)
Gonzalez-Correa, C.A.: Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. J. Phys. Conf. Ser. 1272, 012018 (2019)
Gonzalez-Correa, C.A., Tapasco-Tapasco. L.O., Jaimes, S.A.: A geometrical method for modeling bioelectrical impedance measurements and remove the hook effect deviations. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (IEEE), pp. 4253–4256 (2021)
González-Correa, C.A., Jaimes, S.A., Cárdenas-Jiménez, J.I.: Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Sci. Rep. 12, 9292 (2022)
González-Correa CH. Body Composition by Bioelectrical Impedance Analysis. In: Bioimpedance in Biomedical Applications and Research [Internet]. Cham: Springer International Publishing; 2018. p. 219–41. Available from: http://link.springer.com/10.1007/978-3-319-74388-2_11
Malich A, Boehm T, Facius M, Freesmeyer MG, Fleck M, Anderson R, et al. Differentiation of Mammographically Suspicious Lesions: Evaluation of Breast Ultrasound, MRI Mammography and Electrical Impedance Scanning as Adjunctive Technologies in Breast Cancer Detection. Clin Radiol [Internet]. 2001 Apr;56(4):278–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009926000906214
Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet [Internet]. 2000 Mar;355(9207):892–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673699090959
Muszynski C, Dupont E, Vaysse B, Lanta S, Tidy J, Sergent F, et al. The impact of using electrical impedance spectroscopy (ZedScan) on the performance of colposcopy in diagnosing high grade squamous lesions of the cervix. J Gynecol Obstet Hum Reprod [Internet]. 2017 Nov;46(9):669–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468784717301629
Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin Cancer Identification Using Multifrequency Electrical Impedance—A Potential Screening Tool. IEEE Trans Biomed Eng [Internet]. 2004 Dec;51(12):2097–102. Available from: http://ieeexplore.ieee.org/document/1360028/
Liebich C, von Bruehl M, Schubert I, Oberhoffer R, Sander C. Retrospective evaluation of the performance of the electrical impedance spectroscopy system Nevisense in detecting keratinocyte cancers. Ski Res Technol [Internet]. 2021 Sep 28;27(5):723–9. Available from: https://onlinelibrary.wiley.com/doi/10.1111/srt.13007
Gonzalez-Correa C-A. Clinical Applications of Electrical Impedance Spectroscopy. In: Bioimpedance in Biomedical Applications and Research. 2018. p. 187–218.
Kassanos P. Bioimpedance Sensors: A Tutorial. IEEE Sens J [Internet]. 2021 Oct 15;21(20):22190–219. Available from: https://ieeexplore.ieee.org/document/9529213/
Jaimes SA. Development and testing of a customizable and portable bioimpedance spectroscopy meter (BioZspectra-v1). In: Journal of Physics: Conference Series. 2019.
González-Correa CA. Endoscopic measurement of electric impedance spectra and their dependence on tissue properties in arrett’s Oesophagus. University of Sheffield, UK; 2001.
Miranda DA, Rivera SAL. Determination of Cole–Cole parameters using only the real part of electrical impedivity measurements. Physiol Meas [Internet]. 2008 May 1 [cited 2019 Jan 10];29(5):669–83. Available from: http://stacks.iop.org/0967- 3334/29/i=5/a=011?key=crossref.905902d71979268597eec6c50bc5a0e8
Ward LC, Essex T, Cornish BH. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Physiol Meas [Internet]. 2006 Sep 1;27(9):839–50. Available from: https://iopscience.iop.org/article/10.1088/0967-3334/27/9/007
Buendía R. Hook Effect on Electrical Bioimpedance Spectroscopy Measurements. Analysis, Compensation and Correction. 2009;
Bellido D, García-García C, Talluri A, Lukaski HC, García-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord [Internet]. 2023 Jun 12;24(3):563–83. Available from: https://link.springer.com/10.1007/s11154-023-09803-7
Kulkarni M, Karmarkar S. Bioimpedance Assessment of Oral Squamous Cell Carcinoma with Clinicopathological Correlation. J Contemp Dent Pract [Internet]. 2015 Sep;16(9):715–22. Available from: https://www.thejcdp.com/doi/10.5005/jp-journals-10024-1746
Beltran N, Sanchez-Miranda G, Godinez M, Diaz U, Sacristan E. Gastric Impedance Spectroscopy in Cardiovascular Surgery Patients vs. Healthy Volunteers. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf [Internet]. 2005:2516– 9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17282749
Reichmuth M, Schürle S, Magno M. A Non-invasive Wearable Bioimpedance System to Wirelessly Monitor Bladder Filling. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2020. p. 338–41.
