Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café
Figuras, tablas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22609
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22609
- Palabra clave:
- 570 - Biología
Agaricomycetes
Micocultura
Biotecnología fúngica
Residuos agrícolas
Mycoculture
Fungal biotechnology
Agricultural waste
Mushroom cultivation
1. Ciencias Naturales
Biología
Cultivos
- Rights
- License
- https://creativecommons.org/licenses/by-sa/4.0/
| id |
REPOUCALDA_7befd0f63cbec67319d83c67e550bdaa |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22609 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| title |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| spellingShingle |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café 570 - Biología Agaricomycetes Micocultura Biotecnología fúngica Residuos agrícolas Mycoculture Fungal biotechnology Agricultural waste Mushroom cultivation 1. Ciencias Naturales Biología Cultivos |
| title_short |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| title_full |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| title_fullStr |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| title_full_unstemmed |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| title_sort |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café |
| dc.contributor.none.fl_str_mv |
Nelson Rodríguez Valencia Valencia Cardona, Yenny Leandra |
| dc.subject.none.fl_str_mv |
570 - Biología Agaricomycetes Micocultura Biotecnología fúngica Residuos agrícolas Mycoculture Fungal biotechnology Agricultural waste Mushroom cultivation 1. Ciencias Naturales Biología Cultivos |
| topic |
570 - Biología Agaricomycetes Micocultura Biotecnología fúngica Residuos agrícolas Mycoculture Fungal biotechnology Agricultural waste Mushroom cultivation 1. Ciencias Naturales Biología Cultivos |
| description |
Figuras, tablas |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-28T21:50:32Z 2025-08-28T21:50:32Z 2025-08-28 2035-09-30 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22609 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22609 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Acharya, K., & Khatua, S. (2024). Ganoderma: Cultivation, chemistry and medicinal applications, volume 1 (1.a ed.). CRC Press. https://doi.org/10.1201/9781003354789 Alharbi, M. A. H., Hirai, S., Tuan, H. A., Akioka, S., & Shoji, W. (2020). Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polymer Testing, 84, 106384. https://doi.org/10.1016/j.polymertesting.2020.106384 Araque, J., Niño, L., & Gelves, G. (2020). Industrial scale bioprocess simulation for Ganoderma lucidum production using superpro designer. Journal of Physics: Conference Series, 1655(1), 012077. https://doi.org/10.1088/1742-6596/1655/1/012077 Ardila-Rodríguez, J., Camacho-Cárdenas, H., Nieves-Arias, K., & Roa-Gil, A. (2018). Viabilidad para la creación de una empresa que fabrique y comercialice el extracto de Ganoderma lucidum. http://hdl.handle.net/10983/15999 Atila, F. (2020). Comparative study on the mycelial growth and yield of Ganoderma lucidum (Curt.: Fr.) Karst. on different lignocellulosic wastes. Acta Ecologica Sinica, 40(2), 153-157. https://doi.org/10.1016/j.chnaes.2018.11.007 Atlas, R. M., & Bartha, R. (1981). Microbial ecology: Fundamentals and application. Addison-Wesley Audet, S. (2010). Essai de découpage systématique du genre Scutiger (Basidiomycota): Albatrellopsis, Albatrellus, Polyporoletus, Scutiger et description de six nouveaux genres. Mycotaxon, 111(1), 431--464. https://doi.org/10.5248/111.431 Becker, J., & Wittmann, C. (2019). A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnology Advances, 37(6), 107360. https://doi.org/10.1016/j.biotechadv.2019.02.016 Bernabé-González, T., Cayetano-Catarino, M., Bernabé-Villanueva, G., Romero-Flores, A., Ángel-Ríos, M., & Pérez-Salgado, J. (2015). Cultivation of Ganoderma lucidum on agricultural by-products in Mexico. Micología Aplicada International, 27(2), 25–30. Boddy, L., & Hiscox, J. (2016). Fungal ecology: Principles and mechanisms of colonization and by saprotrophic fungi. https://doi.org/10.1128/microbiolspec.FUNK-0019-2016 Microbiology Spectrum, 4(6). Brzezinski, M., Kubeneck, S., Camargo, A. F., & Treichel, H. (2024). Alternative substrates for the cultivation of macrofungi. En Frontiers of Knowledge: Multidisciplinary Approaches in Academic Research. Seven Editora. https://doi.org/10.56238/sevened2024.026-051 Carrillo-Inungaray, M. L., Hidalgo-Morales, M., Rodríguez-Jimenes, G. del C., García Alvarado, M. Á., Ramírez-Lepe, M., Munguía, A. R., & Robles-Olvera, V. (2014). Effect of temperature, pH and water activity on Penicillium digitatum growth. Journal of Applied Mathematics and Physics, 2(10), 930–937. https://doi.org/10.4236/jamp.2014.210105 Chandra, R., Castillo, C., Delgado, P., & Parra, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production, 183, 1184–1196. Chukwu, S. C., Ibeji, C. A., Ogbu, C., Oselebe, H. O., Okporie, E. O., Rafii, M. Y., & Oladosu, Y. (2022). Primordial initiation, yield and yield component traits of two genotypes of oyster mushroom (Pleurotus spp.) as affected by various rates of lime. Scientific Reports, 12(1), 19054. https://doi.org/10.1038/s41598-022-16833-9 Ćilerdžić, J., Vukojević, J., Stajić, M., Stanojković, T., & Glamočlija, J. (2014). Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial. Coelho, M. A., Bakkeren, G., Sun, S., Hood, M. E., & Giraud, T. (2017). Fungal sex: The Basidiomycota. Microbiology Spectrum, 5(3). https://doi.org/10.1128/microbiolspec.FUNK 0046-2016 Davis, K. F., Rulli, M. C., Seveso, A., & D’Odorico, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10(12), 919 924. https://doi.org/10.1038/s41561-017-0004-5 De Carvalho, C. S. M., Sales-Campos, C., de Carvalho, L. P., Minhoni, M. T. d. A., Saad, A. L. M., Alquati, G. P., & de Andrade, M. C. N. (2015). Cultivation and bromatological analysis of the medicinal mushroom Ganoderma lucidum (Curt.: Fr.) P. Karst cultivated in agricultural waste. African Journal of Biotechnology, 14(5), 412-418. De Mattos-Shipley, K. M. J., Ford, K. L., Alberti, F., Banks, A. M., Bailey, A. M., & Foster, G. D. (2016). The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 85, 125–157. https://doi.org/10.1016/j.simyco.2016.11.002 Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. En T. Satyanarayana & G. Kunze (Eds.), Yeast Biotechnology: Diversity and Applications (pp. 151–168). Springer. Deacon, J. W. (2010). Fungal biology (4. ed.). Blackwell Du, Z., Dong, C.