Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra

Ilustraciones, gráficas, fotos

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/19653
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/19653
https://repositorio.ucaldas.edu.co/
Palabra clave:
Efecto Raman
Espectroscopia infraroja
Minerales
Ciencias de la tierra
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUCALDA_5b4b1f52c75e3185edcd9426c05ff8fb
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/19653
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
title Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
spellingShingle Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
Efecto Raman
Espectroscopia infraroja
Minerales
Ciencias de la tierra
title_short Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
title_full Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
title_fullStr Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
title_full_unstemmed Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
title_sort Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierra
dc.contributor.none.fl_str_mv Echeverri, Juan Sebastian
Murcia, Hugo Fernando
-GIEV-(CUMANDAY) Grupo de Investigación en Estratigrafía y Vulcanología (Categoría A1)
dc.subject.none.fl_str_mv Efecto Raman
Espectroscopia infraroja
Minerales
Ciencias de la tierra
topic Efecto Raman
Espectroscopia infraroja
Minerales
Ciencias de la tierra
description Ilustraciones, gráficas, fotos
publishDate 2023
dc.date.none.fl_str_mv 2023-10-13T20:08:22Z
2023-10-13T20:08:22Z
2023-10-13
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/19653
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co/
url https://repositorio.ucaldas.edu.co/handle/ucaldas/19653
https://repositorio.ucaldas.edu.co/
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Audétat, A., & Li, W. (2017). The genesis of Climax-type porphyry Mo deposits: Insights from fluid inclusions and melt inclusions. Ore Geology Reviews, 88, 436–460. https://doi.org/10.1016/j.oregeorev.2017.05.018
Anderson, N. G. (2012). Crystallization and Purification. Practical Process Research and Development (pp. 329–364). Elsevier.
Andrews, D. L. (2017). Rayleigh scattering and Raman effect, theory. Encyclopedia of Spectroscopy and Spectrometry (pp. 924-930). Elsevier.
Arbiol, C., & Layne, G. D. (2021). Raman spectroscopy coupled with reflectance spectroscopy as a tool for the characterization of key hydrothermal alteration minerals in epithermal AuAg systems: Utility and implications for mineral exploration. Applied Spectroscopy, 75(12), 1475–1496. https://doi.org/10.1177/00037028211047869
Bhadeshia, H.K.D.H. Equilibrium Between Solutions. Lecture 2, Lectures of the Course Thermodynamics and Phase Diagrams. Master of Philosophy, Materials Modelling. Materials Science & Metallurgy Department, Cambridge University.
Bertolano, H., & Vettorel, S. (2014). 7504-14 FISICA Ondas Electromagneticas.
Boyd, S., Bertino, M. F., & Seashols, S. J. (2011). Raman spectroscopy of blood samples for forensic applications. Forensic Science International, 208(1-3), 124-128. https://doi.org/10.1016/j.forsciint.2010.11.012
Burke, E. A. J. (2001). Raman microspectrometry of fluid inclusions. Lithos, 55(1), 139-158. https://doi.org/10.1016/S0024-4937(00)00043-8
Buenaventura, J. (2001). Posibilidades metalogénicas auríferas en el territorio colombiano. VIII Congreso Colombiano de Geología. Manizales.
Cantellano, M. A. G., & Zetina, L. M. M. (2015). La espectroscopia y su tecnología: Un repaso histórico y su importancia para el siglo XXI. Latin-American Journal of Physics Education, 9(4), 13. https://dialnet.unirioja.es/servlet/articulo?codigo=5514757
Casadio, F., Daher, C., & Bellot-Gurlet, L. (2017). Raman spectroscopy of cultural heritage materials: Overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. En Topics in Current Chemistry Collections (pp. 161- 211). Springer International Publishing.
Cassini, A., & Levinas, M. L. (2008). La explicación de Einstein del efecto fotoeléctrico: un análisis histórico-epistemológico. Revista latinoamericana de filosofía, 34(1), 5-38. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852- 73532008000100001&lng=es&tlng=es
Castro Dorado, A. (2015). Petrografía de Rocas Ígneas y Metamórficas. Ediciones Paraninfo.