Ruiz-Vargas A, Arkwright JW, Ivorra A. A portable bioimpedance measurement system based on Red Pitaya for monitoring and detecting abnormalities in the gastrointestinal tract. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) [Internet]. IEEE; 2016. p. 150–4. Available from: http://ieeexplore.ieee.org/document/7843433/
Luo X, Gutierrez Pulido H V., Rutkove S, Sanchez B. A Bioimpedance-Based Device to Assess the Volume Conduction Properties of the Tongue in Neurological Disorders Affecting Bulbar function. IEEE Open J Eng Med Biol [Internet]. 2021;2:278–85. Available from: https://ieeexplore.ieee.org/document/9560103/
Naranjo-Hernández D, Reina-Tosina J, Roa LM, Barbarov-Rostán G, Aresté-Fosalba N, LaraRuiz A, et al. Smart Bioimpedance Spectroscopy Device for Body Composition Estimation. Sensors [Internet]. 2019 Dec 21;20(1):70. Available from: https://www.mdpi.com/1424- 8220/20/1/70
Grimnes S, Martinsen Ø. Tissue and Organs. In: Bioimpedance and Bielectricity Basics. Second. 2008. p. 102–24.
Gonzalez-Correa CA. Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. J Phys Conf Ser [Internet]. 2019 Jul 1;1272(1):012018. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1272/1/012018
González-Correa CA, Jaimes SA, Cárdenas-Jiménez JI. Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Sci Rep [Internet]. 2022 Jun 3;12(1):9292. Available from: https://www.nature.com/articles/s41598-022-13299-7
Gonzalez-Correa CA, Tapasco-Tapasco LO, Jaimes SA. A geometrical method for modeling bioelectrical impedance measurements and remove the hook effect deviations. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. IEEE; 2021. p. 4253–6. Available from: https://ieeexplore.ieee.org/document/9630591/
Jaimes SA, González-Correa CA. Removal of the Hook Effect from Bioimpedance Readings Using the 3-Point Method and Iterative Adjustment. In 2025. p. 45–50. Available from: https://link.springer.com/10.1007/978-3-031-91774-5_5
Brown BH, Barber DC, Leathard A, Lu L, Wang W, Smallwood RH, et al. High frequency EIT data collection and parametric imaging. In 1994. Available from: https://api.semanticscholar.org/CorpusID:113531325
Lu L, Brown BH. The electrode and electronic interface in an EIT spectroscopy system. In 1994. Available from: https://api.semanticscholar.org/CorpusID:99186201
Gonzalez-Correa CA. Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. In: Journal of Physics: Conference Series. 2019.