-H., Wang, K., & Yao, Y.-J. (2019). Classification, biological characteristics and cultivations of ganoderma. En Z. Lin & B. Yang (Eds.), Ganoderma and Health (Vol. 1181, pp. 15–58). Springer. https://doi.org/10.1007/978-981-13-9867-4_ Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., & Sabotič, J. (2012). Proteins of higher fungi from application. Trends https://doi.org/10.1016/j.tibtech.2012.01.004 in Biotechnology, 30(5), 259–273. Erkel, E. I. (2009). The effect of different substrate mediums on yield of Ganoderma lucidum (Fr.) Karst. Journal of Food, Agriculture and Environment, 7(3-4), 841–844. Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged culture fermentation of “higher fungi”: The macrofungi. Advances in Applied Microbiology, 63, 33 103. https://doi.org/10.1016/S0065-2164(07)00002-0 Fenta, L., Mekonnen, H., & Kabtimer, N. (2023). The exploitation of microbial antagonists against plant pathogens. https://doi.org/10.3390/microorganisms11041044 Microorganisms, 11(4), 1044. Gaya, E., Vasco-Palacios, A. M., Vargas-Estupiñán, N., Lücking, R., Carretero, J., Sanjuan, T., Moncada, B., Allkin, B., Bolaños-Rojas, A. C., Castellanos Castro, C., Coca, L. F., Corrales, A., Cossu, T., Davis, L., dSouza, J., Dufat, A., Franco-Molano, A. E., García, F., Gómez-Montoya, N., ... Diazgranados, M. (2021). ColFungi: Colombian resources for Fungi Made Accessible. Royal Botanic Gardens, Kew Gómez C. (1997). Estudio del cultivo de los hongos Pleurotus ostreatus y Pleurotus sajor caju en pulpa de café [Tesis de grado, Universidad Católica de Manizales. Facultad de Ciencias de la Salud]. Manizales. Gupta, S., Kumar, S., Singh, R., & Summuna, B. (2020). Management of contaminants in mushroom spawn. The Indian Journal of Agricultural Sciences, 90(5), 1000–1003. https://doi.org/10.56093/ijas.v90i5.104380 Gyurko, P. (1979). Die Rolle der Bakterien bei der Vorvereitung des Substrates für Pleurotus Anbau. Mushroom Science, 10(Part II), 31–36. He, M.-Q., Zhao, R.-L., Liu, D.-M., Denchev, T. T., Begerow, D., Yurkov, A., Kemler, M., Millanes, A. M., Wedin, M., McTaggart, A. R., ... Karpov, S. A. (2022). Species diversity of Basidiomycota. Fungal Diversity, 114(1), 281–325. https://doi.org/10.1007/s13225-021 00497-3 Hibbett, D. S. (2006). A phylogenetic overview of the Agaricomycotina. Mycologia, 98(6), 917–925. https://doi.org/10.1080/15572536.2006.11832621 Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., Huhndorf, S., James, T., Kirk, P. M., Lücking, R., ... Zhang, N. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509–547. https://doi.org/10.1016/j.mycres.2007.03.004 Hu, Y., Xue, F., Chen, Y., Qi, Y., Zhu, W., Wang, F., Wen, Q., & Shen, J. (2023). Effects and mechanism of the mycelial culture temperature on the growth and development of Pleurotus ostreatus (Jacq.) p. https://doi.org/10.3390/horticulturae9010095 Kumm. Horticulturae, 9(1), 95. Huang, L., Sun, N., Ban, L., Wang, Y., & Yang, H. (2019). Ability of different edible fungi to degrade crop straw. AMB Express, 9(1), 4. https://doi.org/10.1186/s13568-018-0731-z Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S., ... Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1–136. https://doi.org/10.1007/s13225-019-00430-9 İnce, G., Soylu, M. & Çömlekçioğlu, N. (2024). Effects of cultivation substrate composition on biological productivity and quality parameters of Ganoderma lucidum. Harran Tarım ve Gıda Bilimleri Dergisi, 28(2), 235-247. Jaramillo, C., Rodríguez, N., & Chang, S. T. (2010). Simple methodology for the cultivation of the medicinal mushroom Ganoderma lucidum in Colombian coffee farms. En D. Martínez Carrera, N. Curvetto, M. Sobal, P. Morales, & V. M. Mora (Eds.), Hacia un Desarrollo Sostenible del Sistema de Producción-Consumo de los Hongos Comestibles y Medicinales en Latinoamérica: Avances y Perspectivas en el Siglo XXI (pp. 397–405). Red Latinoamericana de Hongos Comestibles y Medicinales. Jasińska, A., Dawidowicz, L., Siwulski, M., & Kilinowski, P. (2017). Growth of mycelium of different edible and medicinal mushrooms on medium supplemented with digestate from AD biogas plant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 498–506. https://doi.org/10.15835/nbha45210954 Jo, W. S., Cho, Y. J., Cho, D. H., Park, S. D., Yoo, Y. B., & Seok, S. J. (2009). Culture Conditions for the Mycelial Growth of Ganoderma applanatum. Mycobiology, 37(2), 94–102. https://doi.org/10.4489/MYCO.2009.37.2.094 Juven, B. J., & Pierson, M. D. (1996). Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. Journal of Food Protection, 59(11), 1233–1241. https://doi.org/10.4315/0362-028X-59.11.1233 Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023 Karsten, P. A. (1881). Enumeratio Boletinearum et Polyporearum Fennicarum, systemate novo. Revue Mycologique, 3(9), 16-19. Kashangura, C. (2008). Optimisation of the growth conditions and genetic characterization of Pleurotus species [Tesis doctoral]. University of Zimbabwe. Khan, S. T. (2022). Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 176, 104503. https://doi.org/10.1016/j.apsoil.2022.104503 Kibar, B., & Peksen, A. (2008). Modelling the effects of temperature and light intensity on the development and yield of different Pleurotus species. Agricultura Tropica et Subtropica, 41, 68–73. Kiecksee, A. P., Seyfullah, L. J., Dörfelt, H., Heinrichs, J., Süß, H., & Schmidt, A. R. (2012). Pre-Cretaceous Agaricomycetes yet to be discovered: Reinvestigation of a putative Triassic bracket from southern https://doi.org/10.1002/mmng.201200006 Germany. Fossil Record, 15(2), 85–89. Kolesnikov, B., Vorobeychikov, E., & Shamtsyan, M. (2020). Integrated method for production of hydrophobin-type protein and milk-clotting enzyme using Coprinus lagopides mushroom. E3S Web of https://doi.org/10.1051/e3sconf/202021501003 Conferences, 215, 01003. Krupodorova, T., Barshteyn, V., Tsygankova, V., Sevindik, M., & Blume, Y. (2024). Strain specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMCBiotechnology, 24, 9. https://doi.org/10.1186/s12896-024-00834-9 Kuhar, F., & Papinutti, L. (2013). Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. Journal of Environmental Management, 124, 1–7. Lin, Z., & Yang, B. (Eds.). (2019). Ganoderma and health: Biology, chemistry and industry (Vol. 1181). Springer. https://doi.org/10.1007/978-981-13-9867-4 Lu, H., Lou, H., Hu, J., Liu, Z., & Chen, Q. (2020). Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2333–2356. https://doi.org/10.1111/1541-4337.12602 Mandal, S. D., Panda, A. K., Kumar, N. S., Bisht, S. S., & Jin, F. (Eds.). (2021). Metagenomics and microbial ecology: Techniques and applications. CRC Press. https://doi.org/10.1201/9781003042570 Manavalan, T., Manavalan, A., Thangavelu, K. P., & Heese, K. (2012). Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. Journal of Proteomics, 77, 298–309. Marín-Tello, C., Zelada-Castillo, L., Vásquez-Arqueros, A., & Vieira Amandio, S. (2020). Coffee Pulp: An Industrial By-product with Uses in Agriculture, Nutrition and Biotechnology. Reviews in Agricultural Science, 8, 323–342. https://doi.org/10.7831/ras.8.0_323 Martínez, M. (2017). Aprovechamiento de Residuos y Biomasa para producción de Bioenergía y fertilizantes orgánicos: economía circular de los residuos. Mundoagro Masi, M., Nocera, P., Reveglia, P., Cimmino, A., & Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: Structure-activity relationship studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834 McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3 Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., ... Wösten, H. A. B. (2020). Growing a circular economy with fungal biotechnology: A white paper. Fungal Biology and Biotechnology, 7(1), 5. https://doi.org/10.1186/s40694-020-00095-z Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003 Moncalvo, J. M., & Ryvarden, L. (1997). A nomenclatural study of the Ganodermataceae Donk. Mycotaxon, 111(1), 431–464. Mora, L., & Palma, U. (2022). Elaboración de una ficha técnica para el hongo Ganoderma lucidum cultivado en la ciudad de Guayaquil [Tesis de grado]. Escuela Superior Politécnica del Litoral. Morrow, C. A., & Fraser, J. A. (2009). Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast https://doi.org/10.1111/j.1567-1364.2008.00475.x Research, 9(2), 161–177. Nieuwenhuis, B. P. S., Billiard, S., Vuilleumier, S., Petit, E., Hood, M. E., & Giraud, T. (2013). Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity, 111(5), 445–455. https://doi.org/10.1038/hdy.2013.67 Patil, R. H., Patil, M. P., & Maheshwari, V. L. (2020). Microbial transformation of crop residues into a nutritionally enriched substrate and its potential application in livestock feed. SN Applied Sciences, 2(6), 1140. https://doi.org/10.1007/s42452-020-2949-z Peña, Z. (2019). Cálculo del punto de equilibrio, herramienta para la toma de decisiones. Revista Observatorio de la Economía Latinoamericana Peksen, A., & Yakupoglu, G. (2009). Tea waste as a supplement for the cultivation of Ganoderma lucidum. World Journal of Microbiology and Biotechnology, 25, 611–618. https://doi.org/10.1007/s11274-008-9931-z Philippoussis, A. (2009). Production of mushrooms using agro-industrial residues as substrate. Journal of Ethnopharmacology, 155, 312–319. Rekadwad, B. N. (Ed.). (2024). Microbial ecology: Microbiomes, viromes, and biofilms. CRCPress. https://doi.org/10.1201/9781003399247 Reyes, R. G., Lopez, L. L. M. A., Kumakura, K., Kalaw, S. P., Kikukawa, T., & Eguchi, F. (2009). Coprinus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. Journal of Agricultural Technology, 5(2), 299–316. Rodrigo, B. et al. (2024). Transformación y aprovechamiento de residuos orgánicos sólidos. En: Microbiología ambiental microorganismos en suelos, aguas, plantas, materiales orgánicos: de la teoría a la práctica. Rodríguez, V., & Gómez, F. (2001). Cultive hongos comestibles en pulpa de café. Avances técnicos Cenicafé, 285, 1–8. Rodríguez, V. N., & Jaramillo L., C. (2005). Cultivo de hongos medicinales en residuos agrícolas de la zona cafetera. https://biblioteca.cenicafe.org/handle/10778/583 Rodríguez, V., Araque, F. & Perdomo, P. (2006). Producción de los hongos comestibles orellanas y shiitake. Sección de Divulgación y Transferencia, Cenicafé, FNC. Rodríguez-Valencia, N. (2023). Aplicación de la bioeconomía circular en el proceso de beneficio de café con cero residuos: Cenicafé. https://doi.org/10.38141/cenbook-0032 Royse, D., Rhodes, T., Ohga, S., & Sanchez, J. (2004). Yield, mushroom size and time to production of Pleurotus cornucopiae (Oyster mushroom) grown on switch grass substrate spawned and s13225-019-00430-9 Sakamoto, Y. (2018). Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biology Reviews, 32, 236 248. https://doi.org/10.1016/j.fbr.2018.02.003 Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321–1337. https://doi.org/10.1007/s00253-009 2343-7 Sánchez, J. E., & Royse, D. J. (2002). La biología y el cultivo de Pleurotus spp (1. ed). El Colegio de la Frontera Sur. Setiawan, B. (2001). Designing temperature control system for mushroom cultivation. IFAC Proceedings, 34, 158–161. Silva, M., Ramos, A. C., Lidon, F. J., Reboredo, F. H., & Gonçalves, E. M. (2024). Pre- and postharvest strategies for Pleurotus ostreatus mushroom in a circular economy approach. Foods, 13(10), 1464. https://doi.org/10.3390/foods13101464 Smilanick, J. L., & Mansour, M. F. (2007). Influence of temperature and humidity on survival of Penicillium digitatum and Geotrichum citri-aurantii. Plant Disease, 91(8), 990 996. https://doi.org/10.1094/PDIS-91-8-0990 Soriano, E., Mangune, V. P., & Pascua, M. S. (2022). Development of low-cost cultivation protocol for Ganoderma lucidum (Curtis) P. Karst. International Journal of Microbiology and Mycology, 15(6), 1-10. https://innspub.net/development-of-low-cost-cultivation-protocol for-ganoderma-lucidum-curtis-p-karst/ Stanek, M., & Bisko, N. A. (1982). Regulation of microbiological processes in substrate for the cultivation of Pleurotus ostreatus. Zahradnictvi, 3, 221–233. Stölzer, S., & Grabbe, K. (1991). Mechanisms of substrate selectivity in the cultivation of edible fungi. Mushroom Science, 13(Part I), 141–146. Suárez Arango, C., & Nieto, I. J. (2013). Biotechnological cultivation of edible macrofungi: An alternative for obtaining nutraceutics. Revista Iberoamericana de Micología, 30(1), 1–8. https://doi.org/10.1016/j.riam.2012.03.011 Subedi, K., Basnet, B. B., Panday, R., Neupane, M., & Tripathi, G. R. (2021). Optimization of growth conditions and biological activities of Nepalese Ganoderma lucidum Strain Philippine. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 4888979. https://doi.org/10.1155/2021/4888979 Suissa, R., Olender, T., Malitsky, S., Golani, O., Turjeman, S., Koren, O., Meijler, M. M., & Kolodkin-Gal, I. (2023). Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness. NPJ Biofilms and Microbiomes, 9(1), 71. https://doi.org/10.1038/s41522-023-00431-2 Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I. P., Puel, O., & Lteif, R. (2016). A study on the physicochemical parameters for Penicillium expansum growth and patulin production: Effect of temperature, pH, and water activity. Food Science & Nutrition, 4(4), 611–622. https://doi.org/10.1002/fsn3.324 Traquair, J. A., & Drew Smith, J. (1982). Sclerotial strains of Coprinus psychromorbidus, a snow mold basidiomycete. Canadian Journal of Plant Pathology, 4(1), 27–36. https://doi.org/10.1080/07060668209501333 Uno, I., Nyunoya, H., & Ishikawa, T. (1981). Effects of 2-deoxy-D-glucose and quinidine on the fruiting body formation in Coprinus macrorhizus. The Journal of General and Applied Microbiology, 27(3), 219–228. https://doi.org/10.2323/jgam.27.219 Vargas et al. (2022). Useful Fungi of Colombia. En R. Almeida (ed.), Catalogue of Fungi of Colombia (pp. 151–164). Royal Botanic Gardens, Kew. Velenturf, A. P. M., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable Production and https://doi.org/10.1016/j.spc.2021.02.016 Consumption, 27, 1437–1457. Wannasawang, N., Luangharn, T., Thawthong, A., Charoensup, R., Jaidee, W., Tongdeesoontorn, W., Hyde, K. D., & Thongklang, N. (2023). Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life, 13(9), 1887. https://doi.org/10.3390/life13091887 Wang, D. M. (2005). Phylogenetic study of Ganoderma in China [Tesis doctoral]. Institute of Microbiology, Chinese Academy of Sciences. Wang, Y., Zhang, B., Chen, N., Wang, C., Feng, S., & Xu, H. (2018). Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. Journal of Soils and Sediments, 18(6), 2136-2147. https://doi.org/10.1007/s11368-017-1762-9 Wardle, D. A., Parkinson, D., & Waller, J. E. (1993). Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia, 94(2), 165–172. https://doi.org/10.1007/BF00341313 Webster, J., & Weber, R. (2007). Introduction to fungi (3rd ed.). Cambridge University Press. Wei, T., Chen, H., Wu, D., Gao, D., Cai, Y., Xu, H., Yang, J., & Guo, P. (2023). Response surface methodology for the mixed fungal fermentation of Codonopsis pilosula straw using Trichoderma reesei and https://doi.org/10.7717/peerj.15757 Coprinus comatus. PeerJ, 11, e15757. Wijayawardene, N. (2020). Outline of Fungi and fungus-like taxa. Mycosphere, 11(1), 1060 1456. https://doi.org/10.5943/mycosphere/11/1/8 Wijayawardene, N. N., Hyde, K. D., Mikhailov, K. V., Péter, G., Aptroot, A., Pires-Zottarelli, C. L. A., ... Karpov, S. A. (2024). Classes and phyla of the kingdom Fungi. Fungal Diversity, 128(1), 1–165. https://doi.org/10.1007/s13225-024-00540-z Xiang, L., & Yi, Z. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35, 466–489. Yildiz, S., Yildiz, Ü. C., Gezer, E. D., & Temiz, A. (2002). Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochemistry, 38(3), 301–306. https://doi.org/10.1016/S0032-9592(02)00040-7 Zhou, X. (2017). Cultivation of Ganoderma lucidum. En C. Z. Diego & A. Pardo‐Giménez (Eds.), and Medicinal https://doi.org/10.1002/9781119149446.ch18 Mushrooms (pp. 385–413). Wiley. Zied, D. C., & Pardo-Giménez, A. (2017). Edible and medicinal mushrooms: Technology and applications. Wiley Blackwell |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0) http://purl.org/coar/access_right/c_f1cf |
| dc.format.none.fl_str_mv |
48 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532542520721408 |
| spelling |
Aplicación de la economía circular en el proceso de cultivo de macrohongos en subproductos del café570 - BiologíaAgaricomycetesMicoculturaBiotecnología fúngicaResiduos agrícolasMycocultureFungal biotechnologyAgricultural wasteMushroom cultivation1. Ciencias NaturalesBiologíaCultivosFiguras, tablasLos macrohongos contienen enzimas hidrolíticas (celulosas y hemicelulosas) y oxidativas (lacasas y peroxidosas) que permiten degradar y acelerar los procesos de descomposición de la materia orgánica, como los residuos de origen agrícola, contribuyendo al ciclo del carbono. Además, los macrohongos forman estructuras reproductivas visibles que cumplen funciones claves en el ciclo de vida del hongo y que, a su vez, pueden tener un valor biotecnológico importante para la sociedad. Por lo tanto, la comprensión del ciclo de vida y los requerimientos ambientales de los macrohongos pueden contribuir a la descomposición de residuos agrícolas como los subproductos del cultivo del café (Coffea arabica) y a la producción de biomasa con potencial medicinal, nutricional o biorremediador. En este sentido, en esta investigación exploratoria, se buscó evaluar la viabilidad del cultivo de tres especies de macrohongos: Ganoderma lucidum, Pleurotus ostreatus y Coprinus sp, en subproductos del café, principalmente del pericarpio del fruto (pulpa) que es el principal subproducto del beneficio del café. Para ello, se buscó evaluar las condiciones ambientales de humedad, pH, luminosidad y temperatura óptimos para cada una de las fases del cultivo de los hongos mencionados bajo una lógica de economía circular