Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta

La acil-CoA deshidrogenasa de cadena corta (SCAD) cataliza la primera reacción de la degradación de ácidos grasos de 4 a 6 átomos de carbono. Su deficiencia debe ser siempre confirmada por estudios de laboratorio. En el presente trabajo, fueron incubados fibroblastos de pacientes que presentaban la...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/23755
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/23755
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529
Palabra clave:
SCAD
ácidos grasos
metabolismo
errores innatos del metabolismo
fibroblastos
SCAD
fatty acids
metabolism
inherited inborn metabolic errors
fibroblasts
Rights
openAccess
License
Revista Biosalud - 2009
id REPOUCALDA_8d3dfae15e3799e8f8a0d1ae179c1823
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/23755
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
“in vitro” diagnosis of short chain acyl co-a dehydrogenase deficiency
title Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
spellingShingle Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
SCAD
ácidos grasos
metabolismo
errores innatos del metabolismo
fibroblastos
SCAD
fatty acids
metabolism
inherited inborn metabolic errors
fibroblasts
title_short Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
title_full Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
title_fullStr Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
title_full_unstemmed Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
title_sort Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta
dc.subject.none.fl_str_mv SCAD
ácidos grasos
metabolismo
errores innatos del metabolismo
fibroblastos
SCAD
fatty acids
metabolism
inherited inborn metabolic errors
fibroblasts
topic SCAD
ácidos grasos
metabolismo
errores innatos del metabolismo
fibroblastos
SCAD
fatty acids
metabolism
inherited inborn metabolic errors
fibroblasts
description La acil-CoA deshidrogenasa de cadena corta (SCAD) cataliza la primera reacción de la degradación de ácidos grasos de 4 a 6 átomos de carbono. Su deficiencia debe ser siempre confirmada por estudios de laboratorio. En el presente trabajo, fueron incubados fibroblastos de pacientes que presentaban la deficiencia de SCAD, en presencia de sustratos tritiados. Fue encontrada diferencia significativa (p<0,05) al comparar la degradación de palmitato y miristato tritiado entre controles y pacientes con deficiencia de SCAD.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-17T00:37:15Z
2022-03-17T00:37:15Z
2022-03-17
2025-10-08T21:16:44Z
2025-10-08T21:16:44Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
Text
info:eu-repo/semantics/article
Journal article
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
status_str publishedVersion
dc.identifier.none.fl_str_mv 1657-9550
https://repositorio.ucaldas.edu.co/handle/ucaldas/23755
2462-960X
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529
identifier_str_mv 1657-9550
2462-960X
url https://repositorio.ucaldas.edu.co/handle/ucaldas/23755
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 101
96
8
Biosalud
Amendt BA, Greene C, Sweetman L, Cloherty J, Shih V, Moon A, et al. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest 1987;79:1303-1309.
Corydon MJ, Vockley J, Rinaldo P, Rhead WJ, Kjeldsen M, Winter V, et al. Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 2001;49;1:18-23.
Rhead WL, Wolff JA, Lipson M, Falace P, Desai N, Fritchman K, et al. Clinical and biochemical variation and family studies in the multiple acyl-CoA dehydrogenation disorders. Pediatr Res 1987;21:371-376.
Rinaldo P, Welch RD, Previs SF, Schmidt-Sommerfeld E, Gargus JJ, O’Shea JJ, et al. Ethylmalonic/adipic aciduria: effect of oral medium chain triglycerides, carnitine and glycine on urinary excretion of organic acids, acylcarnitines and acylglycines. Pediatr Res 1991;30:216-221.
Gregersen N, Rhead W, Christensen E. (1990) Riboflavin responsive Glutaric Aciduria type II. In: Tanaka K, Coates PM, eds. Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation. Alan R Liss Inc.New York: pp. 477-494.
Hegre CS, Halenz DR, Lane MD. The enzymatic carboxylation of butyryl-coenzyme A. J Am Chem Soc 1959;81:6526-6527.