Mulett-Vasquez E, Gonzalez-Correa C-A, Miranda-Mercado D-A, Osorio-Chica M, DussanLubert C. In vivo Electrical-Impedance Spectroscopy (EIS) Readings in the Human Rectum. In 2016. p. 68–71. Available from: http://link.springer.com/10.1007/978-981-287-928-8_18
González-Correa CA, Mulett-Vásquez E, Osorio-Chica M, Dussán-Lubert C, Miranda D. Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. J Phys Conf Ser [Internet]. 2019 Jul 1;1272(1):012012. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1272/1/012012
Jaimes-Morales SA, Aguirre-Cardona VE, Gonzalez-Correa CA. Ex vivo electrical bioimpedance measurements and Cole modelling on the porcine colon and rectum. Sci Rep [Internet]. 2024 Sep 11;14(1):21266. Available from: https://www.nature.com/articles/s41598-024-72270-w
Cook RD, Saulnier GJ, Gisser DG, Goble JC, Newell JC, Isaacson D. ACT3: a high-speed, high-precision electrical impedance tomograph. IEEE Trans Biomed Eng [Internet]. 1994;41(8):713–22. Available from: http://ieeexplore.ieee.org/document/310086/
Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the Bedside. Nutr Clin Pract [Internet]. 2015 Apr 22;30(2):180–93. Available from: http://doi.wiley.com/10.1177/0884533614568155
Allará C, Moscetti R, Bedini G, Ciocca M, Benelli A, Lugli P, et al. Bioimpedance-based prediction of dry matter content and potato varieties through supervised machine learning methods. Postharvest Biol Technol [Internet]. 2025 Apr;222:113358. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925521424006033
HAYDEN RI, MOYSE CA, CALDER FW, CRAWFORD DP, FENSOM DS. Electrical Impedance Studies on Potato and Alfalfa Tissue. J Exp Bot [Internet]. 1969;20(2):177–200. Available from: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/20.2.177
Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz. J Electr Bioimpedance [Internet]. 2019 Jul 2;10(1):14–23. Available from: https://www.sciendo.com/article/10.2478/joeb-2019-0003
González-Correa CA, Brown BH, Smallwood RH, Kalia N, Stoddard CJ, Stephenson TJ, et al. irtual biopsies in arrett’s esophagus using an impedance probe. n: Annals of the New York Academy of Sciences. 1999. p. 313–21.
Ribeiro JA, Jorge PAS. Applications of electrochemical impedance spectroscopy in disease diagnosis—A review. Sensors and Actuators Reports [Internet]. 2024 Dec;8:100205. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666053924000213
Robledo Palacio L. La educación formal colombiana analizada desde los valores de una ética cívica. Universidad de Valencia; 2012.
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 125 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias para la Salud
Manizales
Doctorado en Ciencias Biomédicas
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias para la Salud
Manizales
Doctorado en Ciencias Biomédicas
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532564082589696
spelling Desarrollo de un Espectrómetro de Bioimpedancia Eléctrica (EBIE) multipropósitoEspectroscopia de impedanciaImpedancia bioeléctricaDiseño de dispositivos médicosComposición corporalIngeniería biomédicaElectrónica médica.Impedance spectroscopyBioelectrical impedanceEquipment designBody composititionBiomedical engineeringElectronics medicalCiencias medicasIlustraciones, gráficasIntroducción: Un espectrómetro de Bioimpedancia Eléctrica es un dispositivo que permite la medición del espectro de bioimpedancia eléctrica de un tejido biológico. En aplicaciones clínicas, estas mediciones se llevan a cabo de manera puntual, segmentaria y de cuerpo entero. Sin embargo, los equipos disponibles en el mercado no están diseñados para realizar los 3 tipos de medición, dado que se enfocan en aplicaciones específicas. Por otra parte, los analizadores de impedancia, son equipos muy robustos y de amplio rango, que permitirían llevar a cabo los 3 tipos de medición mencionados, pero son altamente costosos y, en muchos casos, sólo pueden ser utilizados en laboratorio. Por ello, es deseable contar con un equipo multipropósito, que permita realizar mediciones puntuales, segmentarias y de cuerpo entero, portátil, de relativo bajo costo y fácil de utilizar en ambiente clínico y de laboratorio, para el desarrollo de nuevas investigaciones en el área. Objetivo: Desarrollar un Espectrómetro de Bioimpedancia Eléctrica, portátil y de aplicación multipropósito, que permita