Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia
Colombia se destaca como uno de los países con mayor diversidad biológica del mundo; sin embargo, esta riqueza natural se encuentra amenazada debido a la transformación continua de sus ecosistemas, impulsada en gran medida por actividades antrópicas. Entre los biomas prioritarios para la conservació...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/23532
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/23532
https://doi.org/10.17151/bccm.2025.29.1.7
- Palabra clave:
- análisis genético
biodiversidad
conservación
mariposas diurnas
Papilionoidea
Genetic analysis
biodiversity
conservation
diurnal butterflies
Papilionoidea
- Rights
- openAccess
- License
- Boletín Científico Centro de Museos Museo de Historia Natural - 2025
| id |
REPOUCALDA_73418d594fd3b92d8219512494a607c1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/23532 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia Genetic diversity of butterflies and its perspectives as key information for defining conservation strategies in the high-mountain ecosystems of Colombia |
| title |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| spellingShingle |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia análisis genético biodiversidad conservación mariposas diurnas Papilionoidea Genetic analysis biodiversity conservation diurnal butterflies Papilionoidea |
| title_short |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| title_full |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| title_fullStr |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| title_full_unstemmed |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| title_sort |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de Colombia |
| dc.subject.none.fl_str_mv |
análisis genético biodiversidad conservación mariposas diurnas Papilionoidea Genetic analysis biodiversity conservation diurnal butterflies Papilionoidea |
| topic |
análisis genético biodiversidad conservación mariposas diurnas Papilionoidea Genetic analysis biodiversity conservation diurnal butterflies Papilionoidea |
| description |
Colombia se destaca como uno de los países con mayor diversidad biológica del mundo; sin embargo, esta riqueza natural se encuentra amenazada debido a la transformación continua de sus ecosistemas, impulsada en gran medida por actividades antrópicas. Entre los biomas prioritarios para la conservación en el país se encuentran los ecosistemas de alta montaña, conocidos como páramos. Estos ambientes albergan altos niveles de endemismo y diversidad beta, además de cumplir un papel crítico en la captura, regulación y provisión del recurso hídrico. Los parámetros poblacionales derivados de análisis genéticos se han convertido en una herramienta fundamental para caracterizar la estructura, variabilidad y conectividad de las poblaciones naturales. Insectos como las mariposas se han utilizado como referencia del estado de un ecosistema, ya que sus parámetros poblacionales pueden extrapolarse al resto de la biota del lugar. Esta información resulta clave para identificar áreas prioritarias de conservación y diseñar estrategias efectivas de manejo. En este contexto, las mariposas diurnas emergen como valiosos bioindicadores: su respuesta frente a los cambios ambientales y su diversidad genética permiten realizar inferencias sobre la salud y resiliencia de los ecosistemas de páramo. Este artículo presenta perspectivas clave sobre la relevancia de la diversidad genética como insumo útil en la definición de estrategias de conservación en los páramos colombianos. A través del análisis genético de especies focales de mariposas, se busca fortalecer la toma de decisiones, priorizar poblaciones vulnerables, apoyar programas de suplementación, orientar esfuerzos de migración asistida y, en última instancia, contribuir a la formulación de políticas de conservación a largo plazo. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01-01T00:00:00Z 2025-10-08T21:06:55Z 2025-01-01T00:00:00Z 2025-10-08T21:06:55Z 2025-01-01 |
| dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 Text info:eu-repo/semantics/article Journal article info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
0123-3068 https://repositorio.ucaldas.edu.co/handle/ucaldas/23532 10.17151/bccm.2025.29.1.7 2462-8190 https://doi.org/10.17151/bccm.2025.29.1.7 |
| identifier_str_mv |
0123-3068 10.17151/bccm.2025.29.1.7 2462-8190 |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/23532 https://doi.org/10.17151/bccm.2025.29.1.7 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
179 1 161 29 Boletín Científico Centro de Museos Museo de Historia Natural Adams, M. J. (1986). Pronophiline butterflies (Satyridae) of the three Andean Cordilleras of Colombia. Zoological Journal of the Linnean Society, 87(3), 235-320. https://doi.org/10.1111/j.1096-3642.1986.tb01338.x Adams, M. J. & Bernard, G. I. (1997). Pronophiline butterflies (Satyridae) of the Sierra Nevada de Santa Marta, Colombia. Systematic Entomology, 2(4), 263-281. https://doi.org/10.1111/j.1365-3113.1977.tb00376.x Ahola, V., Lehtonen, R., Somervuo, P., Salmela, L., Koskinen, P., Rastas, P., Välimäki, N., Paulin, L., Kvist, J., Wahlberg, N., Tanskanen, J., Hornett, E. A., Ferguson, L. C., Luo, S., Cao, Z., de Jong, M. A., Duplouy, A., Smolander, O.-P., Vogel, H., … Hanski, I. (2014). The glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in lepidoptera. Nature Communications, 5(1), 4737. https://doi.org/10.1038/ncomms5737 Albright, E. A. & Crow, D. (2019). Beliefs about climate change in the aftermath of extreme flooding. Climatic Change, 155(1), 1-17. https://doi.org/10.1007/s10584-019-02461-2 Altamiranda-Saavedra, M., Naranjo-Díaz, N., Conn, J. E. & Correa, M. M. (2023). Entomological parameters and population structure at a microgeographic scale of the main Colombian malaria vectors Anopheles albimanus and Anopheles nuneztovari.PLOS ONE, 18(1), e0280066. https://doi.org/10.1371/journal.pone.0280066 Álvarez-Hincapié, C. F., Clavijo, A., Rojas, H., Uribe, S., Pyrcz, T. W. & Marín, M. A. (2017). Contribution of the influence area of the Páramo de Belmira (Santa Inés) to the regional diversity of Pronophilina (Lepidoptera: Satyrinae) of the northern Andes. Revista Mexicana de Biodiversidad, 88(2), 402-409. https://doi.org/10.1016/j.rmb.2017.03.007 Arellano, H. P. & Rangel, J. O. CH. (2008). Patterns in the distribution of vegetation in paramo areas: heterogeneity and spacial dependence. Caldasia, 30(2), 355-411. Armenteras, D., Gast, F. & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245-256. https://doi.org/10.1016/S0006-3207(02)00359-2 Avellaneda-Torres, L. M., Rojas, E. T. & Sicard, T. E. L. (2015). Alternatives to the conflict between environmental authorities and communities of protected areas in Colombian Páramos. Mundo Agrario, 16(31), 19-31. Azrizal-Wahid, N., Rizman-Idid, M. & Sofian-Azirun, M. (2021). Phylogenetic relationships of Eurema butterflies from Peninsular Malaysia inferred from CO1 and 28S gene sequences with emphasis on Eurema hecabe. Raffles Bulletin of Zoology, 69, 262-271. https://doi.org/10.26107/RBZ-2021-0021 Balvanera, P. (2012). Ecosystem services supplied by tropical forests. Ecosistemas, 21(1-2), 136-147. Bell, E. V., Fencl, A. & Mullin, M. (2022). External drivers of participation in regional collaborative water planning. Policy Studies Journal, 50(4), 945-969. https://doi.org/10.1111/psj.12473 Benavides-Martínez, I. F., Burbano-Martínez, D. L., Urbano-Apráez, S. M. & Solarte-Cruz, M. E. (2007). The effect of the altitudinal gradient on autoecological features of Espeletia pycnophylla ssp. Angelensis cuatrec. (Asteraceae) in the paramo ‘El Infiernillo’ (Nariño–Colombia). Actual Biol, 29(86), 41-53. Berteaux, D., Ricard, M., St-Laurent, M.