Castro Ramos, J. (2013). Raman spectroscopy and its applications. Optica Pura y Aplicada, 46(1), 83-95. https://doi.org/10.7149/opa.46.1.83
Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2016). Applications of microFourier transform infrared spectroscopy (FTIR) in the geological sciences—A review. International Journal of Molecular Sciences, 16(12), 30223–30250. https://doi.org/10.3390/ijms161226227
Chou, I.-M., & Wang, A. (2017). Application of laser Raman micro-analyses to Earth and planetary materials. Journal of Asian Earth Sciences, 145, 309-333. https://doi.org/10.1016/j.jseaes.2017.06.032
Cho, Y., Böttger, U., Rull, F., Hübers, H.-W., Belenguer, T., Börner, A., Buder, M., Bunduki, Y., Dietz, E., Hagelschuer, T., Kameda, S., Kopp, E., Lieder, M., Lopez-Reyes, G., Moral Inza, A. G., Mori, S., Ogura, J. A., Paproth, C., Perez Canora, C., Yumoto, K. (2021). In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements. Earth, Planets, and Space: EPS, 73(1). https://doi.org/10.1186/s40623-021-01496-z
Craddock, P. R., & Sauerer, B. (2022). Robust determination of kerogen properties in organicrich mudrocks via Raman Spectroscopy. Organic Geochemistry, 169(104381), 104381. https://doi.org/10.1016/j.orggeochem.2022.104381
Cuéllar Burgos, A., Mesa Rueda, F. A., Vargas Hernández, C., & Perilla, J. E. (2010). Arcillas modificadas caracterizadas por micro-raman y difraccion de rayos X. Dyna, 77(164), 39- 44. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012- 73532010000400004
Demir, P., Onde, S., & Severcan, F. (2015). Phylogeny of cultivated and wild wheat species using ATR–FTIR spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 757–763. https://doi.org/10.1016/j.saa.2014.07.025
Dandeu, A., Humbert, B., Carteret, C., Muhr, H., Plasari, E., & Bossoutrot, J. M. (2006). Raman spectroscopy – A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorph mixtures. Chemical Engineering & Technology, 29(2), 221–225. https://doi.org/10.1002/ceat.200500354
Day, J. M. D., Troll, V. R., Aulinas, M., Deegan, F. M., Geiger, H., Carracedo, J. C., Pinto, G. G., & Perez-Torrado, F. J. (2022). Mantle source characteristics and magmatic processes during the 2021 La Palma eruption. Earth and Planetary Science Letters, 597(117793), 117793. https://doi.org/10.1016/j.epsl.2022.117793
Dayton, K., Gazel, E., Wieser, P., Troll, V. R., Carracedo, J. C., La Madrid, H., Roman, D. C., Ward, J., Aulinas, M., Geiger, H., Deegan, F. M., Gisbert, G., & Perez-Torrado, F. J. (2023). Deep magma storage during the 2021 La Palma eruption. Science Advances, 9(6). https://doi.org/10.1126/sciadv.ade7641
Delano, G. H., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198(102936), 102936. https://doi.org/10.1016/j.earscirev.2019.102936
Dieing, T., Hollricher, O., & Toporski, J. (Eds.). (2011). Confocal Raman microscopy (2011.a ed.). Springer
Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6), 132–148. https://doi.org/10.1002/andp.19053220607
Edmonds, M., Cashman, K. V., Holness, M., & Jackson, M. (2019). Architecture and dynamics of magma reservoirs. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 377(2139), 20180298. https://doi.org/10.1098/rsta.2018.0298
Edmonds, M., & Wallace, P. J. (2017). Volatiles and exsolved vapor in volcanic systems. Elements (Quebec, Quebec), 13(1), 29–34. https://doi.org/10.2113/gselements.13.1.29
Elbasuney, S., & El-Sherif, A. F. (2017). Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared. Forensic Science International, 270, 83-90. https://doi.org/10.1016/j.forsciint.2016.11.036
Elshout, M., Erckens, R. J., Webers, C. A., Beckers, H. J., Berendschot, T. T., de Brabander, J., Hendrikse, F., & Schouten, J. S. (2011). Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 27(5), 445-451. https://doi.org/10.1089/jop.2011.0018
Fermi, E. (1931). Über den Ramaneffekt des Kohlendioxyds. The European Physical Journal A, 71(3–4), 250–259. https://doi.org/10.1007/bf01341712
Flores-Guerrero, J. L., Muñoz-Morales, A., Narea-Jimenez, F., Perez-Fuentes, R., TorresRasgado, E., Ruiz-Vivanco, G., Gonzalez-Viveros, N., & Castro-Ramos, J. (2020). Novel assessment of urinary albumin excretion in type 2 diabetes patients by Raman spectroscopy. Diagnostics (Basel, Switzerland), 10(3), 141. https://doi.org/10.3390/diagnostics10030141
Franzen, L., & Windbergs, M. (2015). Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Advanced Drug Delivery Reviews, 89, 91-104. https://doi.org/10.1016/j.addr.2015.04.002
Fries, M., & Steele, A. (2018). Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography. En Confocal Raman Microscopy (pp. 209–236). Springer International Publishing
Grasselli, J. G., Snavely, M. K., & Bulkin, B. J. (1980). Applications of Raman spectroscopy. Physics Reports, 65(4), 231-344. https://doi.org/10.1016/0370- 1573(80)90065-4
González, G. (1997). Series de Fourier, transformadas de Fourier y aplicaciones. Divulgaciones matemáticas, 5(1/2), 43-60.
Guevara, E., Torres-Galván, J. C., González, F. J., Luevano-Contreras, C., Castillo-Martínez, C. C., & Ramírez-Elías, M. G. (2022). Feasibility of Raman spectroscopy as a potential in vivo tool to screen for pre-diabetes and diabetes. Journal of Biophotonics, 15(9), e202200055. https://doi.org/10.1002/jbio.202200055
Hansteen, T. H., Klügel, A., & Schmincke, H.-U. (1998). Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 132(1), 48–64. https://doi.org/10.1007/s004100050404
Härtel, B., Jonckheere, R., & Ratschbacher, L. (2022). Multi‐band Raman analysis of radiation damage in zircon for thermochronology: Partial annealing and mixed signals. Geochemistry, Geophysics, Geosystems: G(3), 23(1). https://doi.org/10.1029/2021gc010182
Henry, D. G., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198(102936), 102936. https://doi.org/10.1016/j.earscirev.2019.102936
Hochleitner, R., Tarcea, N., Simon, G., Kiefer, W., & Popp, J. (2004). Micro-Raman spectroscopy: a valuable tool for the investigation of extraterrestrial material. Journal of Raman Spectroscopy: JRS, 35(6), 515-518. https://doi.org/10.1002/jrs.1190
Hodkiewicz, J., Fisher, T., & Spectroscopy, R. (s. f.). Characterizing carbon materials with Raman spectroscopy. Thermofisher.com. Recuperado 30 de abril de 2023, de http://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/D19504.pdf
Hsu, S. L. (1989). IR Spectroscopy. En G. Allen & J. C. Bevington (Eds.), Comprehensive Polymer Science and Supplements (pp. 429–468). Elsevier.
Jébrak, M. (2015). Hydrothermal Alteration. En Encyclopedia of Astrobiology (pp. 1156–1157). Springer Berlin Heidelberg.