llevar a cabo mediciones de tipo puntual, segmentarias y de cuerpo entero. Metodología: Este proyecto de investigación y desarrollo tecnológico, fue llevado a cabo bajo las siguientes fases metodológicas: 1) Revisión del estado del arte, 2) Selección y simulación de topologías, 3) Desarrollo del hardware y software, 4) Validación en tejido vegetal y tejido animal ex vivo y 5) Validación en tejido humano in vivo. Resultados: se logró diseñar y verificar el buen desempeño de un espectrómetro que permite la medición de las 4 componentes de la bioimpedancia (resistencia R, reactancia X, magnitud Z y ángulo de fase φ), en un rango de 10 Ω a 10 kΩ, con un rango de frecuencia de 500 Hz a 1 MHz, corriente programable de 15 a 175 µA, un peso de 873 g y un volumen de 2475 cm3. El equipo presenta una exactitud de ±1% en magnitud y de ±0.8° para la fase con una precisión del 0.35% y de 0.2° respectivamente. Discusión: Los resultados obtenidos en pruebas puntuales tanto en tejido vegetal, como en tejido colorrectal porcino ex vivo y humano in vivo, son coherentes con la literatura publicada, tanto en niveles de impedancia, como en número de dispersiones. En estas mediciones, la calibración de la sonda con soluciones electrolíticas, permitió corregir efectos parásitos, presentes en alta frecuencia. Entre tanto, las mediciones de cuerpo entero y segmentarias, fueron similares a las obtenidas con el equipo comercial francés BiodyXpert 3, en el rango de frecuencias de 5 kHz a 200 kHz. La programación del nivel de corriente, permite controlar la densidad de corriente por debajo del rango de linealidad de 10 A/m² y por debajo del umbral de sensibilidad a baja frecuencia de 100 A/m². Conclusión: El equipo permite la medición de bioimpedancia, en tejido vegetal, animal y humano, tanto ex vivo como in vivo, de manera puntual, segmentaria y de cuerpo entero. El sistema es portátil gracias a su peso y tamaño reducido, permitiendo su uso tanto en ambiente de laboratorio como en ambiente clínico. Su valor total, por unidad, se encuentra alrededor de los USD $4,500, teniendo en cuenta una producción bajo demanda.Introduction: An Electrical Bioimpedance Spectrometer is a device that enables the measurement of the electrical bioimpedance spectrum of biological tissue. In clinical applications, such measurements are typically carried out in three modalities: local, segmental, and whole-body. However, commercially available devices are not designed to perform all three types of measurements, as they are usually focused on specific applications. On the other hand, impedance analyzers are robust and wide-range instruments capable of performing all three types of measurements, but they are highly expensive and often limited to laboratory use. Therefore, it is desirable to develop a multipurpose device capable of performing local, segmental, and whole-body measurements, that is portable, relatively low-cost, and easy to use, both in clinical and laboratory environments, to support the development of new research in this field. Objective: To develop a portable and multipurpose Electrical Bioimpedance Spectrometer capable of performing local, segmental, and whole-body measurements. Methodology: This is a research and technological development project, which was carried out through the following methodological phases: 1) Review of the state of the art, 2) Selection and simulation of topologies, 3) Development of hardware and software, 4) Validation with measurements on plant tissue and ex vivo animal tissue, and 5) In vivo validation with measurements on human tissue. Results: The spectrometer enables the measurement of the four components of bioimpedance (Resistance R, Reactance X, Magnitude Z, and Phase Angle φ) over a range of 10 Ω to 10 kΩ, with a frequency range of 500 Hz to 1 MHz, and a programmable current from 15 to 175 µA. The device weighs 873 g and has a volume of 2475 cm³. It exhibits a magnitude accuracy of ±1% and phase accuracy of ±0.8°, with a precision of 0.35% and 0.2°, respectively. Discussion: The results obtained from local measurements in plant tissue, ex vivo porcine colorectal tissue, and in vivo human tissue are consistent with the published literature in terms of both impedance levels and number of dispersions. In these measurements, probe calibration using electrolyte solutions