sustentable. Los resultados mostraron que la adecuación del sustrato óptima a base de pulpa para G. lucidum fue con fermentación sumergida de 10 días con peróxido de hidrógeno al 1 % y esterilización con autoclave por 20 minutos con el cual se obtuvo una eficiencia biológica de 5,8 %. Por otro lado, se encontró que es posible el crecimiento de P. ostreatus en residuos del cultivo de G. lucidum con tiempos más prolongados de crecimiento. Además, no se observó colonización completa de Coprinus sp. en pulpa de café fermentada 10 días o lavada, lo cual podría indicar que se necesita períodos más extensos de degradación de la pulpa para su crecimiento. En conclusión, G. lucidum es una especie que tiene un crecimiento potencial en la pulpa del café, lo cual puede aportar significativamente a la valorización de los residuos del café y a la producción de setas medicinales a través de un sistema de economía circular sustentable.Macrofungi contain hydrolytic (cellulose and hemicellulose) and oxidative (laccase and peroxidases) enzymes that degrade and accelerate the decomposition of organic matter, such as agricultural waste, contributing to the carbon cycle. Furthermore, macrofungi form visible reproductive structures that play key roles in the fungal life cycle and, in turn, can have significant biotechnological value for society. Therefore, understanding the life cycle and environmental requirements of macrofungi can contribute to the decomposition of agricultural waste, such as coffee (Coffea arabica) by-products, and to the production of biomass with medicinal, nutritional, or bioremediation potential. In this exploratory study, we look into to evaluate the viability of cultivating three species of macrofungi: Ganoderma lucidum, Pleurotus ostreatus, and Coprinus sp., in coffee by-products, primarily the fruit pericarp (pulp), which is the main by-product of the coffee processing industry. To this end, we look into to evaluate the optimal environmental conditions of humidity, pH, light, and temperature for each of the cultivation phases of the aforementioned fungi with a sustainable circular economy framework. The results showed that the optimal pulp-based substrate for G. lucidum was a 10-day submerged fermentation with 1% hydrogen peroxide and 20-minute autoclave sterilization, obtaining a biological efficiency of 5.8%. Furthermore, we found that P. ostreatus can grow on G. lucidum crop residues with longer growth times. Furthermore, complete colonization of Coprinus sp. was not observed in fermented or washed coffee pulp for 10 days, which could indicate that longer pulp degradation periods are required for its growth. In conclusion, G. lucidum is a specie with potential for growth in coffee pulp, which can significantly contribute to the valorization of coffee waste and the production of medicinal mushrooms through a sustainable circular economy system.Introducción -- Planteamiento del problema -- Justificación -- Marco teórico y antecedentes -- Cultivo de Ganoderma lucidum -- Sustratos -- Rendimientos del proceso -- Condiciones ambientales de operación -- Factores nutricionales -- Costos -- Cultivo de Pleurotus ostreatus -- Condiciones del sustrato -- Condiciones ambientales -- Cultivo de Coprinus sp -- Condiciones ambientales -- Materiales y métodos -- Aislamiento de las cepas -- Activación de las cepas -- Producción de inóculo -- Elaboración del sustrato -- Incubación -- Fructificación -- Cosecha -- Resultados y discusión -- Aislamiento y activación de cepas -- Producción de inóculo e incubación -- Fructificación y cosecha -- Selectividad biológica de macrohongos -- Conclusiones -- Referencias.PregradoBiólogo(a)Universidad de CaldasMicologíaUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaNelson Rodríguez ValenciaValencia Cardona, Yenny LeandraQuiroz Silva, María Camila2025-08-28T21:50:32Z2035-09-302025-08-28T21:50:32Z2025-08-28Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis48 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22609Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAcharya, K., & Khatua, S. (2024). Ganoderma: Cultivation, chemistry and medicinal applications, volume 1 (1.a ed.). CRC Press. https://doi.org/10.1201/9781003354789Alharbi, M. A. H., Hirai, S., Tuan, H. A., Akioka, S., & Shoji, W. (2020). Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polymer Testing, 84, 106384. https://doi.org/10.1016/j.polymertesting.2020.106384Araque, J., Niño, L., & Gelves, G. (2020). Industrial scale bioprocess simulation for Ganoderma lucidum production using superpro designer. Journal of Physics: Conference Series, 1655(1), 012077. https://doi.org/10.1088/1742-6596/1655/1/012077Ardila-Rodríguez, J., Camacho-Cárdenas, H., Nieves-Arias, K., & Roa-Gil, A. (2018). Viabilidad para la creación de una empresa que fabrique y comercialice el extracto de Ganoderma lucidum. http://hdl.handle.net/10983/15999Atila, F. (2020). Comparative study on the mycelial growth and yield of Ganoderma lucidum (Curt.: Fr.) Karst. on different lignocellulosic wastes. Acta Ecologica Sinica, 40(2), 153-157. https://doi.org/10.1016/j.chnaes.2018.11.007Atlas, R. M., & Bartha, R. (1981). Microbial ecology: Fundamentals and application. Addison-WesleyAudet, S. (2010). Essai de découpage systématique du genre Scutiger (Basidiomycota): Albatrellopsis, Albatrellus, Polyporoletus, Scutiger et description de six nouveaux genres. Mycotaxon, 111(1), 431--464. https://doi.org/10.5248/111.431Becker, J., & Wittmann, C. (2019). A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnology Advances, 37(6), 107360. https://doi.org/10.1016/j.biotechadv.2019.02.016Bernabé-González, T., Cayetano-Catarino, M., Bernabé-Villanueva, G., Romero-Flores, A., Ángel-Ríos, M., & Pérez-Salgado, J. (2015). Cultivation of Ganoderma lucidum on agricultural by-products in Mexico. Micología Aplicada International, 27(2), 25–30.Boddy, L., & Hiscox, J. (2016). Fungal ecology: Principles and mechanisms of colonization and by saprotrophic fungi. https://doi.org/10.1128/microbiolspec.FUNK-0019-2016 Microbiology Spectrum, 