Karg, H., & Sauerer, B. (2022). Thermal maturity assessment of marine source rocks integrating Raman spectroscopy, organic geochemistry and petroleum systems modeling. International Journal of Coal Geology, 264(104131), 104131. https://doi.org/10.1016/j.coal.2022.104131
Khatibi, S., Ostadhassan, M., Hackley, P., Tuschel, D., Abarghani, A., & Bubach, B. (2019). Understanding organic matter heterogeneity and maturation rate by Raman spectroscopy. International Journal of Coal Geology, 206, 46–64. https://doi.org/10.1016/j.coal.2019.03.009
Klein, C., Cornelius, S., & Hurlbut, J. R. (1997). Manual de mineralogía. Reverté.
Larkin, P. (2011). Introduction. En P. Larkin (Ed.), Infrared and Raman Spectroscopy (pp. 1–5). Elsevier. https://doi.org/10.1016/B978-0-12-386984-5.10001-1
Li, D., Zhu, Z., & Sun, D.-W. (2021). Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. Journal of Molecular Liquids, 342(117498), 117498. https://doi.org/10.1016/j.molliq.2021.117498
López-López, M., & García-Ruiz, C. (2014). Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends in analytical chemistry: TRAC, 54, 36-44. https://doi.org/10.1016/j.trac.2013.10.011
Maxwell, J. (1990). The scientific letters and papers of James clerk Maxwell: 1846-1862 volumen 1. Cambridge University Press.
McCarthy, K., Niemann, M., Palmowski, D., Peters, K., & Stankiewicz, C. (2011). La geoquímica básica del petróleo para la evaluación de las rocas generadoras. Oilfield Review, 23(2), 36- 47.
Mitsutake, H., Poppi, R., & Breitkreitz, M. (2019). Raman imaging spectroscopy: History, fundamentals and current scenario of the technique. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20190116
Moore, S., & Tomova, A.-M. (2020, febrero 18). Raman scattering applications in forensic science. News-medical.net. https://www.azolifesciences.com/article/Raman-ScatteringApplications-in-Forensic-Science.aspx
Nasdala, L., & Schmidt, C. (2020). Applications of Raman spectroscopy in mineralogy and geochemistry. Elements (Quebec, Quebec), 16(2), 99–104. https://doi.org/10.2138/gselements.16.2.99
Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T., & Abele, D. (2012). Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clamLaternula elliptica. Geochemistry, Geophysics, Geosystems: G(3), 13(Q05014). https://doi.org/10.1029/2011gc003996
Neuville, D. R., de Ligny, D., & Henderson, G. S. (2014). Advances in Raman spectroscopy applied to earth and material sciences. Reviews in mineralogy and geochemistry, 78(1), 509-541. https://doi.org/10.2138/rmg.2013.78.13
Newton, I. (1704). opticks. London
Okrusch, M., & Frimmel, H. (2019). Mineralogy: An introduction to minerals, rocks, and mineral deposits (1.a ed.). Springer.
Otero, J., & Cano, V. G. (2015). Espectroscopía Raman: Fundamento y aplicaciones. Unpublished. https://doi.org/10.13140/RG.2.1.5015.5362
Pandey, D. K., Kagdada, H. L., Sanchora, P., & Singh, D. K. (2021). Overview of Raman spectroscopy: Fundamental to applications. En Modern Techniques of Spectroscopy (pp. 145-184). Springer Singapore.
Pasco. (s. f.). Spectroscopy. PASCO. Recuperado 30 de abril de 2023, de https://www.pasco.com/products/guides/what-is-spectroscopy
Plog, J. P., & Scientific, T. F. (s. f.). Rheology-Raman spectroscopy: Tracking polymer crystallization. Thermofisher.com. Recuperado 30 de abril de 2023, de https://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/Tracking-PolymerCrystallization.pdf
Pujary, P., Maheedhar, K., Krishna, C. M., & Pujary, K. (2011). Raman spectroscopic methods for classification of normal and malignant hypopharyngeal tissues: an exploratory study. Pathology Research International, 2011, 632493. https://doi.org/10.4061/2011/632493
Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501-502. https://doi.org/10.1038/121501c0
Ralbovsky, N. M., & Lednev, I. K. (2019). Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 219, 463–487. https://doi.org/10.1016/j.saa.2019.04.067
Rudolph, W. W. (2012). Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301 °C. Journal of Solution Chemistry, 41(4), 630-645. https://doi.org/10.1007/s10953-012-9825-4
Santos, C. A. A. S., Vasconcelos, D. L. M., Nogueira, C. E. S., Freire, P. T. C., Lima, J. A., Jr, Lima, R. J. C., Santos, A. O. dos, Carvalho, J. O., & Façanha Filho, P. F. (2023). Elucidating l-tyrosine crystal phase transitions by Raman spectroscopy and ab initio calculations. The Journal of Physics and Chemistry of Solids, 176(111234), 111234. https://doi.org/10.1016/j.jpcs.2023.111234
Schito, A., Romano, C., Corrado, S., Grigo, D., & Poe, B. (2017). Diagenetic thermal evolution of organic matter by Raman spectroscopy. Organic Geochemistry, 106, 57–67. https://doi.org/10.1016/j.orggeochem.2016.12.006
Segneanu, A. E., Gozescu, I., Dabici, A., Sfirloaga, P., & Szabadai, Z. (2012). Organic compounds FT-IR spectroscopy. Intechopen.com. https://doi.org/10.5772/50183
Serway, R., & Jewett, J. (2008). Física para ciencias e ingeniería con Física Moderna (Vol. 2). Cengage Learning Editores.