effectively corrected parasitic effects observed at high frequencies. Meanwhile, whole-body and segmental measurements were comparable to those obtained using the French commercial device BiodyXpert 3, within a frequency range of 5 kHz to 200 kHz. The device’s ability to program the applied current allows for precise control of the current density, keeping it below the linearity threshold of 10 A/m² and the low-frequency sensitivity threshold of 100 A/m². Conclusion: The developed device enables bioimpedance measurements in plant, animal, and human tissue, both ex vivo and in vivo, across local, segmental, and whole-body modalities. The system is portable due to its low weight and compact size, allowing for its use both in laboratory and clinical environments. Its estimated cost is approximately USD $4,500, considering on-demand production.Introducción -- 1. Desarrollo del dispositivo multipropósito -- 2. Ajuste y corrección de datos de Espectroscopia de Bioimpedancia Eléctrica (EBIE) -- 3. Mediciones de tipo puntual en tejido colorrectal porcino ex vivo -- 4. Descripción y evaluación del dispositivo MultiZpectra -- 4.1. Descripción del equipo MultiZpectra -- 4.2. Evaluación del dispositivo MultiZpectra con resistores y circuitos RC -- 4.3. Resultados de mediciones puntuales -- 4.4 Resultados de mediciones de cuerpo entero y segmentarias -- 5. Discusión general -- 6. Conclusiones y recomendaciones -- 6.1 Conclusiones -- 6.2 Recomendaciones -- 7. Anexos -- Anexo 1: Descripción de los módulos del equipo MultiZpectra -- Anexo 2: Aprobación del Comité de Bioética de la Universidad de CaldasDoctoradoDoctor(a) en Ciencias BiomédicasBioimpedancia eléctricaUniversidad de CaldasFacultad de Ciencias para la SaludManizalesDoctorado en Ciencias BiomédicasGonzález-Correa Carlos-AugustoMincienciasBioimpedancia eléctrica (Categoría A)Taborda Ocampo, GonzaloMiranda Mercado, David AlejandroSimini, FrancoJaimes Morales, Samuel Alberto2025-07-02T21:10:10Z2025-07-02T21:10:10Z2025-07-01Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85125 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22493Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/Ayllón, D., Gil-Pita, R., Seoane, F.: Detection and classification of measurement errors in bioimpedance spectroscopy. PLoS One 11, e0156522 (2016)Buendia, R., Seoane, F., Gil-Pita, R.: A novel approach for removing the hook effect artefact from electrical bioimpedance spectroscopy measurements. J. Phys. Conf. Ser. 224, 012126 (2010)Grimnes, S., Martinsen, O.: Data and Models Bioimpedance and Bielectricity Basics, pp. 283– 332. Elsevier (2008)Mulasi, U., Kuchnia, A.J., Cole, A.J., Earthman, C.P.: Bioimpedance at the bedside : current applications, limitations, and opportunities. Nutr. Clin. Pract. 30, 180–93 (2015)Atefi, S.R., Buendia, R., Lindecrantz, K., Seoane, F.: Cole function and conductance-based parasitic capacitance compensation for cerebral electrical bioimpedance measurements. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE), pp. 3368–3371 (2012)Bellido, D., García-García, C., Talluri, A., Lukaski, H.C., García-Almeida, J.M.: Future lines of research on phase angle: strengths and limitations. Rev. Endocr. Metab. Disord. 24, 563–83 (2023)Scharfetter, H., Monif, M., László, Z., Lambauer, T., Hutten, H., Hinghofer-Szalkay, H.: Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int. 51, 1078–87 (1997)Gonzalez-Correa, C.A.: Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. J. Phys. Conf. Ser. 1272, 012018 (2019)Gonzalez-Correa, C.A., Tapasco-Tapasco. L.O., Jaimes, S.A.: A geometrical method for modeling bioelectrical impedance measurements and remove the hook effect deviations. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (IEEE), pp. 4253–4256 (2021)González-Correa, C.A., Jaimes, S.A., Cárdenas-Jiménez, J.I.: Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Sci. Rep. 12, 9292 (2022)González-Correa CH. Body Composition by Bioelectrical Impedance Analysis. In: Bioimpedance in Biomedical Applications and Research [Internet]. Cham: Springer International Publishing; 2018. p. 219–41. Available from: http://link.springer.com/10.1007/978-3-319-74388-2_11Malich A, Boehm T, Facius M, Freesmeyer MG, Fleck M, Anderson R, et al. Differentiation of Mammographically Suspicious Lesions: Evaluation of Breast Ultrasound, MRI Mammography and Electrical Impedance Scanning as Adjunctive Technologies in Breast Cancer Detection. Clin Radiol [Internet]. 