-H., Casajus, N., Périé, C., Beauregard, F. & de Blois, S. (2018). Northern protected areas will become important refuges for biodiversity tracking suitable climates. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23050-w Brown, B. V., Borkent, A., Adler, P. H., Amorim, D. S., Barber, K., Bickel, D., Boucher, S., Brooks, S. E., Burger, J., Burington, Z. L., Capellari, R. S., Costa, D. N. R., Cumming, J. M., Curler, G., Dick, C. W., Epler, J. H., Fisher, E., Gaimari, S. D., Gelhaus, J., … Zumbado, M. A. (2018). Comprehensive inventory of true flies (Diptera) at a tropical site. Communications Biology, 1(21), 1-21. https://doi.org/10.1038/s42003-018-0022-x Cadena, C. D., Klicka, J. & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993-1016. https://doi.org/10.1016/j.ympev.2006.12.012 Cameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59(1), 95-117. https://doi.org/10.1146/annurev-ento-011613-162007 Campbell, E. O., MacDonald, Z. G., Gage, E. V., Gage, R. V. & Sperling, F. A. H. (2022). Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Molecular Ecology, 31(8), 2400-2417. https://doi.org/10.1111/mec.16407 Casas-Pinilla, L. C., Mahecha-Jiménez, O., Dumar-Rodríguez, J. C. & Ríos-Málaver, I. C. (2017). Diversity of butterflies in a dry tropical forest landscape in la Mesa de los Santos, Santander, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 45(177), 83-108. Cepeda-Duque, J. C., Arango-Correa, E., Frimodt-Møller, C. & Lizcano, D. J. (2024). Howling shadows: First report of domestic dog attacks on globally threatened mountain tapirs in high Andean cloud forests of Colombia. Neotropical Biology and Conservation, 19(1), 25-33. https://doi.org/10.3897/neotropical.19.e117437 Chang, H., Liu, Q., Hao, D., Liu, Y., An, Y., Qian, L. & Yang, X. (2014). DNA barcodes and molecular diagnostics for distinguishing introduced Xyleborus (Coleoptera: Scolytinae) species in China. Mitochondrial DNA, 25(1), 63-69. https://doi.org/10.3109/19401736.2013.779260 Cognato, A. I. & Sperling, F. A. H. (2000). Phylogeny of Ips DeGeer Species (Coleoptera: Scolytidae) Inferred from Mitochondrial Cytochrome Oxidase I DNA Sequence. Molecular Phylogenetics and Evolution, 14(3), 445-460. https://doi.org/10.1006/mpev.1999.0705 Correa-Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez-Buriticá, S., Ramírez, W. & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630 Crone, E. E. & Schultz, C. B. (2022). Host plant limitation of butterflies in highly fragmented landscapes. Theoretical Ecology, 15(3), 165-175. https://doi.org/10.1007/s12080-021-00527-5 Dan, Z., Duan, L., Chen, Z., Guan, D. & Xu, S. (2021). Mitogenomes of three satyrid butterfly species (Nymphalidae: Lepidoptera) and reconstructed phylogeny of satyrinae. Diversity, 13(10), 1-18. https://doi.org/10.3390/d13100468 De Palma, A., Abrahamczyk, S., Aizen, M., Albrecht, M., Basset, Y., Bates, A., Blake, R., Boutin, C., Bugter, R., Connop, S., Cruz, L., Cunningham, S., Darvill, B., Diekötter, T., Dorn, S., Downing, N., Entling, M., Farwig, N., Felicioli, A., … Purvis, A. (2016). Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 6(1), 1-14. https://doi.org/10.1038/srep31153 D’Ercole, J., Dincă, V., Opler, P. A., Kondla, N., Schmidt, C., Phillips, J. D., Robbins, R., Burns, J. M., Miller, S. E., Grishin, N., Zakharov, E. V., DeWaard, J. R., Ratnasingham, S. & Hebert, P. D. N. (2021). A DNA barcode library for the butterflies of North America. PeerJ, 9, 1-22. https://doi.org/10.7717/peerj.11157 Dincă, V., Dapporto, L., Somervuo, P., Vodă, R., Cuvelier, S., Gascoigne-Pees, M., Huemer, P., Mutanen, M., Hebert, P. D. N. & Vila, R. (2021). High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Communications Biology, 4(1), 1-11. https://doi.org/10.1038/s42003-021-01834-7 Dirnböck, T., Essl, F. & Rabitsch, W. (2011). Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biology, 17(2), 990-996. https://doi.org/10.1111/j.1365-2486.2010.02266.x Echeverría, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L., Lysenko, I., Arbeláez, E., Armbrecht, I., Boekhout, T., Cabra, J., Dominguez, Y., Nates, G., Gutiérrez, D. L., Higuera, D., Isaacs, P. J., López, C. A., Martinez, E., Miranda, D., Navarro, L. E., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099-1111. https://doi.org/10.1111/ddi.12478 Fagua, G. (1996). Butterfly community and arthropods associated with three types of vegetation in the Serrania de Taraira (Vaupes, Colombia). A test on the use of butterflies as bioindicators. Revista Colombiana de Entomología, 22(3), 143-151. Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C. & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825. https://doi.org/10.1111/jbi.13607 Forero-Gómez, Y. K., Gil-Leguizamón, P. A. & Morales-Puentes, M. E. (2020). Structural connectivity between the Páramos of Guacheneque and Los Cristales, Rabanal-Río Bogotá complex, Colombia. Revista de Teledetección, 57, 65-77. https://doi.org/10.4995/raet.2020.13946 Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610-2618. https://doi.org/10.1111/mec.13139 Freitas, B. M., Imperatriz-Fonseca, V. L., Medina, L. M., Kleinert, A. M. P., Galetto, L., Nates-Parra, G. & Quezada-Euán, J. J. G. (2009). Diversity, threats and conservation of native bees in the Neotropics. Apidologie, 40(3), 332-346. https://doi.org/10.1051/apido/2009012 Gil-Leguizamón, P. A., Morales-Puentes, M. E. & Carrillo-Fajardo, M. Y. (2021). Species richness of the vascular plants of the Bijagual high Andean forest, Colombia. Acta Botanica Mexicana, 128, 1-31. Gil-Leguizamón, P. A., Morales-Puentes, M. E. & Jácome, J. (2020). Structure of the high Andean forest and paramo in the Bijagual Massif, Boyacá, Colombia. Revista de Biología Tropical, 68(3), 765-776. https://doi.org/10.15517/rbt.v68i3.34912 Gonzalez, S. J., García, M. R., Maldonado, J., Jimenez, L., Sánchez, A., Wilbert, T., Castro, S. L., Vargas, J. H., Quintanilla, S. R., Monsalve, H. & Escobar, C. J. (2017). Genetic Characterization of Jaguars (Panthera onca) in Captivity in Zoological Parks of Colombia. En Big Cats (Vol. 1). IntechOpen. https://doi.org/10.5772/intechopen.69779 González-Orozco, C. E. (2023). Unveiling evolutionary cradles and museums of flowering plants in a neotropical biodiversity hotspot. Royal Society Open Science, 10(10), 230917. https://doi.org/10.1098/rsos.230917 Gurrutxaga, M. S. V. & Lozano, P. V. (2006). Effects of habitat fragmentation and loss of ecological connectivity within territorial dynamics. Polígonos: Revista de geografía, 16(1), 35-54. Hailay, G. & Getu, E. (2023). Diversity of butterflies across three land use types of Chebera Churchura National Park and its surroundings, Southwestern Ethiopia. Asian Journal of Conservation Biology, 12(1), 10-26. https://doi.org/10.53562/ajcb.73590 Henao-Díaz, F., Arrroyo, S., Cárdenas-Posada, G., Fernández, M., López, J., Martínez, D., Mendoza, J., Mondragón-Botero, A., León, O., Pulido-Herrera, K. L., Rodríguez-Cerón, N. & Madriñán, S. (2019). Biotic characterization of the forest-paramo transition zone in Chingaza Páramo Complex, Colombia. Biota Colombiana, 20(1), 132-145. https://doi.org/10.21068/C2019.V20N01A10 Jiménez, A. E. V. & González, A. V. V. (2017). Agroecological guidelines for the development of agro ecotourism in paramos. Turismo y Sociedad, 21, 253-273. https://doi.org/10.18601/01207555.n21.12 Kim, M. J., Chu, M., Park, J. S., Kim, S. S. & Kim, I. (2021). Complete mitochondrial genome of the summer heath fritillary butterfly, Mellicta ambigua (Lepidoptera: Nymphalidae). Mitochondrial DNA Part B, 6(5), 1603-1605. https://doi.org/10.1080/23802359.2021.1917318 Kim, M. J., Wang, A. R., Park, J. S. & Kim, I. (2014). Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene, 549(1), 97-112. https://doi.org/10.1016/j.gene.2014.07.052 Labadessa, R., Cagnetta, G., Desaphy, J. F., Bonifacino, M., Dodaro, G., Festa, D., Monterastelli, E., Papa, V., Zollo, L., Festa, E. & Dapporto, L. (2021). Using occurrence data to evaluate extinction reveals a strong resilience of butterflies in a National Park of Southern Europe (Alta Murgia National Park). Journal of Insect Biodiversity, 28(1), 1-12. https://doi.org/10.12976/jib/2021.28.1.1 Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695-1701. https://doi.org/10.1093/molbev/mss020 Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. (2017). New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772-773. https://doi.org/10.1093/molbev/msw260 Leinster, T. & Cobbold, C. A. (2012). Measuring diversity: the importance of species similarity. Ecology, 93(3), 477-489. https://doi.org/10.1890/10-2402.1 Lemes, R., Carvalho, A. P. S. & Ribeiro, T. C. (2015). Butterflies from urban green areas in Santa Maria, southern Brazil (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 43(169), 95-111. Limeira, D. M., Santos, M. H., Mateus, R. P., Almeida, M. C. & Artoni, R. F. (2019). Genetic variability in a population of Astyanax scabripinnis: recent bottleneck and the possible influence of individuals with B chromosomes. Acta scientiarum. Biological sciences, 41(1), 1-11. Liu, G., Chang, Z., Chen, L., He, J., Dong, Z., Yang, J., Lu, S., Zhao, R., Wan, W., Ma, G., Li, J., Zhang, R., Wang, W. & Li, X. (2020). Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Systematic Entomology, 45(3), 571-582. https://doi.org/10.1111/syen.12417 Mahecha-Jiménez, O., Dumar-Rodríguez, J. C. & Pyrcz, T. W. (2011). Effect of fragmentation of habitat on the community of Lepidoptera of the Pronophilini tribe along of an altitudinal gradient in an Andean forest in Bogota (Colombia) (Lepidoptera: Nymphalidae, Satyrinae). SHILAP Revista de Lepidopterología, 39(153), 117-126. Mahecha-Jiménez, O., Triviño, P., Andrade, M. G. C. & Pyrcz, T. W. (2021). Two new species of Manerebia Staudinger from paramo habitat in the Colombian Eastern Cordillera of the Andes (Lepidoptera: Nymphalidae, Satyrinae, Pronophilina). Zootaxa, 4970(2), 293-302. https://doi.org/10.11646/zootaxa.4970.2.3 Mandeville, C. P., Nilsen, E. B., Herfindal, I. & Finstad, A. G. (2023). Participatory monitoring drives biodiversity knowledge in global protected areas. Communications Earth & Environment, 4(1), 1-10. https://doi.org/10.1038/s43247-023-00906-2 Marín, M. A., López, A., Freitas, A. V. L. & Uribe, S. I. (2009). Molecular characterization of Euptychiina (Lepidoptera: Satyrinae) from the northern Central Cordillera of the Andes. Revista Colombiana de Entomología, 35(2), 235-244. https://doi.org/10.25100/socolen.v35i2.9225 Martínez, M. A., Morillo, A. C. & Reyes-Ardila, W. (2020). Characterization of the genetic diversity in Passiflora spp. in the Boyacá Department, Colombia. Chilean journal of agricultural research, 80(3), 342-351. https://doi.org/10.4067/S0718-58392020000300342 Melo, D. H. A., Duarte, M., Mielke, O. H. H., Robbins, R. K. & Freitas, A. V. L. (2019). Butterflies (Lepidoptera: Papilionoidea) of an urban park in northeastern Brazil. Biota Neotropica, 19(1), 1-10. https://doi.org/10.1590/1676-0611-bn-2018-0614 Méndez-Polo, O. L. (2019). Emerging interests in high mountain areas and peasant life: tensions and contradictions of the delimitation of paramos in Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(2), 322-339. https://doi.org/10.15446/rcdg.v28n2.70549 Möhlenhoff, P., Müller, L., Gorbushina, A. A. & Petersen, K. (2001). Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiology Letters, 195(2), 169-173. https://doi.org/10.1111/j.1574-6968.2001.tb10516.x Montejo-Kovacevich, G., Marsh, C. J., Smith, S. H., Peres, C. A. & Edwards, D. P. (2022). Riparian reserves protect butterfly communities in selectively logged tropical forest. Journal of Applied Ecology, 59(6), 1524-1535. https://doi.org/10.1111/1365-2664.14162 Muñoz-Pérez, J. M., Cañas, G. P., López, L. & Arias, T. (2022). Genome-wide diversity analysis to infer population structure and linkage disequilibrium among Colombian coconut germplasm. Scientific Reports, 12(1), 2958. https://doi.org/10.1038/s41598-022-07013-w Muñoz-Valencia, V., Vélez-Martínez, G. A., Montoya-Lerma, J. & Díaz, F. (2021). Role of the Andean uplift as an asymmetrical barrier to gene flow in the neotropical leaf-cutting ant Atta cephalotes. Biotropica, 54, 191-204. https://doi.org/10.1111/btp.13050 Nates-Parra, G., Palacios, E. & Parra, A. H. (2008). Effect of landscape change on the structure of the sting-less bee community (Hymenoptera: Apidae) in Meta, Colombia. Revista de Biología Tropical, 56(3), 1295-1308. https://doi.org/10.15517/rbt.v56i3.5711 Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324 Noriega, J., Hortal, J., Azcárate, F., Berg, M. P., Bonada, N., Briones, M. J., Del Toro, I., Goulson, D., Ibanez, S., Landis, D. A., Moretti, M., Potts, S. G., Slade, E., Stout, J., Ulyshen, M., Wackers, F., Woodcock, B. A. & Santos, A. (2018). Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26(1), 8-23. https://doi.org/10.1016/j.baae.2017.09.006 Ocampo, J., Acosta-Barón, N. & Hernández-Fernández, J. (2017). Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agronomía Colombiana, 35(2), 135-149. https://doi.org/10.15446/agron.colomb.v35n2.59973 Olaya-Angarita, J. A., Díaz-Pérez, C. N. & Morales-Puentes, M. E. (2019). Composition and structure of the forest-páramo transition in the Guantiva-La Rusia corridor (Colombia). Revista de Biología Tropical, 67(4), 755-768. https://doi.org/10.15517/rbt.v67i4.31965 Papasotiropoulos, V., Tsiamis, G., Papasotiropoulos, C., Loannidis, P., Klossa-Hilia, E., Papasotiropoulos, A., Bourtzis, K. & Kilias, G. (2013). A molecular phylogenetic study of aphids (Hemiptera: Aphididae) based on mitochondrial DNA sequence analysis. Journal of Biological Research-Thessaloniki, 20(1), 1-13. Pardo-Pérez, E., Florez-Martínez, D. & Begambre-Hernández, M. (2024). Genetic analysis of the domestic pigeon (Columba livia) through feather colour-associated markers in Montería, Córdoba, Colombia. Veterinarska Stanica, 55(4), 397-407. https://doi.org/10.46419/vs.55.4.4 Parra-Romero, A. & Estupiñán, C. C. C. (2023). Do we inhabit the same mountain? Towards ontological openings in páramo conservation. Ambiente & Sociedade, 26, e01331. https://doi.org/10.1590/1809-4422asoc20210133r1vu2023L1OA Peluso, L. M., Mateus, L., Penha, J., Súarez, Y. & Lemes, P. (2023). Climate change may reduce suitable habitat for freshwater fish in a tropical watershed. Climatic Change, 176(4), 44-55. https://doi.org/10.1007/s10584-023-03526-z Pérez, J. H., Carneiro, E., Gaviria-Ortiz, F. G., Casagrande, M. M. & Mielke, O. H. H. (2019). Urban landscape influences the composition of butterflies in public parks and fragments in Southern Brazil. Community Ecology, 20(3), 291-300. https://doi.org/10.1556/168.2019.20.3.9 Pérez, J. H., Rocha-Gil, Z. E., Cifuentes-Osorio, G. R., Pérez-Rubiano, C. C. & Parrales-Ramírez, D. A. (2023). Physicochemical and biological structure as indicators of the environmental quality of surface water streams. Boletín Científico Centro de Museos Museo de Historia Natural, 27(1), 55-70. https://doi.org/10.17151/bccm.2023.27.1.3 Pérez, J. H., Rocha-Gil, Z. E., Pérez-Rubiano, C. C., Parrales-Ramírez, D. A. & Angulo-Flórez, D. H. (2024). Evolution of water quality in a water system in northern Boyacá using the BMWP/Col index. Boletin Cientifico del Centro de Museos, 28(1), 139-151. Scopus. https://doi.org/10.17151/bccm.2024.28.1.8 