(S.f.). Thermofisher.com. Recuperado el 14 de julio de 2023, de http://assets.thermofisher.com/TFS-Assets/MSD/brochures/introduction-fouriertransform-infrared-spectroscopy-br50555.pdf
(S.f.). Pasco.com. Recuperado el 10 de marzo de 2023, de https://www.pasco.com/products/guides/what-is-spectroscopy
Smekal, A. (1923). Zur Quantentheorie der Dispersion. The Science of Nature, 11(43), 873-875. https://doi.org/10.1007/bf01576902
Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press.
Sodo, A., Casanova Municchia, A., Barucca, S., Bellatreccia, F., Della Ventura, G., Butini, F., & Ricci, M. A. (2016). Raman, FT-IR and XRD investigation of natural opals: Raman, FTIR and XRD investigation of natural opals. Journal of Raman Spectroscopy: JRS, 47(12), 1444–1451. https://doi.org/10.1002/jrs.4972
Stefánsson, A., & Kleine, B. I. (2017). Hydrothermal Alteration. En Encyclopedia of Earth Sciences Series (pp. 1–3). Springer International Publishing.
Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Alemania: Wiley.
Tyson, R. (2012). Sedimentary Organic Matter: Organic Facies and Palynofacies. Países Bajos: Springer Netherlands.
Tissot, B. P., & Welte, D. H. (1984). Diagenesis, Catagenesis and Metagenesis of Organic Matter. En Petroleum Formation and Occurrence (pp. 69–73). Springer Berlin Heidelberg.
Taylor, E. A., & Donnelly, E. (2020). Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 139(115490), 115490. https://doi.org/10.1016/j.bone.2020.115490
Thu Nguyen, T. T., Kim, Y., Bae, S., Bari, M., Jung, H. R., Jo, W., Kim, Y.-H., Ye, Z.-G., & Yoon, S. (2020). Raman scattering studies of the structural phase transitions in singlecrystalline. The Journal of Physical Chemistry Letters, 11(10), 3773-3781. https://doi.org/10.1021/acs.jpclett.0c00920
Tollan, P., Ellis, B., Troch, J., & Neukampf, J. (2019). Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone. Contributions to Mineralogy and Petrology. Beitrage Zur Mineralogie Und Petrologie, 174(3). https://doi.org/10.1007/s00410-019-1561-y
Torres, J. S. D. (2018). Metallogenic approach of the orogenic gold mineralization present at libano, tolima. Universidad de los Andes.
Van Echelpoel, R., Parrilla, M., Sleegers, N., Shanmugam, S. T., van Nuijs, A. L. N., Slosse, A., Van Durme, F., & De Wael, K. (2023). Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use. Microchemical Journal, Devoted to the Application of Microtechniques in All Branches of Science, 190(108693), 108693. https://doi.org/10.1016/j.microc.2023.108693
Vandenabeele, P. (2013). Practical Raman Spectroscopy: An Introduction. Standards Information Network. https://books.google.at/books?id=HjFi5eOUYvgC
Villanueva-Luna, A. E., & Castro-Ramos, J. (2013). Raman spectroscopy and its applications. Optica Pura y Aplicada. doi:10.7149/OPA.46.1.83
Virkler, K., & Lednev, I. K. (2009). Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Analytical Chemistry, 81(18), 7773-7777. https://doi.org/10.1021/ac901350a
West, M. J., & Went, M. J. (2011). Detection of drugs of abuse by Raman spectroscopy. Drug Testing and Analysis, 3(9), 532-538. https://doi.org/10.1002/dta.217
Yan, Z., Ma, C., Mo, J., Han, W., Lv, X., Chen, C., & Nie, X. (2020). Rapid identification of benign and malignant pancreatic tumors using serum Raman spectroscopy combined with classification algorithms. Optik, 208(164473), 164473. https://doi.org/10.1016/j.ijleo.2020.164473
Yao, G., Muhammad, M., Zhao, J., Liu, J., & Huang, Q. (2022). DFT-based Raman spectral study of astaxanthin geometrical isomers. Food Chemistry. Molecular Sciences, 4(100103), 100103. https://doi.org/10.1016/j.fochms.2022.100103
Young, H. D., & Freedman, R. A. (2009). Sears-Zemansky física universitaria. Pearson educación.
Zhang, Y., Belcher, R., Ihinger, P. D., Wang, L., Xu, Z., & Newman, S. (1997). New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochimica et Cosmochimica Acta, 61(15), 3089–3100. https://doi.org/10.1016/s0016-7037(97)00151-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Geología
publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Geología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145050699956224
spelling Espectroscopia Raman y Ftir: principios y aplicaciones en ciencias de la tierraEfecto RamanEspectroscopia infrarojaMineralesCiencias de la tierraIlustraciones, gráficas, fotosspa:La espectroscopia Raman y la espectroscopia infrarroja por transformada de Fourier (FTIR) han sido ampliamente empleadas en la caracterización de minerales, destacándose por su capacidad de identificar elementos y compuestos químicos en diferentes estados de la materia a través de fenómenos ópticos como la dispersión inelástica y la transmitancia de la luz. En este trabajo se explican algunos principios físicos sobre la naturaleza de la luz y se resaltan las diferentes ventajas y características de la espectroscopia Raman. Se describen algunas de las aplicaciones actuales más significativas en diversas áreas de las ciencias incluyendo la biomedicina, química, ciencia de los materiales, ciencias forenses, y en las ciencias de la Tierra. En esta última disciplina este trabajo se enfoca en las siguientes aplicaciones: caracterización de minerales de alteración hidrotermal y polimorfos, determinación de profundidades de reservorios magmáticos, y paleotermometría para reconstruir historias termales en