2001 Apr;56(4):278–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009926000906214Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet [Internet]. 2000 Mar;355(9207):892–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673699090959Muszynski C, Dupont E, Vaysse B, Lanta S, Tidy J, Sergent F, et al. The impact of using electrical impedance spectroscopy (ZedScan) on the performance of colposcopy in diagnosing high grade squamous lesions of the cervix. J Gynecol Obstet Hum Reprod [Internet]. 2017 Nov;46(9):669–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468784717301629Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin Cancer Identification Using Multifrequency Electrical Impedance—A Potential Screening Tool. IEEE Trans Biomed Eng [Internet]. 2004 Dec;51(12):2097–102. Available from: http://ieeexplore.ieee.org/document/1360028/Liebich C, von Bruehl M, Schubert I, Oberhoffer R, Sander C. Retrospective evaluation of the performance of the electrical impedance spectroscopy system Nevisense in detecting keratinocyte cancers. Ski Res Technol [Internet]. 2021 Sep 28;27(5):723–9. Available from: https://onlinelibrary.wiley.com/doi/10.1111/srt.13007Gonzalez-Correa C-A. Clinical Applications of Electrical Impedance Spectroscopy. In: Bioimpedance in Biomedical Applications and Research. 2018. p. 187–218.Kassanos P. Bioimpedance Sensors: A Tutorial. IEEE Sens J [Internet]. 2021 Oct 15;21(20):22190–219. Available from: https://ieeexplore.ieee.org/document/9529213/Jaimes SA. Development and testing of a customizable and portable bioimpedance spectroscopy meter (BioZspectra-v1). In: Journal of Physics: Conference Series. 2019.González-Correa CA. Endoscopic measurement of electric impedance spectra and their dependence on tissue properties in arrett’s Oesophagus. University of Sheffield, UK; 2001.Miranda DA, Rivera SAL. Determination of Cole–Cole parameters using only the real part of electrical impedivity measurements. Physiol Meas [Internet]. 2008 May 1 [cited 2019 Jan 10];29(5):669–83. Available from: http://stacks.iop.org/0967- 3334/29/i=5/a=011?key=crossref.905902d71979268597eec6c50bc5a0e8Ward LC, Essex T, Cornish BH. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Physiol Meas [Internet]. 2006 Sep 1;27(9):839–50. Available from: https://iopscience.iop.org/article/10.1088/0967-3334/27/9/007Buendía R. Hook Effect on Electrical Bioimpedance Spectroscopy Measurements. Analysis, Compensation and Correction. 2009;Bellido D, García-García C, Talluri A, Lukaski HC, García-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord [Internet]. 2023 Jun 12;24(3):563–83. Available from: https://link.springer.com/10.1007/s11154-023-09803-7Kulkarni M, Karmarkar S. Bioimpedance Assessment of Oral Squamous Cell Carcinoma with Clinicopathological Correlation. J Contemp Dent Pract [Internet]. 2015 Sep;16(9):715–22. Available from: https://www.thejcdp.com/doi/10.5005/jp-journals-10024-1746Beltran N, Sanchez-Miranda G, Godinez M, Diaz U, Sacristan E. Gastric Impedance Spectroscopy in Cardiovascular Surgery Patients vs. Healthy Volunteers. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf [Internet]. 2005:2516– 9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17282749Reichmuth M, Schürle S, Magno M. A Non-invasive Wearable Bioimpedance System to Wirelessly Monitor Bladder Filling. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2020. p. 338–41.Ruiz-Vargas A, Arkwright JW, Ivorra A. A portable bioimpedance measurement system based on Red Pitaya for monitoring and detecting abnormalities in the gastrointestinal tract. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) [Internet]. IEEE; 2016. p. 150–4. Available from: http://ieeexplore.ieee.org/document/7843433/Luo X, Gutierrez Pulido H V., Rutkove S, Sanchez B. A Bioimpedance-Based Device to Assess the Volume Conduction Properties of the Tongue in Neurological Disorders Affecting Bulbar function. IEEE Open J Eng Med Biol [Internet]. 2021;2:278–85. Available from: https://ieeexplore.ieee.org/document/9560103/Naranjo-Hernández D, Reina-Tosina J, Roa LM, Barbarov-Rostán G, Aresté-Fosalba N, LaraRuiz A, et al. Smart Bioimpedance Spectroscopy Device for Body Composition Estimation. Sensors [Internet]. 