Pérez, J. H., Sánchez, R. E. & Salcedo, D. J. (2017). Diversity of butterflies present in the Police School Rafael Reyes of Santa Rosa of Viterbo, Boyacá, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 45(178), 343-352. Prado, S., Ngo, H. T., Florez, J. A. & Collazo, J. A. (2017). Sampling bees in tropical forests and agroecosystems: a review. Journal of Insect Conservation, 21(5-6), 753-770. https://doi.org/10.1007/s10841-017-0018-8 Pyrcz, T. W., Clavijo, A., Uribe, S., Marín, M. A., Álvarez, C. F. & Zubek, A. (2016). Páramo de Belmira as an important centre of endemism in the northern Colombian Andes: New evidence from Pronophilina butterflies (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Zootaxa, 4179(1), 77-102. https://doi.org/10.11646/zootaxa.4179.1.3 Pyrcz, T. W. & Garlacz, R. (2012). The Presence–Absence Situation and Its Impact on the Assemblage Structure and Interspecific Relations of Pronophilina Butterflies in the Venezuelan Andes (Lepidoptera: Nymphalidae). Neotropical Entomology, 41(3), 186-195. https://doi.org/10.1007/s13744-012-0031-2 Quiceno-Urbina, N. J., Tangarife-Marín, G. M. & Álvarez-León, R. (2016). Estimated biomass content, carbon sequestration and environmental services, in a forest area in the shelter primary indian Piapoco Chigüiro-Chátare, Barrancominas, Guainia Department (Colombia). Luna Azul, 43(1), 171-202. https://doi.org/10.17151/luaz.2016.43.9 Ramírez-Restrepo, L., Chacón-Ulloa, P. & Constantino, L. M. (2007). Diversity of diurnal butterflies (Lepidoptera: Papilionoidea and Hesperioidea) in Santiago de Cali, Valle del Cauca , Colombia. Revista Colombiana de Entomología, 33(1), 54-63. Ramírez-Restrepo, L. & Halffter, G. (2013). Butterfly diversity in a regional urbanization mosaic in two Mexican cities. Landscape and Urban Planning, 115(1), 39-48. https://doi.org/10.1016/j.landurbplan.2013.03.005 Rangel-Acosta, J. L. & Martínez-Hernández, N. J. (2017). Comparison of copro-necrophagous beetle assemblages (Scarabaeidae: Scarabaeinae) among tropical dry forest fragments and the adjacent matrix in the Atlántico Department of Colombia. Revista Mexicana de Biodiversidad, 88(2), 389-401. https://doi.org/10.1016/j.rmb.2017.03.012 Ribeiro, D. B., Batista, R., Prado, P. I., Brown, K. S. & Freitas, A. V. L. (2012). The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation, 21(3), 811-827. https://doi.org/10.1007/s10531-011-0222-x Rodríguez, D., Reyes, A., Gallegos-Sánchez, S., Reyes-Amaya, N., Gutierrez, J., Suárez, R. & Prieto, F. (2019). Northernmost distribution of the Andean bear (Tremarctos ornatus) in South America, and fragmentation of its associated Andean forest and Paramo ecosystems. THERYA, 10(2), 161-161. Rushayati, S. B., Ginoga, L. N., Wijayanto, A. K., Zulhidayat, H. & Suryani, R. (2024). Environmental services potency of butterfly biodiversity as an ecotourism object in DKI Jakarta Province. IOP Conference Series: Earth and Environmental Science, 1366(1),012028. https://doi.org/10.1088/1755-1315/1366/1/012028 Saavedra-Ramírez, K. A., Etter, A. & Ramírez, A. (2018). Tropical ash (Fraxinus udhei) invading Andean forest remnants in Northern South America. Ecological Processes, 7(1), 16. https://doi.org/10.1186/s13717-018-0131-y Sanín, M. J., Cardona, A., Céspedes Arias, L. N., González-Arango, C., Pardo, N. & Cadena, C. D. (2024). Volcanoes, evolving landscapes, and biodiversity in Neotropical mountains. Frontiers of Biogeography, 16(1), 1-14. https://doi.org/10.21425/F5FBG61882 Santos, J. P., Marini-filho, O. J., Freitas, A. & Uehara-Prado, M. (2016). Butterfly monitoring: the role of a biological indicator in the management of conservation units. Biodiversidade Brasileira, 6(1), 87-99. Sarmiento, C., Osejo, A., Ungar, P. & Zapata, J. (2017). Inhabited moors: challenges for environmental governance of high mountains in Colombia. Biodiversidad en la Práctica, 2(1), 122-145. Schaefer, H. & Renner, S. S. (2008). A phylogeny of the oil bee tribe Ctenoplectrini (Hymenoptera: Anthophila) based on mitochondrial and nuclear data: evidence for early Eocene divergence and repeated out-of-Africa dispersal. Molecular Phylogenetics and Evolution, 47(2), 799-811. https://doi.org/10.1016/j.ympev.2008.01.030 Sheffield, C. S., Hebert, P. D. N., Kevan, P. G. & Packer, L. (2009). DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 9(1), 196-207. https://doi.org/10.1111/j.1755-0998.2009.02645.x Shi, Q. H., Sun, X. Y., Wang, Y. L., Hao, J. S. & Yang, Q. (2015). Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae). PloS One, 10(4), 1-19. https://doi.org/10.1371/journal.pone.0124349 Smith, M. A., Bertrand, C., Crosby, K. & Eveleigh, E. S. (2012). Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLOS ONE, 7(5), 1-12. https://doi.org/10.1371/journal.pone.0036514 Smith, M. A., Fernandez-Triana, J., Roughley, R. & Hebert, D. N. (2009). DNA barcode accumulation curves for understudied taxa and areas. Molecular Ecology Resources, 9(1), 208-216. https://doi.org/10.1111/j.1755-0998.2009.02646.x Sun, Y., Chen, C., Geng, X. & Li, J. (2021). Complete mitochondrial genome of Lasiommata deidamia and its phylogenetic implication to subfamily Satyrinae (Lepidoptera: Nymphalidae). Mitochondrial DNA Part B, 6(10), 2943-2945. https://doi.org/10.1080/23802359.2021.1955029 Tan, D., Parus, A., Dunbar, M., Espeland, M. & Willmott, K. R. (2021). Cytochrome c oxidase subunit I barcode species delineation methods imply critically underestimated diversity in ‘common’ Hermeuptychia butterflies (Lepidoptera: Nymphalidae: Satyrinae). Zoological Journal of the Linnean Society, 193(4), 1256-1270. https://doi.org/10.1093/zoolinnean/zlab007 Timmermans, M. J. T. N., Lees, D. C. & Simonsen, T. J. (2014). Towards a mitogenomic phylogeny of Lepidoptera. Molecular Phylogenetics and Evolution, 79(1), 169-178. https://doi.org/10.1016/j.ympev.2014.05.031 Traut, W., Sahara, K. & Ffrench-Constant, R. H. (2023). Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (Bethesda, Md.), 13(8), jkad134. https://doi.org/10.1093/g3journal/jkad134 Vasseur, L. & Andrade, A. (2024). Using the Red List of Ecosystems and the Nature-based Solutions Global Standard as an integrated process for climate change adaptation in the Andean high mountains. Philosophical Transactions of the Royal Society B: Biological Sciences, 379(1903), 1-8. https://doi.org/10.1098/rstb.2022.0326 Vergara-Buitrago, P. A., Morales-Puentes, M. E., Useche-Vega, D. S. & Gil-Leguizamón, P. A. (2018). Meetings for recognition and environmental learning with the farming community of the Rabanal moorland (Boyacá, Colombia). Revista geográfica venezolana, 59(2), 398-410. Virgilio, M., Backeljau, T., Nevado, B. & De Meyer, M. (2010). Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics, 11(1), 206-222. https://doi.org/10.1186/1471-2105-11-206 Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63(10), 3741-3751. Woodcock, B. A., Edwards, M., Redhead, J., Meek, W. R., Nuttall, P., Falk, S., Nowakowski, M. & Pywell, R. F. (2013). Crop flower visitation by honeybees, bumblebees and solitary bees: Behavioural differences and diversity responses to landscape. Agriculture, Ecosystems & Environment, 171(1), 1-8. https://doi.org/10.1016/j.agee.2013.03.005 Zhang, A. B., He, L. J., Crozier, R. H., Muster, C. & Zhu, C.-D. (2010). Estimating sample sizes for DNA barcoding. Molecular Phylogenetics and Evolution, 54(3), 1035-1039. https://doi.org/10.1016/j.ympev.2009.09.014 Núm. 1 , Año 2025 : Enero-Junio https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/10819/7979 |
| dc.rights.none.fl_str_mv |
Boletín Científico Centro de Museos Museo de Historia Natural - 2025 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Boletín Científico Centro de Museos Museo de Historia Natural - 2025 https://creativecommons.org/licenses/by/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Boletín Científico |