cuencas sedimentarias y cinturones metamórficos. Así mismo, empleando la técnica de caracterización óptica de FTIR se presentan aplicaciones petrogenéticas y vulcanológicas que abordan la estimación cuantitativa del contenido de agua en muestras de rocas volcánicas.eng:Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) have been widely used in the characterization of minerals, standing out for their ability to identify elements and chemical compounds in different states of matter through optical phenomena such as inelastic dispersion and the transmittance of light. In this work, some physical principles about the nature of light are explained and the different advantages and characteristics of Raman spectroscopy are highlighted. Some of the most significant current applications in various areas of science including biomedicine, chemistry, materials science, forensic sciences, and Earth sciences are described. In this last discipline, this work focuses on the following applications: characterization of hydrothermal alteration and polymorphic minerals, determination of depths of magmatic reservoirs, and paleothermometry to reconstruct thermal histories in sedimentary basins and metamorphic belts. Likewise, using the FTIR optical characterization technique, petrogenetic and volcanological applications are presented that address the quantitative estimation of water content in volcanic rock samples.Resumen / 1. Introducción / 2. Marco teórico / 2.1. Antecedentes históricos de la luz / 2.2. Efecto Raman / 2.3. Espectrómetros Raman / 2.3.1. Fuentes de excitación / 2.3.2. Filtro y Espectroscopio / 2.3.3. Sistema de detección / 2.4. Espectroscopia infrarroja por transformada de Fourier / 2.4.1. Fuente / 2.4.2. Interferómetro / 2.4.3. Detector y computador / 3. Aplicaciones de la espectroscopia Raman / 3.1. Aplicaciones en ciencia de los materiales / 3.1.1. Compuestos del carbono / 3.1.2. Polímeros / 3.2. Aplicaciones en la química / 3.2.1. Propiedades físicas / 3.2.2. Análisis de cambios de fase / 3.3. Aplicaciones en ciencias forenses / 3.3.1. Detección de materiales explosivos / 3.3.2. Identificación de drogas ilícitas / 3.4. Aplicaciones Biomédicas / 3.4.1. Detección de cáncer / 3.4.2. Detección diabetes y prediabetes / 3.5. Aplicaciones en las ciencias de la tierra y planetarias / 3.5.1. Ciencias planetarias / 3.5.2. Ciencias de la tierra / 4. Algunas aplicaciones de la espectroscopia Raman en las ciencias de la tierra / III J. M. López 4.1. Identificación mineralógica / 4.1.1. Espectroscopia Raman como herramienta para la caracterización de minerales de alteración hidrotermal / 4.1.2. Identificación de polimorfos / 4.2. Espectroscopia Raman como proxy paleotermométrica / 4.3. Espectroscopia Raman como herramienta para determinar la profundidad de reservorios magmáticos / 5. Aplicación de FTIR en estudios vulcanológicos / 6. Conclusiones y recomendaciones / 7. BibliografíaUniversitarioGeólogo(a)Facultad de Ciencias Exactas y NaturalesManizalesGeologíaEcheverri, Juan SebastianMurcia, Hugo Fernando-GIEV-(CUMANDAY) Grupo de Investigación en Estratigrafía y Vulcanología (Categoría A1)López Ortíz, Johana Marissa2023-10-13T20:08:22Z2023-10-13T20:08:22Z2023-10-13Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19653Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAudétat, A., & Li, W. (2017). The genesis of Climax-type porphyry Mo deposits: Insights from fluid inclusions and melt inclusions. Ore Geology Reviews, 88, 436–460. https://doi.org/10.1016/j.oregeorev.2017.05.018Anderson, N. G. (2012). Crystallization and Purification. Practical Process Research and Development (pp. 329–364). Elsevier.Andrews, D. L. (2017). Rayleigh scattering and Raman effect, theory. Encyclopedia of Spectroscopy and Spectrometry (pp. 924-930). Elsevier.Arbiol, C., & Layne, G. D. (2021). Raman spectroscopy coupled with reflectance spectroscopy as a tool for the characterization of key hydrothermal alteration minerals in epithermal AuAg systems: Utility and implications for mineral exploration. Applied Spectroscopy, 75(12), 1475–1496. https://doi.org/10.1177/00037028211047869Bhadeshia, H.K.D.H. Equilibrium Between Solutions. Lecture 2, Lectures of the Course Thermodynamics and Phase Diagrams. Master of Philosophy, Materials Modelling. Materials Science & Metallurgy Department, Cambridge University.Bertolano, H., & Vettorel, S. (2014). 7504-14 FISICA Ondas Electromagneticas.Boyd, S., Bertino, M. F., & Seashols, S. J. (2011). Raman spectroscopy of blood samples for forensic applications. Forensic Science International, 208(1-3), 124-128. https://doi.org/10.1016/j.forsciint.2010.11.012Burke, E. A. J. (2001). Raman microspectrometry of fluid inclusions. Lithos, 55(1), 139-158. https://doi.org/10.1016/S0024-4937(00)00043-8Buenaventura, J. (2001). Posibilidades metalogénicas auríferas en el territorio colombiano. VIII Congreso Colombiano de Geología. Manizales.Cantellano, M. A. G., & Zetina, L. M. M. (2015). La espectroscopia y su tecnología: Un repaso histórico y su importancia para el siglo XXI. Latin-American Journal of Physics Education, 9(4), 13. https://dialnet.unirioja.es/servlet/articulo?codigo=5514757Casadio, F., Daher, C., & Bellot-Gurlet, L. (2017). Raman spectroscopy of cultural heritage materials: Overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. En Topics in Current Chemistry Collections (pp. 161- 211). Springer International Publishing.Cassini, A., & Levinas, M. L. (2008). La explicación de Einstein del efecto fotoeléctrico: un análisis histórico-epistemológico. Revista latinoamericana de filosofía, 34(1), 5-38. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852- 73532008000100001&lng=es&tlng=esCastro Dorado, A. (2015). Petrografía de Rocas Ígneas y Metamórficas. Ediciones Paraninfo.Castro Ramos, J. (2013). Raman spectroscopy and its applications. Optica Pura y Aplicada, 46(1), 83-95. https://doi.org/10.7149/opa.46.1.83Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2016). Applications of microFourier transform infrared spectroscopy (FTIR) in the geological sciences—A review. International Journal of Molecular Sciences, 16(12), 30223–30250. https://doi.org/10.3390/ijms161226227Chou, I.-M., & Wang, A. (2017). Application of laser Raman micro-analyses to Earth and planetary materials. Journal of Asian Earth Sciences, 145, 309-333. https://doi.org/10.1016/j.jseaes.2017.06.032Cho, Y., Böttger, U., Rull, F., Hübers, H.-W., Belenguer, T., Börner, A., Buder, M., Bunduki, Y., Dietz, E., Hagelschuer, T., Kameda, S., Kopp, E., Lieder, M., Lopez-Reyes, G., Moral Inza, A. G., Mori, S., Ogura, J. A., Paproth, C., Perez Canora, C., Yumoto, K. (2021). In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements. Earth, Planets, and Space: EPS, 73(1). https://doi.org/10.1186/s40623-021-01496-zCraddock, P. R., & Sauerer, B. (2022). Robust determination of kerogen properties in organicrich mudrocks via Raman Spectroscopy. Organic Geochemistry, 169(104381), 104381. https://doi.org/10.1016/j.orggeochem.2022.104381Cuéllar Burgos, A., Mesa Rueda, F. A., Vargas Hernández, C., & Perilla, J. E. (2010). Arcillas modificadas caracterizadas por micro-raman y difraccion de rayos X. Dyna, 77(164), 39- 44. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012- 73532010000400004Demir, P., Onde, S., & Severcan, F. (2015). Phylogeny of cultivated and wild wheat species using ATR–FTIR spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 757–763. https://doi.org/10.1016/j.saa.2014.07.025Dandeu, A., Humbert, B., Carteret, C., Muhr, H., Plasari, E., & Bossoutrot, J. M. (2006). Raman spectroscopy – A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorph mixtures. Chemical Engineering & Technology, 29(2), 221–225. https://doi.org/10.1002/ceat.200500354Day, J. M. D., Troll, V. R., Aulinas, M., Deegan, F. M., Geiger, H., Carracedo, J. C., Pinto, G. G., & Perez-Torrado, F. J. (2022). Mantle source characteristics and magmatic processes during the 2021 La Palma eruption. Earth and Planetary Science Letters, 597(117793), 117793. https://doi.org/10.1016/j.epsl.2022.117793Dayton, K., Gazel, E., Wieser, P., Troll, V. R., Carracedo, J. C., La Madrid, H., Roman, D. C., Ward, J., Aulinas, M., Geiger, H., Deegan, F. M., Gisbert, G., & Perez-Torrado, F. J. (2023). Deep magma storage during the 2021 La Palma eruption. Science Advances, 9(6). https://doi.org/10.1126/sciadv.ade7641Delano, G. H., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198(102936), 102936. https://doi.org/10.1016/j.earscirev.2019.102936Dieing, T., Hollricher, O., & Toporski, J. (Eds.). (2011). Confocal Raman microscopy (2011.a ed.). SpringerEinstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6), 132–148. https://doi.org/10.1002/andp.19053220607Edmonds, M., Cashman, K. V., Holness, M., & Jackson, M. (2019). Architecture and dynamics of magma reservoirs. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 377(2139), 20180298. https://doi.org/10.1098/rsta.2018.0298Edmonds, M., & Wallace, P. J. (2017). Volatiles and exsolved vapor in volcanic systems. Elements (Quebec, Quebec), 13(1), 29–34. https://doi.org/10.2113/gselements.13.1.29Elbasuney, S., & El-Sherif, A. F. (2017). Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared. Forensic Science International, 270, 83-90. https://doi.org/10.1016/j.forsciint.2016.11.036Elshout, M., Erckens, R. J., Webers, C. A., Beckers, H. J., Berendschot, T. T., de Brabander, J., Hendrikse, F., & Schouten, J. S. (2011). Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 27(5), 445-451. https://doi.org/10.1089/jop.2011.0018Fermi, E. (1931). Über den Ramaneffekt des Kohlendioxyds. The European Physical Journal A, 71(3–4), 250–259. https://doi.org/10.1007/bf01341712Flores-Guerrero, J. L., Muñoz-Morales, A., Narea-Jimenez, F., Perez-Fuentes, R., TorresRasgado, E., Ruiz-Vivanco, G., Gonzalez-Viveros, N., & Castro-Ramos, J. (2020). Novel assessment of urinary albumin excretion in type 2 diabetes patients by Raman spectroscopy. Diagnostics (Basel, Switzerland), 10(3), 141. https://doi.org/10.3390/diagnostics10030141Franzen, L., & Windbergs, M. (2015). Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Advanced Drug Delivery Reviews, 89, 91-104. https://doi.org/10.1016/j.addr.2015.04.002Fries, M., & Steele, A. (2018). Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography. En Confocal Raman Microscopy (pp. 209–236). Springer International PublishingGrasselli, J. G., Snavely, M. K., & Bulkin, B. J. (1980). Applications of Raman spectroscopy. Physics Reports, 65(4), 231-344. https://doi.org/10.1016/0370- 1573(80)90065-4González, G. (1997). Series de Fourier, transformadas de Fourier y aplicaciones. Divulgaciones matemáticas, 5(1/2), 43-60.Guevara, E., Torres-Galván, J. C., González, F. J., Luevano-Contreras, C., Castillo-Martínez, C. C., & Ramírez-Elías, M. G. (2022). Feasibility of Raman spectroscopy as a potential in vivo tool to screen for pre-diabetes and diabetes. Journal of Biophotonics, 15(9), e202200055. https://doi.org/10.1002/jbio.202200055Hansteen, T. H., Klügel, A., & Schmincke, H.