4(6).Brzezinski, M., Kubeneck, S., Camargo, A. F., & Treichel, H. (2024). Alternative substrates for the cultivation of macrofungi. En Frontiers of Knowledge: Multidisciplinary Approaches in Academic Research. Seven Editora. https://doi.org/10.56238/sevened2024.026-051Carrillo-Inungaray, M. L., Hidalgo-Morales, M., Rodríguez-Jimenes, G. del C., García Alvarado, M. Á., Ramírez-Lepe, M., Munguía, A. R., & Robles-Olvera, V. (2014). Effect of temperature, pH and water activity on Penicillium digitatum growth. Journal of Applied Mathematics and Physics, 2(10), 930–937. https://doi.org/10.4236/jamp.2014.210105Chandra, R., Castillo, C., Delgado, P., & Parra, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production, 183, 1184–1196.Chukwu, S. C., Ibeji, C. A., Ogbu, C., Oselebe, H. O., Okporie, E. O., Rafii, M. Y., & Oladosu, Y. (2022). Primordial initiation, yield and yield component traits of two genotypes of oyster mushroom (Pleurotus spp.) as affected by various rates of lime. Scientific Reports, 12(1), 19054. https://doi.org/10.1038/s41598-022-16833-9Ćilerdžić, J., Vukojević, J., Stajić, M., Stanojković, T., & Glamočlija, J. (2014). Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial.Coelho, M. A., Bakkeren, G., Sun, S., Hood, M. E., & Giraud, T. (2017). Fungal sex: The Basidiomycota. Microbiology Spectrum, 5(3). https://doi.org/10.1128/microbiolspec.FUNK 0046-2016Davis, K. F., Rulli, M. C., Seveso, A., & D’Odorico, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10(12), 919 924. https://doi.org/10.1038/s41561-017-0004-5De Carvalho, C. S. M., Sales-Campos, C., de Carvalho, L. P., Minhoni, M. T. d. A., Saad, A. L. M., Alquati, G. P., & de Andrade, M. C. N. (2015). Cultivation and bromatological analysis of the medicinal mushroom Ganoderma lucidum (Curt.: Fr.) P. Karst cultivated in agricultural waste. African Journal of Biotechnology, 14(5), 412-418.De Mattos-Shipley, K. M. J., Ford, K. L., Alberti, F., Banks, A. M., Bailey, A. M., & Foster, G. D. (2016). The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 85, 125–157. https://doi.org/10.1016/j.simyco.2016.11.002Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. En T. Satyanarayana & G. Kunze (Eds.), Yeast Biotechnology: Diversity and Applications (pp. 151–168). Springer.Deacon, J. W. (2010). Fungal biology (4. ed.). BlackwellDu, Z., Dong, C.-H., Wang, K., & Yao, Y.-J. (2019). Classification, biological characteristics and cultivations of ganoderma. En Z. Lin & B. Yang (Eds.), Ganoderma and Health (Vol. 1181, pp. 15–58). Springer. https://doi.org/10.1007/978-981-13-9867-4_Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., & Sabotič, J. (2012). Proteins of higher fungi from application. Trends https://doi.org/10.1016/j.tibtech.2012.01.004 in Biotechnology, 30(5), 259–273.Erkel, E. I. (2009). The effect of different substrate mediums on yield of Ganoderma lucidum (Fr.) Karst. Journal of Food, Agriculture and Environment, 7(3-4), 841–844.Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged culture fermentation of “higher fungi”: The macrofungi. Advances in Applied Microbiology, 63, 33 103. https://doi.org/10.1016/S0065-2164(07)00002-0Fenta, L., Mekonnen, H., & Kabtimer, N. (2023). The exploitation of microbial antagonists against plant pathogens. https://doi.org/10.3390/microorganisms11041044 Microorganisms, 11(4), 1044.Gaya, E., Vasco-Palacios, A. M., Vargas-Estupiñán, N., Lücking, R., Carretero, J., Sanjuan, T., Moncada, B., Allkin, B., Bolaños-Rojas, A. C., Castellanos Castro, C., Coca, L. F., Corrales, A., Cossu, T., Davis, L., dSouza, J., Dufat, A., Franco-Molano, A. E., García, F., Gómez-Montoya, N., ... Diazgranados, M. (2021). ColFungi: Colombian resources for Fungi Made Accessible. Royal Botanic Gardens, KewGómez C. (1997). Estudio del cultivo de los hongos Pleurotus ostreatus y Pleurotus sajor caju en pulpa de café [Tesis de grado, Universidad Católica de Manizales. Facultad de Ciencias de la Salud]. Manizales.Gupta, S., Kumar, S., Singh, R., & Summuna, B. (2020). Management of contaminants in mushroom spawn. The Indian Journal of Agricultural Sciences, 90(5), 1000–1003. https://doi.org/10.56093/ijas.v90i5.104380Gyurko, P. (1979). Die Rolle der Bakterien bei der Vorvereitung des Substrates für Pleurotus Anbau. Mushroom Science, 10(Part II), 31–36.He, M.-Q., Zhao, R.-L., Liu, D.-M., Denchev, T. T., Begerow, D., Yurkov, A., Kemler, M., Millanes, A. M., Wedin, M., McTaggart, A. R., ... Karpov, S. A. (2022). Species diversity of Basidiomycota. Fungal Diversity, 114(1), 281–325. https://doi.org/10.1007/s13225-021 00497-3Hibbett, D. S. (2006). A phylogenetic overview of the Agaricomycotina. Mycologia, 98(6), 917–925. https://doi.org/10.1080/15572536.2006.11832621Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., Huhndorf, S., James, T., Kirk, P. M., Lücking, R., ... Zhang, N. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509–547. https://doi.org/10.1016/j.mycres.2007.03.004Hu, Y., Xue, F., Chen, Y., Qi, Y., Zhu, W., Wang, F., Wen, Q., & Shen, J. (2023). Effects and mechanism of the mycelial culture temperature on the growth and development of Pleurotus ostreatus (Jacq.) p. https://doi.org/10.3390/horticulturae9010095 Kumm. Horticulturae, 9(1), 95.Huang, L., Sun, N., Ban, L., Wang, Y., & Yang, H. (2019). Ability of different edible fungi to degrade crop straw. AMB Express, 9(1), 4. https://doi.org/10.1186/s13568-018-0731-zHyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S., ... Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1–136. https://doi.org/10.1007/s13225-019-00430-9İnce, G., Soylu, M. & Çömlekçioğlu, N. (2024). Effects of cultivation substrate composition on biological productivity and quality parameters of Ganoderma lucidum. Harran Tarım ve Gıda Bilimleri Dergisi, 28(2), 235-247.Jaramillo, C., Rodríguez, N., & Chang, S. T. (2010). Simple methodology for the cultivation of the medicinal mushroom Ganoderma lucidum in Colombian coffee farms. En D. Martínez Carrera, N. Curvetto, M. Sobal, P. Morales, & V. M. Mora (Eds.), Hacia un Desarrollo Sostenible del Sistema de Producción-Consumo de los Hongos Comestibles y Medicinales en Latinoamérica: Avances y Perspectivas en el Siglo XXI (pp. 397–405). Red Latinoamericana de Hongos Comestibles y Medicinales.Jasińska, A., Dawidowicz, L., Siwulski, M., & Kilinowski, P. (2017). Growth of mycelium of different edible and medicinal mushrooms on medium supplemented with digestate from AD biogas plant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 498–506. https://doi.org/10.15835/nbha45210954Jo, W. S., Cho, Y. J., Cho, D. H., Park, S. D., Yoo, Y. B., & Seok, S. J. (2009). Culture Conditions for the Mycelial Growth of Ganoderma applanatum. Mycobiology, 37(2), 94–102. https://doi.org/10.4489/MYCO.2009.37.2.094Juven, B. J., & Pierson, M. D. (1996). Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. Journal of Food Protection, 59(11), 1233–1241. https://doi.org/10.4315/0362-028X-59.11.1233Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023Karsten, P. A. (1881). Enumeratio Boletinearum et Polyporearum Fennicarum, systemate novo. Revue Mycologique, 3(9), 16-19.Kashangura, C. (2008). Optimisation of the growth conditions and genetic characterization of Pleurotus species [Tesis doctoral]. University of Zimbabwe.Khan, S. T. (2022). Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 176, 104503. https://doi.org/10.1016/j.apsoil.2022.104503Kibar, B., & Peksen, A. (2008). Modelling the effects of temperature and light intensity on the development and yield of different Pleurotus species. Agricultura Tropica et Subtropica, 41, 68–73.Kiecksee, A. P., Seyfullah, L. J., Dörfelt, H., Heinrichs, J., Süß, H., & Schmidt, A. R. (2012). Pre-Cretaceous Agaricomycetes yet to be discovered: Reinvestigation of a putative Triassic bracket from southern https://doi.org/10.1002/mmng.201200006 Germany. Fossil Record, 15(2), 85–89.Kolesnikov, B., Vorobeychikov, E., & Shamtsyan, M. (2020). Integrated method for production of hydrophobin-type protein and milk-clotting enzyme using Coprinus lagopides mushroom. E3S Web of https://doi.org/10.1051/e3sconf/202021501003 Conferences, 215, 01003.Krupodorova, T., Barshteyn, V., Tsygankova, V., Sevindik, M., & Blume, Y. (2024). Strain specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMCBiotechnology, 24, 9. https://doi.org/10.1186/s12896-024-00834-9Kuhar, F., & Papinutti, L. (2013). Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. Journal of Environmental Management, 124, 1–7.Lin, Z., & Yang, B. (Eds.). (2019). Ganoderma and health: Biology, chemistry and industry (Vol. 1181). Springer. https://doi.org/10.1007/978-981-13-9867-4Lu, H., Lou, H., Hu, J., Liu, Z., & Chen, Q. (2020). Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2333–2356. https://doi.org/10.1111/1541-4337.12602Mandal, S. D., Panda, A. K., Kumar, N. S., Bisht, S. S., & Jin, F. (Eds.). (2021). Metagenomics and microbial ecology: Techniques and applications. CRC Press. https://doi.org/10.1201/9781003042570Manavalan, T., Manavalan, A., Thangavelu, K. P., & Heese, K. (2012). Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. Journal of Proteomics, 77, 298–309.Marín-Tello, C., Zelada-Castillo, L., Vásquez-Arqueros, A., & Vieira Amandio, S. (2020). Coffee Pulp: An Industrial By-product with Uses in Agriculture, Nutrition and Biotechnology. Reviews in Agricultural Science, 8, 323–342. https://doi.org/10.7831/ras.8.0_323Martínez, M. (2017). Aprovechamiento de Residuos y Biomasa para producción de Bioenergía y fertilizantes orgánicos: economía circular de los residuos. MundoagroMasi, M., Nocera, P., Reveglia, P., Cimmino, A., & Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: Structure-activity relationship studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., ... Wösten, H. A. B. (2020). Growing a circular economy with fungal biotechnology: A white paper. Fungal Biology and Biotechnology, 7(1), 5. https://doi.org/10.1186/s40694-020-00095-zMohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003Moncalvo, J. M., & Ryvarden, L. (1997). A nomenclatural study of the Ganodermataceae Donk. Mycotaxon, 111(1), 431–464.Mora, L., & Palma, U. (2022). Elaboración de una ficha técnica para el hongo Ganoderma lucidum cultivado en la ciudad de Guayaquil [Tesis de grado]. Escuela Superior Politécnica del Litoral.Morrow, C. A., & Fraser, J. A. (2009). Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast https://doi.org/10.1111/j.1567-1364.2008.00475.x Research, 9(2), 161–177.Nieuwenhuis, B. P. S., Billiard, S., Vuilleumier, S., Petit, E., Hood, M. E., & Giraud, T. (2013). Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity, 111(5), 445–455. https://doi.org/10.1038/hdy.2013.67Patil, R. H., Patil, M. P., & Maheshwari, V. L. (2020). Microbial transformation of crop residues into a nutritionally enriched substrate and its potential application in livestock feed. SN Applied Sciences, 2(6), 1140. https://doi.org/10.1007/s42452-020-2949-zPeña, Z. (2019). Cálculo del punto de equilibrio, herramienta para la toma de decisiones. Revista Observatorio de la Economía LatinoamericanaPeksen, A., & Yakupoglu, G. (2009). Tea waste as a supplement for the cultivation of Ganoderma lucidum. World Journal of Microbiology and Biotechnology, 25, 611–618. https://doi.org/10.1007/s11274-008-9931-zPhilippoussis, A. (2009). Production of mushrooms using agro-industrial residues as substrate. Journal of Ethnopharmacology, 155, 312–319.Rekadwad, B. N. (Ed.). (2024). Microbial ecology: Microbiomes, viromes, and biofilms. CRCPress. https://doi.org/10.1201/9781003399247Reyes, R. G., Lopez, L. L. M. A., Kumakura, K., Kalaw, S. P., Kikukawa, T., & Eguchi, F. (2009). Coprinus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. Journal of Agricultural Technology, 5(2), 299–316.Rodrigo, B. et al. (2024). Transformación y aprovechamiento de residuos orgánicos sólidos. En: Microbiología ambiental microorganismos en suelos, aguas, plantas, materiales orgánicos: de la teoría a la práctica.Rodríguez, V., & Gómez, F. (2001). Cultive hongos comestibles en pulpa de café. Avances técnicos Cenicafé, 285, 1–8.Rodríguez, V. N., & Jaramillo L., C. (2005). Cultivo de hongos medicinales en residuos agrícolas de la zona cafetera. https://biblioteca.cenicafe.org/handle/10778/583Rodríguez, V., Araque, F. & Perdomo, P. (2006). Producción de los hongos comestibles orellanas y shiitake. Sección de Divulgación y Transferencia, Cenicafé, FNC.Rodríguez-Valencia, N. (2023). Aplicación de la bioeconomía circular en el proceso de beneficio de café con cero residuos: Cenicafé. https://doi.org/10.38141/cenbook-0032Royse, D., Rhodes, T., Ohga, S., & Sanchez, J. (2004). Yield, mushroom size and time to production of Pleurotus cornucopiae (Oyster mushroom) grown on switch grass substrate spawned and s13225-019-00430-9Sakamoto, Y. (2018). Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biology Reviews, 32, 236 248. https://doi.org/10.1016/j.fbr.2018.02.003Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321–1337. https://doi.org/10.1007/s00253-009 2343-7Sánchez, J. E., & Royse, D. J. (2002). La biología y el cultivo de Pleurotus spp (1. ed). El Colegio de la Frontera Sur.Setiawan, B. (2001). Designing temperature control system for mushroom cultivation. IFAC Proceedings, 34, 158–161.Silva, M., Ramos, A. C., Lidon, F. J., Reboredo, F. H., & Gonçalves, E. M. (2024). Pre- and postharvest strategies for Pleurotus ostreatus mushroom in a circular economy approach. Foods, 13(10), 1464. https://doi.org/10.3390/foods13101464Smilanick, J. L., & Mansour, M. F. (2007). Influence of temperature and humidity on survival of Penicillium digitatum and Geotrichum citri-aurantii. Plant Disease, 91(8), 990 996. https://doi.org/10.1094/PDIS-91-8-0990Soriano, E., Mangune, V. P., & Pascua, M. S. (2022). Development of low-cost cultivation protocol for Ganoderma lucidum (Curtis) P. Karst. International Journal of Microbiology and Mycology, 15(6), 1-10. https://innspub.net/development-of-low-cost-cultivation-protocol for-ganoderma-lucidum-curtis-p-karst/Stanek, M., & Bisko, N. A. (1982). Regulation of microbiological processes in substrate for the cultivation of Pleurotus ostreatus. Zahradnictvi, 3, 221–233.Stölzer, S., & Grabbe, K. (1991). Mechanisms of substrate selectivity in the cultivation of edible fungi. Mushroom Science, 13(Part I), 141–146.Suárez Arango, C., & Nieto, I. J. (2013). Biotechnological cultivation of edible macrofungi: An alternative for obtaining nutraceutics. Revista Iberoamericana de Micología, 30(1), 1–8. https://doi.org/10.1016/j.riam.2012.03.011Subedi, K., Basnet, B. B., Panday, R., Neupane, M., & Tripathi, G. R. (2021). Optimization of growth conditions and biological activities of Nepalese Ganoderma lucidum Strain Philippine. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 4888979. https://doi.org/10.1155/2021/4888979Suissa, R., Olender, T., Malitsky, S., Golani, O., Turjeman, S., Koren, O., Meijler, M. M., & Kolodkin-Gal, I. (2023). Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness. NPJ Biofilms and Microbiomes, 9(1), 71. https://doi.org/10.1038/s41522-023-00431-2Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I. P., Puel, O., & Lteif, R. (2016). A study on the physicochemical parameters for Penicillium expansum growth and patulin production: Effect of temperature, pH, and water activity. Food Science & Nutrition, 4(4), 611–622. https://doi.org/10.1002/fsn3.324Traquair, J. A., & Drew Smith, J. (1982). Sclerotial strains of Coprinus psychromorbidus, a snow mold basidiomycete. Canadian Journal of Plant Pathology, 4(1), 27–36. https://doi.org/10.1080/07060668209501333Uno, I., Nyunoya, H., & Ishikawa, T. (1981). Effects of 2-deoxy-D-glucose and quinidine on the fruiting body formation in Coprinus macrorhizus. The Journal of General and Applied Microbiology, 27(3), 219–228. https://doi.org/10.2323/jgam.27.219Vargas et al. (2022). Useful Fungi of Colombia. En R. Almeida (ed.), Catalogue of Fungi of Colombia (pp. 151–164). Royal Botanic Gardens, Kew.Velenturf, A. P. M., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable Production and https://doi.org/10.1016/j.spc.2021.02.016 Consumption, 27, 1437–1457.Wannasawang, N., Luangharn, T., Thawthong, A., Charoensup, R., Jaidee, W., Tongdeesoontorn, W., Hyde, K. D., & Thongklang, N. (2023). Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life, 13(9), 1887. https://doi.org/10.3390/life13091887Wang, D. M. (2005). Phylogenetic study of Ganoderma in China [Tesis doctoral]. Institute of Microbiology, Chinese Academy of Sciences.Wang, Y., Zhang, B., Chen, N., Wang, C., Feng, S., & Xu, H. (2018). Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. Journal of Soils and Sediments, 18(6), 2136-2147. https://doi.org/10.1007/s11368-017-1762-9Wardle, D. A., Parkinson, D., & Waller, J. E. (1993). Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia, 94(2), 165–172. https://doi.org/10.1007/BF00341313Webster, J., & Weber, R. (2007). Introduction to fungi (3rd ed.). Cambridge University Press.Wei, T., Chen, H., Wu, D., Gao, D., Cai, Y., Xu, H., Yang, J., & Guo, P. (2023). Response surface methodology for the mixed fungal fermentation of Codonopsis pilosula straw using Trichoderma reesei and https://doi.org/10.7717/peerj.15757 Coprinus comatus. PeerJ, 11, e15757.Wijayawardene, N. (2020). Outline of Fungi and fungus-like taxa. Mycosphere, 11(1), 1060 1456. https://doi.org/10.5943/mycosphere/11/1/8Wijayawardene, N. N., Hyde, K. D., Mikhailov, K. V., Péter, G., Aptroot, A., Pires-Zottarelli, C. L. A., ... Karpov, S. A. (2024). Classes and phyla of the kingdom Fungi. Fungal Diversity, 128(1), 1–165. https://doi.org/10.1007/s13225-024-00540-zXiang, L., & Yi, Z. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35, 466–489.Yildiz, S., Yildiz, Ü. C., Gezer, E. D., & Temiz, A. (2002). Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochemistry, 38(3), 301–306. https://doi.org/10.1016/S0032-9592(02)00040-7Zhou, X. (2017). Cultivation of Ganoderma lucidum. En C. Z. Diego & A. Pardo‐Giménez (Eds.), and Medicinal https://doi.org/10.1002/9781119149446.ch18 Mushrooms (pp. 385–413). Wiley.Zied, D. C., & Pardo-Giménez, A. (2017). Edible and medicinal mushrooms: Technology and applications. Wiley Blackwellhttps://creativecommons.org/licenses/by-sa/4.0/Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/226092025-08-29T08:01:14Z |