2019 Dec 21;20(1):70. Available from: https://www.mdpi.com/1424- 8220/20/1/70Grimnes S, Martinsen Ø. Tissue and Organs. In: Bioimpedance and Bielectricity Basics. Second. 2008. p. 102–24.Gonzalez-Correa CA. Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. J Phys Conf Ser [Internet]. 2019 Jul 1;1272(1):012018. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1272/1/012018González-Correa CA, Jaimes SA, Cárdenas-Jiménez JI. Preliminary study on parameterization of raw electrical bioimpedance data with 3 frequencies. Sci Rep [Internet]. 2022 Jun 3;12(1):9292. Available from: https://www.nature.com/articles/s41598-022-13299-7Gonzalez-Correa CA, Tapasco-Tapasco LO, Jaimes SA. A geometrical method for modeling bioelectrical impedance measurements and remove the hook effect deviations. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. IEEE; 2021. p. 4253–6. Available from: https://ieeexplore.ieee.org/document/9630591/Jaimes SA, González-Correa CA. Removal of the Hook Effect from Bioimpedance Readings Using the 3-Point Method and Iterative Adjustment. In 2025. p. 45–50. Available from: https://link.springer.com/10.1007/978-3-031-91774-5_5Brown BH, Barber DC, Leathard A, Lu L, Wang W, Smallwood RH, et al. High frequency EIT data collection and parametric imaging. In 1994. Available from: https://api.semanticscholar.org/CorpusID:113531325Lu L, Brown BH. The electrode and electronic interface in an EIT spectroscopy system. In 1994. Available from: https://api.semanticscholar.org/CorpusID:99186201Gonzalez-Correa CA. Simplified geometrical adjustment of bioimpedance measured data to the complex plane with just three parameters. In: Journal of Physics: Conference Series. 2019.Mulett-Vasquez E, Gonzalez-Correa C-A, Miranda-Mercado D-A, Osorio-Chica M, DussanLubert C. In vivo Electrical-Impedance Spectroscopy (EIS) Readings in the Human Rectum. In 2016. p. 68–71. Available from: http://link.springer.com/10.1007/978-981-287-928-8_18González-Correa CA, Mulett-Vásquez E, Osorio-Chica M, Dussán-Lubert C, Miranda D. Rectal electrical bio-impedance spectroscopy in the detection of colorectal anomalies associated with cancer. J Phys Conf Ser [Internet]. 2019 Jul 1;1272(1):012012. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1272/1/012012Jaimes-Morales SA, Aguirre-Cardona VE, Gonzalez-Correa CA. Ex vivo electrical bioimpedance measurements and Cole modelling on the porcine colon and rectum. Sci Rep [Internet]. 2024 Sep 11;14(1):21266. Available from: https://www.nature.com/articles/s41598-024-72270-wCook RD, Saulnier GJ, Gisser DG, Goble JC, Newell JC, Isaacson D. ACT3: a high-speed, high-precision electrical impedance tomograph. IEEE Trans Biomed Eng [Internet]. 1994;41(8):713–22. Available from: http://ieeexplore.ieee.org/document/310086/Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the Bedside. Nutr Clin Pract [Internet]. 2015 Apr 22;30(2):180–93. Available from: http://doi.wiley.com/10.1177/0884533614568155Allará C, Moscetti R, Bedini G, Ciocca M, Benelli A, Lugli P, et al. Bioimpedance-based prediction of dry matter content and potato varieties through supervised machine learning methods. Postharvest Biol Technol [Internet]. 2025 Apr;222:113358. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925521424006033HAYDEN RI, MOYSE CA, CALDER FW, CRAWFORD DP, FENSOM DS. Electrical Impedance Studies on Potato and Alfalfa Tissue. J Exp Bot [Internet]. 1969;20(2):177–200. Available from: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/20.2.177Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz. J Electr Bioimpedance [Internet]. 2019 Jul 2;10(1):14–23. Available from: https://www.sciendo.com/article/10.2478/joeb-2019-0003González-Correa CA, Brown BH, Smallwood RH, Kalia N, Stoddard CJ, Stephenson TJ, et al. irtual biopsies in arrett’s esophagus using an impedance probe. n: Annals of the New York Academy of Sciences. 1999. p. 313–21.Ribeiro JA, Jorge PAS. Applications of electrochemical impedance spectroscopy in disease diagnosis—A review. Sensors and Actuators Reports [Internet]. 2024 Dec;8:100205. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666053924000213Robledo Palacio L. La educación formal colombiana analizada desde los valores de una ética cívica. Universidad de Valencia; 2012.https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/224932025-07-03T08:01:18Z