-U. (1998). Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie, 132(1), 48–64. https://doi.org/10.1007/s004100050404Härtel, B., Jonckheere, R., & Ratschbacher, L. (2022). Multi‐band Raman analysis of radiation damage in zircon for thermochronology: Partial annealing and mixed signals. Geochemistry, Geophysics, Geosystems: G(3), 23(1). https://doi.org/10.1029/2021gc010182Henry, D. G., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198(102936), 102936. https://doi.org/10.1016/j.earscirev.2019.102936Hochleitner, R., Tarcea, N., Simon, G., Kiefer, W., & Popp, J. (2004). Micro-Raman spectroscopy: a valuable tool for the investigation of extraterrestrial material. Journal of Raman Spectroscopy: JRS, 35(6), 515-518. https://doi.org/10.1002/jrs.1190Hodkiewicz, J., Fisher, T., & Spectroscopy, R. (s. f.). Characterizing carbon materials with Raman spectroscopy. Thermofisher.com. Recuperado 30 de abril de 2023, de http://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/D19504.pdfHsu, S. L. (1989). IR Spectroscopy. En G. Allen & J. C. Bevington (Eds.), Comprehensive Polymer Science and Supplements (pp. 429–468). Elsevier.Jébrak, M. (2015). Hydrothermal Alteration. En Encyclopedia of Astrobiology (pp. 1156–1157). Springer Berlin Heidelberg.Karg, H., & Sauerer, B. (2022). Thermal maturity assessment of marine source rocks integrating Raman spectroscopy, organic geochemistry and petroleum systems modeling. International Journal of Coal Geology, 264(104131), 104131. https://doi.org/10.1016/j.coal.2022.104131Khatibi, S., Ostadhassan, M., Hackley, P., Tuschel, D., Abarghani, A., & Bubach, B. (2019). Understanding organic matter heterogeneity and maturation rate by Raman spectroscopy. International Journal of Coal Geology, 206, 46–64. https://doi.org/10.1016/j.coal.2019.03.009Klein, C., Cornelius, S., & Hurlbut, J. R. (1997). Manual de mineralogía. Reverté.Larkin, P. (2011). Introduction. En P. Larkin (Ed.), Infrared and Raman Spectroscopy (pp. 1–5). Elsevier. https://doi.org/10.1016/B978-0-12-386984-5.10001-1Li, D., Zhu, Z., & Sun, D.-W. (2021). Quantification of hydrogen bonding strength of water in saccharide aqueous solutions by confocal Raman microscopy. Journal of Molecular Liquids, 342(117498), 117498. https://doi.org/10.1016/j.molliq.2021.117498López-López, M., & García-Ruiz, C. (2014). Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends in analytical chemistry: TRAC, 54, 36-44. https://doi.org/10.1016/j.trac.2013.10.011Maxwell, J. (1990). The scientific letters and papers of James clerk Maxwell: 1846-1862 volumen 1. Cambridge University Press.McCarthy, K., Niemann, M., Palmowski, D., Peters, K., & Stankiewicz, C. (2011). La geoquímica básica del petróleo para la evaluación de las rocas generadoras. Oilfield Review, 23(2), 36- 47.Mitsutake, H., Poppi, R., & Breitkreitz, M. (2019). Raman imaging spectroscopy: History, fundamentals and current scenario of the technique. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20190116Moore, S., & Tomova, A.-M. (2020, febrero 18). Raman scattering applications in forensic science. News-medical.net. https://www.azolifesciences.com/article/Raman-ScatteringApplications-in-Forensic-Science.aspxNasdala, L., & Schmidt, C. (2020). Applications of Raman spectroscopy in mineralogy and geochemistry. Elements (Quebec, Quebec), 16(2), 99–104. https://doi.org/10.2138/gselements.16.2.99Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T., & Abele, D. (2012). Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clamLaternula elliptica. Geochemistry, Geophysics, Geosystems: G(3), 13(Q05014). https://doi.org/10.1029/2011gc003996Neuville, D. R., de Ligny, D., & Henderson, G. S. (2014). Advances in Raman spectroscopy applied to earth and material sciences. Reviews in mineralogy and geochemistry, 78(1), 509-541. https://doi.org/10.2138/rmg.2013.78.13Newton, I. (1704). opticks. LondonOkrusch, M., & Frimmel, H. (2019). Mineralogy: An introduction to minerals, rocks, and mineral deposits (1.a ed.). Springer.Otero, J., & Cano, V. G. (2015). Espectroscopía Raman: Fundamento y aplicaciones. Unpublished. https://doi.org/10.13140/RG.2.1.5015.5362Pandey, D. K., Kagdada, H. L., Sanchora, P., & Singh, D. K. (2021). Overview of Raman spectroscopy: Fundamental to applications. En Modern Techniques of Spectroscopy (pp. 145-184). Springer Singapore.Pasco. (s. f.). Spectroscopy. PASCO. Recuperado 30 de abril de 2023, de https://www.pasco.com/products/guides/what-is-spectroscopyPlog, J. P., & Scientific, T. F. (s. f.). Rheology-Raman spectroscopy: Tracking polymer crystallization. Thermofisher.com. Recuperado 30 de abril de 2023, de https://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/Tracking-PolymerCrystallization.pdfPujary, P., Maheedhar, K., Krishna, C. M., & Pujary, K. (2011). Raman spectroscopic methods for classification of normal and malignant hypopharyngeal tissues: an exploratory study. Pathology Research International, 2011, 632493. https://doi.org/10.4061/2011/632493Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501-502. https://doi.org/10.1038/121501c0Ralbovsky, N. M., & Lednev, I. K. (2019). Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 219, 463–487. https://doi.org/10.1016/j.saa.2019.04.067Rudolph, W. W. (2012). Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301 °C. Journal of Solution Chemistry, 41(4), 630-645. https://doi.org/10.1007/s10953-012-9825-4Santos, C. A. A. S., Vasconcelos, D. L. M., Nogueira, C. E. S., Freire, P. T. C., Lima, J. A., Jr, Lima, R. J. C., Santos, A. O. dos, Carvalho, J. O., & Façanha Filho, P. F. (2023). Elucidating l-tyrosine crystal phase transitions by Raman spectroscopy and ab initio calculations. The Journal of Physics and Chemistry of Solids, 176(111234), 111234. https://doi.org/10.1016/j.jpcs.2023.111234Schito, A., Romano, C., Corrado, S., Grigo, D., & Poe, B. (2017). Diagenetic thermal evolution of organic matter by Raman spectroscopy. Organic Geochemistry, 106, 57–67. https://doi.org/10.1016/j.orggeochem.2016.12.006Segneanu, A. E., Gozescu, I., Dabici, A., Sfirloaga, P., & Szabadai, Z. (2012). Organic compounds FT-IR spectroscopy. Intechopen.com. https://doi.org/10.5772/50183Serway, R., & Jewett, J. (2008). Física para ciencias e ingeniería con Física Moderna (Vol. 2). Cengage Learning Editores.(S.f.). Thermofisher.com. Recuperado el 14 de julio de 2023, de http://assets.thermofisher.com/TFS-Assets/MSD/brochures/introduction-fouriertransform-infrared-spectroscopy-br50555.pdf(S.f.). Pasco.com. Recuperado el 10 de marzo de 2023, de https://www.pasco.com/products/guides/what-is-spectroscopySmekal, A. (1923). Zur Quantentheorie der Dispersion. The Science of Nature, 11(43), 873-875. https://doi.org/10.1007/bf01576902Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press.Sodo, A., Casanova Municchia, A., Barucca, S., Bellatreccia, F., Della Ventura, G., Butini, F., & Ricci, M. A. (2016). Raman, FT-IR and XRD investigation of natural opals: Raman, FTIR and XRD investigation of natural opals. Journal of Raman Spectroscopy: JRS, 47(12), 1444–1451. https://doi.org/10.1002/jrs.4972Stefánsson, A., & Kleine, B. I. (2017). Hydrothermal Alteration. En Encyclopedia of Earth Sciences Series (pp. 1–3). Springer International Publishing.Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Alemania: Wiley.Tyson, R. (2012). Sedimentary Organic Matter: Organic Facies and Palynofacies. Países Bajos: Springer Netherlands.Tissot, B. P., & Welte, D. H. (1984). Diagenesis, Catagenesis and Metagenesis of Organic Matter. En Petroleum Formation and Occurrence (pp. 69–73). Springer Berlin Heidelberg.Taylor, E. A., & Donnelly, E. (2020). Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 139(115490), 115490. https://doi.org/10.1016/j.bone.2020.115490Thu Nguyen, T. T., Kim, Y., Bae, S., Bari, M., Jung, H. R., Jo, W., Kim, Y.-H., Ye, Z.-G., & Yoon, S. (2020). Raman scattering studies of the structural phase transitions in singlecrystalline. The Journal of Physical Chemistry Letters, 11(10), 3773-3781. https://doi.org/10.1021/acs.jpclett.0c00920Tollan, P., Ellis, B., Troch, J., & Neukampf, J. (2019). Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone. Contributions to Mineralogy and Petrology. Beitrage Zur Mineralogie Und Petrologie, 174(3). https://doi.org/10.1007/s00410-019-1561-yTorres, J. S. D. (2018). Metallogenic approach of the orogenic gold mineralization present at libano, tolima. Universidad de los Andes.Van Echelpoel, R., Parrilla, M., Sleegers, N., Shanmugam, S. T., van Nuijs, A. L. N., Slosse, A., Van Durme, F., & De Wael, K. (2023). Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use. Microchemical Journal, Devoted to the Application of Microtechniques in All Branches of Science, 190(108693), 108693. https://doi.org/10.1016/j.microc.2023.108693Vandenabeele, P. (2013). Practical Raman Spectroscopy: An Introduction. Standards Information Network. https://books.google.at/books?id=HjFi5eOUYvgCVillanueva-Luna, A. E., & Castro-Ramos, J. (2013). Raman spectroscopy and its applications. Optica Pura y Aplicada. doi:10.7149/OPA.46.1.83Virkler, K., & Lednev, I. K. (2009). Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Analytical Chemistry, 81(18), 7773-7777. https://doi.org/10.1021/ac901350aWest, M. J., & Went, M. J. (2011). Detection of drugs of abuse by Raman spectroscopy. Drug Testing and Analysis, 3(9), 532-538. https://doi.org/10.1002/dta.217Yan, Z., Ma, C., Mo, J., Han, W., Lv, X., Chen, C., & Nie, X. (2020). Rapid identification of benign and malignant pancreatic tumors using serum Raman spectroscopy combined with classification algorithms. Optik, 208(164473), 164473. https://doi.org/10.1016/j.ijleo.2020.164473Yao, G., Muhammad, M., Zhao, J., Liu, J., & Huang, Q. (2022). DFT-based Raman spectral study of astaxanthin geometrical isomers. Food Chemistry. Molecular Sciences, 4(100103), 100103. https://doi.org/10.1016/j.fochms.2022.100103Young, H. D., & Freedman, R. A. (2009). Sears-Zemansky física universitaria. Pearson educación.Zhang, Y., Belcher, R., Ihinger, P. D., Wang, L., Xu, Z., & Newman, S. (1997). New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochimica et Cosmochimica Acta, 61(15), 3089–3100. https://doi.org/10.1016/s0016-7037(97)00151-8info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/196532024-07-16T21:44:35Z