| publisher.none.fl_str_mv |
Boletín Científico |
| dc.source.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/10819 |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532620775948288 |
| spelling |
Diversidad genética de mariposas y sus perspectivas como información clave para la definición de estrategias de conservación en los ecosistemas de alta montaña de ColombiaGenetic diversity of butterflies and its perspectives as key information for defining conservation strategies in the high-mountain ecosystems of Colombiaanálisis genéticobiodiversidadconservaciónmariposas diurnasPapilionoideaGenetic analysisbiodiversityconservationdiurnal butterfliesPapilionoideaColombia se destaca como uno de los países con mayor diversidad biológica del mundo; sin embargo, esta riqueza natural se encuentra amenazada debido a la transformación continua de sus ecosistemas, impulsada en gran medida por actividades antrópicas. Entre los biomas prioritarios para la conservación en el país se encuentran los ecosistemas de alta montaña, conocidos como páramos. Estos ambientes albergan altos niveles de endemismo y diversidad beta, además de cumplir un papel crítico en la captura, regulación y provisión del recurso hídrico. Los parámetros poblacionales derivados de análisis genéticos se han convertido en una herramienta fundamental para caracterizar la estructura, variabilidad y conectividad de las poblaciones naturales. Insectos como las mariposas se han utilizado como referencia del estado de un ecosistema, ya que sus parámetros poblacionales pueden extrapolarse al resto de la biota del lugar. Esta información resulta clave para identificar áreas prioritarias de conservación y diseñar estrategias efectivas de manejo. En este contexto, las mariposas diurnas emergen como valiosos bioindicadores: su respuesta frente a los cambios ambientales y su diversidad genética permiten realizar inferencias sobre la salud y resiliencia de los ecosistemas de páramo. Este artículo presenta perspectivas clave sobre la relevancia de la diversidad genética como insumo útil en la definición de estrategias de conservación en los páramos colombianos. A través del análisis genético de especies focales de mariposas, se busca fortalecer la toma de decisiones, priorizar poblaciones vulnerables, apoyar programas de suplementación, orientar esfuerzos de migración asistida y, en última instancia, contribuir a la formulación de políticas de conservación a largo plazo.Colombia stands out as one of the most biologically diverse countries in the world. However, this natural wealth is threatened due to the continuous transformation of its ecosystems, driven largely by human activities. High-mountain ecosystems, known as “paramos”, are among the priority biomes for conservation in the country. These environments harbor high levels of endemism and beta diversity and play a critical role in the capture, regulation, and provision of water resources. Population parameters derived from genetic analysis have become a fundamental tool for characterizing the structure, variability, and connectivity of natural populations. Insects such as butterflies have been used as a reference for the state of an ecosystem since butterfly population parameters can be extrapolated to the rest of the local biota. This information is key for identifying priority conservation areas and designing effective management strategies. In this context, diurnal butterflies emerge as valuable bioindicators: their response to environmental changes and genetic diversity allows inferences about the health and resilience of paramo ecosystems. This article presents key perspectives on the relevance of genetic diversity as a useful input in defining conservation strategies in Colombian “paramos”. By applying genetic analysis to focal butterfly species, the aim is to strengthen decision-making, prioritize vulnerable populations, support supplementation programs, guide assisted migration efforts, and ultimately contribute to the formulation of long-term conservation policies.Boletín Científico2025-01-01T00:00:00Z2025-10-08T21:06:55Z2025-01-01T00:00:00Z2025-10-08T21:06:55Z2025-01-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf0123-3068https://repositorio.ucaldas.edu.co/handle/ucaldas/2353210.17151/bccm.2025.29.1.72462-8190https://doi.org/10.17151/bccm.2025.29.1.7https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/10819eng179116129Boletín Científico Centro de Museos Museo de Historia NaturalAdams, M. J. (1986). Pronophiline butterflies (Satyridae) of the three Andean Cordilleras of Colombia. Zoological Journal of the Linnean Society, 87(3), 235-320. https://doi.org/10.1111/j.1096-3642.1986.tb01338.xAdams, M. J. & Bernard, G. I. (1997). Pronophiline butterflies (Satyridae) of the Sierra Nevada de Santa Marta, Colombia. Systematic Entomology, 2(4), 263-281. https://doi.org/10.1111/j.1365-3113.1977.tb00376.xAhola, V., Lehtonen, R., Somervuo, P., Salmela, L., Koskinen, P., Rastas, P., Välimäki, N., Paulin, L., Kvist, J., Wahlberg, N., Tanskanen, J., Hornett, E. A., Ferguson, L. C., Luo, S., Cao, Z., de Jong, M. A., Duplouy, A., Smolander, O.-P., Vogel, H., … Hanski, I. (2014). The glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in lepidoptera. Nature Communications, 5(1), 4737. https://doi.org/10.1038/ncomms5737Albright, E. A. & Crow, D. (2019). Beliefs about climate change in the aftermath of extreme flooding. Climatic Change, 155(1), 1-17. https://doi.org/10.1007/s10584-019-02461-2Altamiranda-Saavedra, M., Naranjo-Díaz, N., Conn, J. E. & Correa, M. M. (2023). Entomological parameters and population structure at a microgeographic scale of the main Colombian malaria vectors Anopheles albimanus and Anopheles nuneztovari.PLOS ONE, 18(1), e0280066. https://doi.org/10.1371/journal.pone.0280066Álvarez-Hincapié, C. F., Clavijo, A., Rojas, H., Uribe, S., Pyrcz, T. W. & Marín, M. A. (2017). Contribution of the influence area of the Páramo de Belmira (Santa Inés) to the regional diversity of Pronophilina (Lepidoptera: Satyrinae) of the northern Andes. Revista Mexicana de Biodiversidad, 88(2), 402-409. https://doi.org/10.1016/j.rmb.2017.03.007Arellano, H. P. & Rangel, J. O. CH. (2008). Patterns in the distribution of vegetation in paramo areas: heterogeneity and spacial dependence. Caldasia, 30(2), 355-411.Armenteras, D., Gast, F. & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245-256. https://doi.org/10.1016/S0006-3207(02)00359-2Avellaneda-Torres, L. M., Rojas, E. T. & Sicard, T. E. L. (2015). Alternatives to the conflict between environmental authorities and communities of protected areas in Colombian Páramos. Mundo Agrario, 16(31), 19-31.Azrizal-Wahid, N., Rizman-Idid, M. & Sofian-Azirun, M. (2021). Phylogenetic relationships of Eurema butterflies from Peninsular Malaysia inferred from CO1 and 28S gene sequences with emphasis on Eurema hecabe. Raffles Bulletin of Zoology, 69, 262-271. https://doi.org/10.26107/RBZ-2021-0021Balvanera, P. (2012). Ecosystem services supplied by tropical forests. Ecosistemas, 21(1-2), 136-147.Bell, E. V., Fencl, A. & Mullin, M. (2022). External drivers of participation in regional collaborative water planning. Policy Studies Journal, 50(4), 945-969. https://doi.org/10.1111/psj.12473Benavides-Martínez, I. F., Burbano-Martínez, D. L., Urbano-Apráez, S. M. & Solarte-Cruz, M. E. (2007). The effect of the altitudinal gradient on autoecological features of Espeletia pycnophylla ssp. Angelensis cuatrec. (Asteraceae) in the paramo ‘El Infiernillo’ (Nariño–Colombia). Actual Biol, 29(86), 41-53.Berteaux, D., Ricard, M., St-Laurent, M.