Gregersen N, Winter VS, Corydon MJ, Corydon TJ, Rinaldo P, Ribes A, et al. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-->T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-->A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 1998;7(4):619-27.
Christensen E, Brandt NJ, Schmalbruch H, Kamieniecka Z, Hertz B, Ruitenbeek W. Muscle cytochrome C oxidase deficiency accompanied by a urinary organic acid pattern mimicking multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1993;16:553-556.
García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 1997;17(2):165-70.
Tanaka K, Kean EA, Johnson B. Jamaican vomiting sickness: Biochemical investigation of two cases. New Engl J Med 1976;295:461-467.
Osorio JH. Patología molecular de los errores hereditarios de la β-oxidación mitocondrial de los ácidos grasos: alcances en el diagnóstico y tratamiento. Biosalud 2006;5:71-83.
Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.
Manning NJ, Olpin SE, Pollit RJ, Webley JA. Comparison of 9.10-3HPalmitic and 9.10-3Hmyristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inher Metab Dis 1990;13:58-68.
Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollit RJ. Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H2O from [9,10-3H]-myristic and [9,10-3H]-palmitic acids by intact cultured fibroblasts. J Inher Metab Dis 1992;15:883-890.
Kolvraa S, Gregersen N, Christiensen E, Hobolth N. In vitro fibroblasts studies in a patient with C6-C10 dicarboxilic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 1982;126: 53-67.
Saudubray JM, Coude FX, Demaugre F, Johnson C, Gibson KM, Nyhan WL. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation. Pediatr Res 1982;16:877-881.
Rhead WJ, Moon A, Oettger V, Henkle K. 14CO2-Labelled sustrate catabolism by human diploid fibroblasts derived from infants and adults. Biochem Med 1985;34:182-188.
Veerkamp JH, Van Moerkerk HTB, Glatz JFC, Zuurveld JGEM, Jacobs AEM, et al. 14CO2 production is no measure of [14C]fatty acid oxidation. Biochem. Med Metab Biol 1986;16:248-259.
Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a twoyear summary from the New England newborn screening program. Clin Chem 2001;47:194-195.
Levy HL. Newborn screening by tandem mass spectrometry: a new era. Clin Chem 1998;44:24012.
, Año 2009 : Enero - Diciembre
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/5529/4993
dc.rights.none.fl_str_mv Revista Biosalud - 2009
https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista Biosalud - 2009
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
publisher.none.fl_str_mv Universidad de Caldas
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532583949959168
spelling Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta“in vitro” diagnosis of short chain acyl co-a dehydrogenase deficiencySCADácidos grasosmetabolismoerrores innatos del metabolismofibroblastosSCADfatty acidsmetabolisminherited inborn metabolic errorsfibroblastsLa acil-CoA deshidrogenasa de cadena corta (SCAD) cataliza la primera reacción de la degradación de ácidos grasos de 4 a 6 átomos de carbono. Su deficiencia debe ser siempre confirmada por estudios de laboratorio. En el presente trabajo, fueron incubados fibroblastos de pacientes que presentaban la deficiencia de SCAD, en presencia de sustratos tritiados. Fue encontrada diferencia significativa (p<0,05) al comparar la degradación de palmitato y miristato tritiado entre controles y pacientes con deficiencia de SCAD.Short-chain acyl-CoA dehydrogenase (SCAD) is the key enzyme for degrading fatty acids with a 4-6 atoms carbon chain. It is necessary to always confirm this deficiency using laboratory methods. Fibroblasts of patients suffering SCAD deficiency were incubated with tritiated palmitate and miristatesubstrates. A significant difference (p<0.05) was found when comparing tritiated palmitate and miristate degradation between controls and patients suffering SCAD deficiency.Universidad de Caldas2022-03-17T00:37:15Z2025-10-08T21:16:44Z2022-03-17T00:37:15Z2025-10-08T21:16:44Z2022-03-17Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdf1657-9550https://repositorio.ucaldas.edu.co/handle/ucaldas/237552462-960Xhttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529spa101968BiosaludAmendt BA, Greene C, Sweetman L, Cloherty J, Shih V, Moon A, et al. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest 1987;79:1303-1309.Corydon MJ, Vockley J, Rinaldo P, Rhead WJ, Kjeldsen M, Winter V, et al. Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 2001;49;1:18-23.Rhead WL, Wolff JA, Lipson M, Falace P, Desai N, Fritchman K, et al. Clinical and biochemical variation and family studies in the multiple acyl-CoA dehydrogenation disorders. Pediatr Res 1987;21:371-376.Rinaldo P, Welch RD, Previs SF, Schmidt-Sommerfeld E, Gargus JJ, O’Shea JJ, et al. Ethylmalonic/adipic aciduria: effect of oral medium chain triglycerides, carnitine and glycine on urinary excretion of organic acids, acylcarnitines and acylglycines. Pediatr Res 1991;30:216-221.Gregersen N, Rhead W, Christensen E. (1990) Riboflavin responsive Glutaric Aciduria type II. In: Tanaka K, Coates PM, eds. Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation. Alan R Liss Inc.New York: pp. 477-494.Hegre CS, Halenz DR, Lane MD. The enzymatic carboxylation of butyryl-coenzyme A. J Am Chem Soc 1959;81:6526-6527.Gregersen N, Winter VS, Corydon MJ, Corydon TJ, Rinaldo P, Ribes A, et al. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-->T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-->A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 1998;7(4):619-27.Christensen E, Brandt NJ, Schmalbruch H, Kamieniecka Z, Hertz B, Ruitenbeek W. Muscle cytochrome C oxidase deficiency accompanied by a urinary organic acid pattern mimicking multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1993;16:553-556.García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 1997;17(2):165-70.Tanaka K, Kean EA, Johnson B. Jamaican vomiting sickness: Biochemical investigation of two cases. New Engl J Med 1976;295:461-467.Osorio JH. Patología molecular de los errores hereditarios de la β-oxidación mitocondrial de los ácidos grasos: alcances en el diagnóstico y tratamiento. Biosalud 2006;5:71-83.Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.Manning NJ, Olpin SE, Pollit RJ, Webley JA. Comparison of 9.10-3HPalmitic and 9.10-3Hmyristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inher Metab Dis 1990;13:58-68.Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollit RJ. Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H2O from [9,10-3H]-myristic and [9,10-3H]-palmitic acids by intact cultured fibroblasts. J Inher Metab Dis 1992;15:883-890.Kolvraa S, Gregersen N, Christiensen E, Hobolth N. In vitro fibroblasts studies in a patient with C6-C10 dicarboxilic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 1982;126: 53-67.Saudubray JM, Coude FX, Demaugre F, Johnson C, Gibson KM, Nyhan WL. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation. Pediatr Res 1982;16:877-881.Rhead WJ, Moon A, Oettger V, Henkle K. 14CO2-Labelled sustrate catabolism by human diploid fibroblasts derived from infants and adults. Biochem Med 1985;34:182-188.Veerkamp JH, Van Moerkerk HTB, Glatz JFC, Zuurveld JGEM, Jacobs AEM, et al. 14CO2 production is no measure of [14C]fatty acid oxidation. Biochem. Med Metab Biol 1986;16:248-259.Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a twoyear summary from the New England newborn screening program. Clin Chem 2001;47:194-195.Levy HL. Newborn screening by tandem mass spectrometry: a new era. Clin Chem 1998;44:24012., Año 2009 : Enero - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/5529/4993Revista Biosalud - 2009https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio, José HenryRibes, AntoniaLluc, Montseoai:repositorio.ucaldas.edu.co:ucaldas/237552025-10-08T21:16:44Z