-H., Casajus, N., Périé, C., Beauregard, F. & de Blois, S. (2018). Northern protected areas will become important refuges for biodiversity tracking suitable climates. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23050-wBrown, B. V., Borkent, A., Adler, P. H., Amorim, D. S., Barber, K., Bickel, D., Boucher, S., Brooks, S. E., Burger, J., Burington, Z. L., Capellari, R. S., Costa, D. N. R., Cumming, J. M., Curler, G., Dick, C. W., Epler, J. H., Fisher, E., Gaimari, S. D., Gelhaus, J., … Zumbado, M. A. (2018). Comprehensive inventory of true flies (Diptera) at a tropical site. Communications Biology, 1(21), 1-21. https://doi.org/10.1038/s42003-018-0022-xCadena, C. D., Klicka, J. & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993-1016. https://doi.org/10.1016/j.ympev.2006.12.012Cameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59(1), 95-117. https://doi.org/10.1146/annurev-ento-011613-162007Campbell, E. O., MacDonald, Z. G., Gage, E. V., Gage, R. V. & Sperling, F. A. H. (2022). Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Molecular Ecology, 31(8), 2400-2417. https://doi.org/10.1111/mec.16407Casas-Pinilla, L. C., Mahecha-Jiménez, O., Dumar-Rodríguez, J. C. & Ríos-Málaver, I. C. (2017). Diversity of butterflies in a dry tropical forest landscape in la Mesa de los Santos, Santander, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 45(177), 83-108.Cepeda-Duque, J. C., Arango-Correa, E., Frimodt-Møller, C. & Lizcano, D. J. (2024). Howling shadows: First report of domestic dog attacks on globally threatened mountain tapirs in high Andean cloud forests of Colombia. Neotropical Biology and Conservation, 19(1), 25-33. https://doi.org/10.3897/neotropical.19.e117437Chang, H., Liu, Q., Hao, D., Liu, Y., An, Y., Qian, L. & Yang, X. (2014). DNA barcodes and molecular diagnostics for distinguishing introduced Xyleborus (Coleoptera: Scolytinae) species in China. Mitochondrial DNA, 25(1), 63-69. https://doi.org/10.3109/19401736.2013.779260Cognato, A. I. & Sperling, F. A. H. (2000). Phylogeny of Ips DeGeer Species (Coleoptera: Scolytidae) Inferred from Mitochondrial Cytochrome Oxidase I DNA Sequence. Molecular Phylogenetics and Evolution, 14(3), 445-460. https://doi.org/10.1006/mpev.1999.0705Correa-Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez-Buriticá, S., Ramírez, W. & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630Crone, E. E. & Schultz, C. B. (2022). Host plant limitation of butterflies in highly fragmented landscapes. Theoretical Ecology, 15(3), 165-175. https://doi.org/10.1007/s12080-021-00527-5Dan, Z., Duan, L., Chen, Z., Guan, D. & Xu, S. (2021). Mitogenomes of three satyrid butterfly species (Nymphalidae: Lepidoptera) and reconstructed phylogeny of satyrinae. Diversity, 13(10), 1-18. https://doi.org/10.3390/d13100468De Palma, A., Abrahamczyk, S., Aizen, M., Albrecht, M., Basset, Y., Bates, A., Blake, R., Boutin, C., Bugter, R., Connop, S., Cruz, L., Cunningham, S., Darvill, B., Diekötter, T., Dorn, S., Downing, N., Entling, M., Farwig, N., Felicioli, A., … Purvis, A. (2016). Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 6(1), 1-14. https://doi.org/10.1038/srep31153D’Ercole, J., Dincă, V., Opler, P. A., Kondla, N., Schmidt, C., Phillips, J. D., Robbins, R., Burns, J. M., Miller, S. E., Grishin, N., Zakharov, E. V., DeWaard, J. R., Ratnasingham, S. & Hebert, P. D. N. (2021). A DNA barcode library for the butterflies of North America. PeerJ, 9, 1-22. https://doi.org/10.7717/peerj.11157Dincă, V., Dapporto, L., Somervuo, P., Vodă, R., Cuvelier, S., Gascoigne-Pees, M., Huemer, P., Mutanen, M., Hebert, P. D. N. & Vila, R. (2021). High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Communications Biology, 4(1), 1-11. https://doi.org/10.1038/s42003-021-01834-7Dirnböck, T., Essl, F. & Rabitsch, W. (2011). Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biology, 17(2), 990-996. https://doi.org/10.1111/j.1365-2486.2010.02266.xEcheverría, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L., Lysenko, I., Arbeláez, E., Armbrecht, I., Boekhout, T., Cabra, J., Dominguez, Y., Nates, G., Gutiérrez, D. L., Higuera, D., Isaacs, P. J., López, C. A., Martinez, E., Miranda, D., Navarro, L. E., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099-1111. https://doi.org/10.1111/ddi.12478Fagua, G. (1996). Butterfly community and arthropods associated with three types of vegetation in the Serrania de Taraira (Vaupes, Colombia). A test on the use of butterflies as bioindicators. Revista Colombiana de Entomología, 22(3), 143-151.Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C. & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825. https://doi.org/10.1111/jbi.13607Forero-Gómez, Y. K., Gil-Leguizamón, P. A. & Morales-Puentes, M. E. (2020). Structural connectivity between the Páramos of Guacheneque and Los Cristales, Rabanal-Río Bogotá complex, Colombia. Revista de Teledetección, 57, 65-77. https://doi.org/10.4995/raet.2020.13946Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610-2618. https://doi.org/10.1111/mec.13139Freitas, B. M., Imperatriz-Fonseca, V. L., Medina, L. M., Kleinert, A. M. P., Galetto, L., Nates-Parra, G. & Quezada-Euán, J. J. G. (2009). Diversity, threats and conservation of native bees in the Neotropics. Apidologie, 40(3), 332-346. https://doi.org/10.1051/apido/2009012Gil-Leguizamón, P. A., Morales-Puentes, M. E. & Carrillo-Fajardo, M. Y. (2021). Species richness of the vascular plants of the Bijagual high Andean forest, Colombia. Acta Botanica Mexicana, 128, 1-31.Gil-Leguizamón, P. A., Morales-Puentes, M. E. & Jácome, J. (2020). Structure of the high Andean forest and paramo in the Bijagual Massif, Boyacá, Colombia. Revista de Biología Tropical, 68(3), 765-776. https://doi.org/10.15517/rbt.v68i3.34912Gonzalez, S. J., García, M. R., Maldonado, J., Jimenez, L., Sánchez, A., Wilbert, T., Castro, S. L., Vargas, J. H., Quintanilla, S. R., Monsalve, H. & Escobar, C. J. (2017). Genetic Characterization of Jaguars (Panthera onca) in Captivity in Zoological Parks of Colombia. En Big Cats (Vol. 1). IntechOpen. https://doi.org/10.5772/intechopen.69779González-Orozco, C. E. (2023). Unveiling evolutionary cradles and museums of flowering plants in a neotropical biodiversity hotspot. Royal Society Open Science, 10(10), 230917. https://doi.org/10.1098/rsos.230917Gurrutxaga, M. S. V. & Lozano, P. V. (2006). Effects of habitat fragmentation and loss of ecological connectivity within territorial dynamics. Polígonos: Revista de geografía, 16(1), 35-54.Hailay, G. & Getu, E. (2023). Diversity of butterflies across three land use types of Chebera Churchura National Park and its surroundings, Southwestern Ethiopia. Asian Journal of Conservation Biology, 12(1), 10-26. https://doi.org/10.53562/ajcb.73590Henao-Díaz, F., Arrroyo, S., Cárdenas-Posada, G., Fernández, M., López, J., Martínez, D., Mendoza, J., Mondragón-Botero, A., León, O., Pulido-Herrera, K. L., Rodríguez-Cerón, N. & Madriñán, S. (2019). Biotic characterization of the forest-paramo transition zone in Chingaza Páramo Complex, Colombia. Biota Colombiana, 20(1), 132-145. https://doi.org/10.21068/C2019.V20N01A10Jiménez, A. E. V. & González, A. V. V. (2017). Agroecological guidelines for the development of agro ecotourism in paramos. Turismo y Sociedad, 21, 253-273. https://doi.org/10.18601/01207555.n21.12Kim, M. J., Chu, M., Park, J. S., Kim, S. S. & Kim, I. (2021). Complete mitochondrial genome of the summer heath fritillary butterfly, Mellicta ambigua (Lepidoptera: Nymphalidae). Mitochondrial DNA Part B, 6(5), 1603-1605. https://doi.org/10.1080/23802359.2021.1917318Kim, M. J., Wang, A. R., Park, J. S. & Kim, I. (2014). Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene, 549(1), 97-112. https://doi.org/10.1016/j.gene.2014.07.052Labadessa, R., Cagnetta, G., Desaphy, J. F., Bonifacino, M., Dodaro, G., Festa, D., Monterastelli, E., Papa, V., Zollo, L., Festa, E. & Dapporto, L. (2021). Using occurrence data to evaluate extinction reveals a strong resilience of butterflies in a National Park of Southern Europe (Alta Murgia National Park). Journal of Insect Biodiversity, 28(1), 1-12. https://doi.org/10.12976/jib/2021.28.1.1Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695-1701. https://doi.org/10.1093/molbev/mss020Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. (2017). New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772-773. https://doi.org/10.1093/molbev/msw260Leinster, T. & Cobbold, C. A. (2012). Measuring diversity: the importance of species similarity. Ecology, 93(3), 477-489. https://doi.org/10.1890/10-2402.1Lemes, R., Carvalho, A. P. S. & Ribeiro, T. C. (2015). Butterflies from urban green areas in Santa Maria, southern Brazil (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 43(169), 95-111.Limeira, D. M., Santos, M. H., Mateus, R. P., Almeida, M. C. & Artoni, R. F. (2019). Genetic variability in a population of Astyanax scabripinnis: recent bottleneck and the possible influence of individuals with B chromosomes. Acta scientiarum. Biological sciences, 41(1), 1-11.Liu, G., Chang, Z., Chen, L., He, J., Dong, Z., Yang, J., Lu, S., Zhao, R., Wan, W., Ma, G., Li, J., Zhang, R., Wang, W. & Li, X. (2020). Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Systematic Entomology, 45(3), 571-582. https://doi.org/10.1111/syen.12417Mahecha-Jiménez, O., Dumar-Rodríguez, J. C. & Pyrcz, T. W. (2011). Effect of fragmentation of habitat on the community of Lepidoptera of the Pronophilini tribe along of an altitudinal gradient in an Andean forest in Bogota (Colombia) (Lepidoptera: Nymphalidae, Satyrinae). SHILAP Revista de Lepidopterología, 39(153), 117-126.Mahecha-Jiménez, O., Triviño, P., Andrade, M. G. C. & Pyrcz, T. W. (2021). Two new species of Manerebia Staudinger from paramo habitat in the Colombian Eastern Cordillera of the Andes (Lepidoptera: Nymphalidae, Satyrinae, Pronophilina). Zootaxa, 4970(2), 293-302. https://doi.org/10.11646/zootaxa.4970.2.3Mandeville, C. P., Nilsen, E. B., Herfindal, I. & Finstad, A. G. (2023). Participatory monitoring drives biodiversity knowledge in global protected areas. Communications Earth & Environment, 4(1), 1-10. https://doi.org/10.1038/s43247-023-00906-2Marín, M. A., López, A., Freitas, A. V. L. & Uribe, S. I. (2009). Molecular characterization of Euptychiina (Lepidoptera: Satyrinae) from the northern Central Cordillera of the Andes. Revista Colombiana de Entomología, 35(2), 235-244. https://doi.org/10.25100/socolen.v35i2.9225Martínez, M. A., Morillo, A. C. & Reyes-Ardila, W. (2020). Characterization of the genetic diversity in Passiflora spp. in the Boyacá Department, Colombia. Chilean journal of agricultural research, 80(3), 342-351. https://doi.org/10.4067/S0718-58392020000300342Melo, D. H. A., Duarte, M., Mielke, O. H. H., Robbins, R. K. & Freitas, A. V. L. (2019). Butterflies (Lepidoptera: Papilionoidea) of an urban park in northeastern Brazil. Biota Neotropica, 19(1), 1-10. https://doi.org/10.1590/1676-0611-bn-2018-0614Méndez-Polo, O. L. (2019). Emerging interests in high mountain areas and peasant life: tensions and contradictions of the delimitation of paramos in Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(2), 322-339. https://doi.org/10.15446/rcdg.v28n2.70549Möhlenhoff, P., Müller, L., Gorbushina, A. A. & Petersen, K. (2001). Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiology Letters, 195(2), 169-173. https://doi.org/10.1111/j.1574-6968.2001.tb10516.xMontejo-Kovacevich, G., Marsh, C. J., Smith, S. H., Peres, C. A. & Edwards, D. P. (2022). Riparian reserves protect butterfly communities in selectively logged tropical forest. Journal of Applied Ecology, 59(6), 1524-1535. https://doi.org/10.1111/1365-2664.14162Muñoz-Pérez, J. M., Cañas, G. P., López, L. & Arias, T. (2022). Genome-wide diversity analysis to infer population structure and linkage disequilibrium among Colombian coconut germplasm. Scientific Reports, 12(1), 2958. https://doi.org/10.1038/s41598-022-07013-wMuñoz-Valencia, V., Vélez-Martínez, G. A., Montoya-Lerma, J. & Díaz, F. (2021). Role of the Andean uplift as an asymmetrical barrier to gene flow in the neotropical leaf-cutting ant Atta cephalotes. Biotropica, 54, 191-204. https://doi.org/10.1111/btp.13050Nates-Parra, G., Palacios, E. & Parra, A. H. (2008). Effect of landscape change on the structure of the sting-less bee community (Hymenoptera: Apidae) in Meta, Colombia. Revista de Biología Tropical, 56(3), 1295-1308. https://doi.org/10.15517/rbt.v56i3.5711Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324Noriega, J., Hortal, J., Azcárate, F., Berg, M. P., Bonada, N., Briones, M. J., Del Toro, I., Goulson, D., Ibanez, S., Landis, D. A., Moretti, M., Potts, S. G., Slade, E., Stout, J., Ulyshen, M., Wackers, F., Woodcock, B. A. & Santos, A. (2018). Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26(1), 8-23. https://doi.org/10.1016/j.baae.2017.09.006Ocampo, J., Acosta-Barón, N. & Hernández-Fernández, J. (2017). Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agronomía Colombiana, 35(2), 135-149. https://doi.org/10.15446/agron.colomb.v35n2.59973Olaya-Angarita, J. A., Díaz-Pérez, C. N. & Morales-Puentes, M. E. (2019). Composition and structure of the forest-páramo transition in the Guantiva-La Rusia corridor (Colombia). Revista de Biología Tropical, 67(4), 755-768. https://doi.org/10.15517/rbt.v67i4.31965Papasotiropoulos, V., Tsiamis, G., Papasotiropoulos, C., Loannidis, P., Klossa-Hilia, E., Papasotiropoulos, A., Bourtzis, K. & Kilias, G. (2013). A molecular phylogenetic study of aphids (Hemiptera: Aphididae) based on mitochondrial DNA sequence analysis. Journal of Biological Research-Thessaloniki, 20(1), 1-13.Pardo-Pérez, E., Florez-Martínez, D. & Begambre-Hernández, M. (2024). Genetic analysis of the domestic pigeon (Columba livia) through feather colour-associated markers in Montería, Córdoba, Colombia. Veterinarska Stanica, 55(4), 397-407. https://doi.org/10.46419/vs.55.4.4Parra-Romero, A. & Estupiñán, C. C. C. (2023). Do we inhabit the same mountain? Towards ontological openings in páramo conservation. Ambiente & Sociedade, 26, e01331. https://doi.org/10.1590/1809-4422asoc20210133r1vu2023L1OAPeluso, L. M., Mateus, L., Penha, J., Súarez, Y. & Lemes, P. (2023). Climate change may reduce suitable habitat for freshwater fish in a tropical watershed. Climatic Change, 176(4), 44-55. https://doi.org/10.1007/s10584-023-03526-zPérez, J. H., Carneiro, E., Gaviria-Ortiz, F. G., Casagrande, M. M. & Mielke, O. H. H. (2019). Urban landscape influences the composition of butterflies in public parks and fragments in Southern Brazil. Community Ecology, 20(3), 291-300. https://doi.org/10.1556/168.2019.20.3.9Pérez, J. H., Rocha-Gil, Z. E., Cifuentes-Osorio, G. R., Pérez-Rubiano, C. C. & Parrales-Ramírez, D. A. (2023). Physicochemical and biological structure as indicators of the environmental quality of surface water streams. Boletín Científico Centro de Museos Museo de Historia Natural, 27(1), 55-70. https://doi.org/10.17151/bccm.2023.27.1.3Pérez, J. H., Rocha-Gil, Z. E., Pérez-Rubiano, C. C., Parrales-Ramírez, D. A. & Angulo-Flórez, D. H. (2024). Evolution of water quality in a water system in northern Boyacá using the BMWP/Col index. Boletin Cientifico del Centro de Museos, 28(1), 139-151. Scopus. https://doi.org/10.17151/bccm.2024.28.1.8Pérez, J. H., Sánchez, R. E. & Salcedo, D. J. (2017). Diversity of butterflies present in the Police School Rafael Reyes of Santa Rosa of Viterbo, Boyacá, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista de Lepidopterología, 45(178), 343-352.Prado, S., Ngo, H. T., Florez, J. A. & Collazo, J. A. (2017). Sampling bees in tropical forests and agroecosystems: a review. Journal of Insect Conservation, 21(5-6), 753-770. https://doi.org/10.1007/s10841-017-0018-8Pyrcz, T. W., Clavijo, A., Uribe, S., Marín, M. A., Álvarez, C. F. & Zubek, A. (2016). Páramo de Belmira as an important centre of endemism in the northern Colombian Andes: New evidence from Pronophilina butterflies (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Zootaxa, 4179(1), 77-102. https://doi.org/10.11646/zootaxa.4179.1.3Pyrcz, T. W. & Garlacz, R. (2012). The Presence–Absence Situation and Its Impact on the Assemblage Structure and Interspecific Relations of Pronophilina Butterflies in the Venezuelan Andes (Lepidoptera: Nymphalidae). Neotropical Entomology, 41(3), 186-195. https://doi.org/10.1007/s13744-012-0031-2Quiceno-Urbina, N. J., Tangarife-Marín, G. M. & Álvarez-León, R. (2016). Estimated biomass content, carbon sequestration and environmental services, in a forest area in the shelter primary indian Piapoco Chigüiro-Chátare, Barrancominas, Guainia Department (Colombia). Luna Azul, 43(1), 171-202. https://doi.org/10.17151/luaz.2016.43.9Ramírez-Restrepo, L., Chacón-Ulloa, P. & Constantino, L. M. (2007). Diversity of diurnal butterflies (Lepidoptera: Papilionoidea and Hesperioidea) in Santiago de Cali, Valle del Cauca , Colombia. Revista Colombiana de Entomología, 33(1), 54-63.Ramírez-Restrepo, L. & Halffter, G. (2013). Butterfly diversity in a regional urbanization mosaic in two Mexican cities. Landscape and Urban Planning, 115(1), 39-48. https://doi.org/10.1016/j.landurbplan.2013.03.005Rangel-Acosta, J. L. & Martínez-Hernández, N. J. (2017). Comparison of copro-necrophagous beetle assemblages (Scarabaeidae: Scarabaeinae) among tropical dry forest fragments and the adjacent matrix in the Atlántico Department of Colombia. Revista Mexicana de Biodiversidad, 88(2), 389-401. https://doi.org/10.1016/j.rmb.2017.03.012Ribeiro, D. B., Batista, R., Prado, P. I., Brown, K. S. & Freitas, A. V. L. (2012). The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation, 21(3), 811-827. https://doi.org/10.1007/s10531-011-0222-xRodríguez, D., Reyes, A., Gallegos-Sánchez, S., Reyes-Amaya, N., Gutierrez, J., Suárez, R. & Prieto, F. (2019). Northernmost distribution of the Andean bear (Tremarctos ornatus) in South America, and fragmentation of its associated Andean forest and Paramo ecosystems. THERYA, 10(2), 161-161.Rushayati, S. B., Ginoga, L. N., Wijayanto, A. K., Zulhidayat, H. & Suryani, R. (2024). Environmental services potency of butterfly biodiversity as an ecotourism object in DKI Jakarta Province. IOP Conference Series: Earth and Environmental Science, 1366(1),012028. https://doi.org/10.1088/1755-1315/1366/1/012028Saavedra-Ramírez, K. A., Etter, A. & Ramírez, A. (2018). Tropical ash (Fraxinus udhei) invading Andean forest remnants in Northern South America. Ecological Processes, 7(1), 16. https://doi.org/10.1186/s13717-018-0131-ySanín, M. J., Cardona, A., Céspedes Arias, L. N., González-Arango, C., Pardo, N. & Cadena, C. D. (2024). Volcanoes, evolving landscapes, and biodiversity in Neotropical mountains. Frontiers of Biogeography, 16(1), 1-14. https://doi.org/10.21425/F5FBG61882Santos, J. P., Marini-filho, O. J., Freitas, A. & Uehara-Prado, M. (2016). Butterfly monitoring: the role of a biological indicator in the management of conservation units. Biodiversidade Brasileira, 6(1), 87-99.Sarmiento, C., Osejo, A., Ungar, P. & Zapata, J. (2017). Inhabited moors: challenges for environmental governance of high mountains in Colombia. Biodiversidad en la Práctica, 2(1), 122-145.Schaefer, H. & Renner, S. S. (2008). A phylogeny of the oil bee tribe Ctenoplectrini (Hymenoptera: Anthophila) based on mitochondrial and nuclear data: evidence for early Eocene divergence and repeated out-of-Africa dispersal. Molecular Phylogenetics and Evolution, 47(2), 799-811. https://doi.org/10.1016/j.ympev.2008.01.030Sheffield, C. S., Hebert, P. D. N., Kevan, P. G. & Packer, L. (2009). DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 9(1), 196-207. https://doi.org/10.1111/j.1755-0998.2009.02645.xShi, Q. H., Sun, X. Y., Wang, Y. L., Hao, J. S. & Yang, Q. (2015). Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae). PloS One, 10(4), 1-19. https://doi.org/10.1371/journal.pone.0124349Smith, M. A., Bertrand, C., Crosby, K. & Eveleigh, E. S. (2012). Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLOS ONE, 7(5), 1-12. https://doi.org/10.1371/journal.pone.0036514Smith, M. A., Fernandez-Triana, J., Roughley, R. & Hebert, D. N. (2009). DNA barcode accumulation curves for understudied taxa and areas. Molecular Ecology Resources, 9(1), 208-216. https://doi.org/10.1111/j.1755-0998.2009.02646.xSun, Y., Chen, C., Geng, X. & Li, J. (2021). Complete mitochondrial genome of Lasiommata deidamia and its phylogenetic implication to subfamily Satyrinae (Lepidoptera: Nymphalidae). Mitochondrial DNA Part B, 6(10), 2943-2945. https://doi.org/10.1080/23802359.2021.1955029Tan, D., Parus, A., Dunbar, M., Espeland, M. & Willmott, K. R. (2021). Cytochrome c oxidase subunit I barcode species delineation methods imply critically underestimated diversity in ‘common’ Hermeuptychia butterflies (Lepidoptera: Nymphalidae: Satyrinae). Zoological Journal of the Linnean Society, 193(4), 1256-1270. https://doi.org/10.1093/zoolinnean/zlab007Timmermans, M. J. T. N., Lees, D. C. & Simonsen, T. J. (2014). Towards a mitogenomic phylogeny of Lepidoptera. Molecular Phylogenetics and Evolution, 79(1), 169-178. https://doi.org/10.1016/j.ympev.2014.05.031Traut, W., Sahara, K. & Ffrench-Constant, R. H. (2023). Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (Bethesda, Md.), 13(8), jkad134. https://doi.org/10.1093/g3journal/jkad134Vasseur, L. & Andrade, A. (2024). Using the Red List of Ecosystems and the Nature-based Solutions Global Standard as an integrated process for climate change adaptation in the Andean high mountains. Philosophical Transactions of the Royal Society B: Biological Sciences, 379(1903), 1-8. https://doi.org/10.1098/rstb.2022.0326Vergara-Buitrago, P. A., Morales-Puentes, M. E., Useche-Vega, D. S. & Gil-Leguizamón, P. A. (2018). Meetings for recognition and environmental learning with the farming community of the Rabanal moorland (Boyacá, Colombia). Revista geográfica venezolana, 59(2), 398-410.Virgilio, M., Backeljau, T., Nevado, B. & De Meyer, M. (2010). Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics, 11(1), 206-222. https://doi.org/10.1186/1471-2105-11-206Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63(10), 3741-3751.Woodcock, B. A., Edwards, M., Redhead, J., Meek, W. R., Nuttall, P., Falk, S., Nowakowski, M. & Pywell, R. F. (2013). Crop flower visitation by honeybees, bumblebees and solitary bees: Behavioural differences and diversity responses to landscape. Agriculture, Ecosystems & Environment, 171(1), 1-8. https://doi.org/10.1016/j.agee.2013.03.005Zhang, A. B., He, L. J., Crozier, R. H., Muster, C. & Zhu, C.-D. (2010). Estimating sample sizes for DNA barcoding. Molecular Phylogenetics and Evolution, 54(3), 1035-1039. https://doi.org/10.1016/j.ympev.2009.09.014Núm. 1 , Año 2025 : Enero-Juniohttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/10819/7979Boletín Científico Centro de Museos Museo de Historia Natural - 2025https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución 4.0.http://purl.org/coar/access_right/c_abf2Johan Hernán, PérezParrales-Ramírez, Dumar ArielRocha-Gil, Zulma EdelmiraFonseca-Guerra, Ingrid RocioPedraza-Jiménez, YamileFagua, Giovannyoai:repositorio.ucaldas.edu.co:ucaldas/235322025-10-08T21:06:55Z |
