Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas
Figuras, tablas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22361
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22361
- Palabra clave:
- 570 - Biología
1. Ciencias Naturales
Análisis RGB
Homocromía
Homomorfía
Morfometría geométrica
Pterochrozinae
Tettigoniidae
Geometric morphometrics
Homocromy
Homomorphy
RGB analysis
Biología
Insecto
Adaptación biológica
Ecología
Biodiversidad
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUCALDA_5950003437b587aca39a116d60b91b48 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22361 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
title |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
spellingShingle |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas 570 - Biología 1. Ciencias Naturales Análisis RGB Homocromía Homomorfía Morfometría geométrica Pterochrozinae Tettigoniidae Geometric morphometrics Homocromy Homomorphy RGB analysis Biología Insecto Adaptación biológica Ecología Biodiversidad |
title_short |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
title_full |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
title_fullStr |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
title_full_unstemmed |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
title_sort |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas |
dc.contributor.none.fl_str_mv |
Llano Arias, Camilo Andrés BIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1) |
dc.subject.none.fl_str_mv |
570 - Biología 1. Ciencias Naturales Análisis RGB Homocromía Homomorfía Morfometría geométrica Pterochrozinae Tettigoniidae Geometric morphometrics Homocromy Homomorphy RGB analysis Biología Insecto Adaptación biológica Ecología Biodiversidad |
topic |
570 - Biología 1. Ciencias Naturales Análisis RGB Homocromía Homomorfía Morfometría geométrica Pterochrozinae Tettigoniidae Geometric morphometrics Homocromy Homomorphy RGB analysis Biología Insecto Adaptación biológica Ecología Biodiversidad |
description |
Figuras, tablas |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-10T21:10:23Z 2025-06-10T21:10:23Z 2025-06-10 2030-01-01 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22361 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22361 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Aslam, M., Nedvěd, O., & Sam, K. (2020). Attacks by predators on artificial cryptic and aposematic insect larvae. Entomologia Experimentalis et Applicata, 168(2), 184–190. Baker, A., Sarria-S, F. A., Morris, G. K., Jonsson, T., & Montealegre-Z, F. (2017). Wing resonances in a new dead-leaf-mimic katydid (Tettigoniidae: Pterochrozinae) from the Andean cloud forests. Zoologischer Anzeiger, 270, 60–70. Barrone, J., Vidal, M. C., & Stevenson, R. (2023). Sphingid caterpillars’ conspicuous patches do not function as distractive marks or warning against predators. Ecology and Evolution, 13(7), e10334 Bates, H. W. (1862). Contributions to an Insect Fauna of the Amazon Valley. —Lepidoptera: — Heliconinae. Zoological Journal of the Linnean Society, 6(22), 73–77. Braun, H. (2002). Los grillos (Orthoptera: Tettigoniidae) de un bosque de niebla en los andes del Ecuador - investigaciones faunísticas, bioacústicas y ecológicas [Doctoral thesis]. Dennaturwissenschaftlichen fakultâten der frederich- Alexander-universitât eilangen Nûmburg Braun, H. (2015). On the family-group ranks of katydids (Orthoptera, Tettigoniidae). Zootaxa, 3956(1), 149–150. Breed, M. D., & Moore, J. (2021). Animal behavior. Academic Press. Briggs, D. E., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246(4927), 241–243. Briggs, D. E., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246(4927), 241–243. Castner, J. L., & Nickle, D. A. (1995). Notes on the biology and ecology of the leaf-mimicking katydid Typophyllum bolivari Vignon (Orthoptera: Tettigoniidae: Pseudophyllinae: Pterochrozini). Journal of Orthoptera Research, 105–109 Chamorro-Rengifo, J., Cadena-Castaneda, O. J., Braun, H., Montealegre-Z, F., Romero, R. I., Serna Marquez, F. H., & Gonzales, R. (2011). Checklist and new distribution records of katydids (Orthoptera: Tettigoniidae) from Colombia. Zootaxa, 3023(1), 1–42. Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. Pseudophyllinae Burmeister, 1838. Orthoptera Species File. Retrieved on 2025-03-28 from http://orthoptera.speciesfile.org/otus/802833/overview Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. Tettigoniidae Krauss, 1902. Orthoptera Species File. Retrieved on 2025-04-29 from http://orthoptera.speciesfile.org/otus/841537/overview Cott, H. B. (1940). Adaptive coloration in animals. Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 165–193. Cushing, P. E. (2012). Spider‐ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology, 2012(1), 151989. Durkee, C. A., Weiss, M. R., & Uma, D. B. (2011). Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders. Environmental Entomology, 40(5), 1223–1231. Edmunds, M. (2000). Why are there good and poor mimics? Biological Journal of the Linnean Society, 70(3), 459–466. Elia, M., Khalil, A., Bagnères, A. G., & Lorenzi, M. C. (2018). Appeasing their hosts: a novel strategy for parasite brood. Animal Behaviour, 146, 123–134. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315–352. Endler, J. A., & Mielke Jr, P. W. (2005). Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86(4), 405–431. Fernández-Lereé, C. G., Ávila-García, A., Sánchez, C., Borda, E., López-Vivas, J. M., Huato Soberanis, L., & Gómez-Gutiérrez, J. (2023). Zenopontonia soror caridean shrimp exhibits dynamical mimicry with sea star host switching. Journal of Experimental Marine Biology and Ecology, 568, 151936. Fischer, G., Friedman, N. R., Huang, J.-P., Narula, N., Knowles, L. L., Fisher, B. L., Mikheyev, A. S., & Economo, E. P. (2020). Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Current Biology, 30(18), 3639–3646.e4. Font, E. (2019). Mimicry, camouflage and perceptual exploitation: the evolution of deception in nature. Biosemiotics, 12(1), 7–24. Gallego-Ropero, M. C., & Feitosa, R. M. (2014). Evidences of batesian mimicry and parabiosis in ants of the Brazilian Savanna. Sociobiology, 61(3), 281. Gavini, S. S., Quintero, C., & Tadey, M. (2019). Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecologica, 95, 100–107. Gentry, A. H. (1982). Patterns of neotropical plant species diversity. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary Biology (Vol. 15, pp. 1–84). Springer. Goodman, A. (2021). Correlation between substrate selection and body color of neotropical katydids (Orthoptera: Tettigoniidae). Ecological Entomology, 46(2), 487–491. Guillermo-Ferreira, R., Cezário, R. R., Datto-Liberato, F. H., & Lopez, V. M. A coloração em Odonata: o que é e como medir. Hashimoto, Y., Endo, T., Itioka, T., Hyodo, F., Yamasaki, T., & Mohamed, M. (2016). Pattern of co-occurrence between ant-mimicking jumping spiders and sympatric ants in a Bornean tropical rainforest. Raffles Bulletin of Zoology, 64, 70–75. Hill, G. E., & McGraw, K. J. (2006). Bird coloration. Vol. I: Mechanisms and measurements. Harvard University Press. Holdridge, L. R. (1987). Ecología basada en zonas de vida (No. 83). IICA Biblioteca Venezuela. Holmes, L. B., Woodrow, C., Sarria-S, F. A., Celiker, E., & Montealegre-Z, F. (2024). Wing mechanics and acoustic communication of a new genus of sylvan katydid (Orthoptera: Tettigoniidae: Pseudophyllinae) from the Central Cordillera cloud forest of Colombia. PeerJ, 12, e17501. Hossie, T. J., & Sherratt, T. N. (2013). Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour, 86(2), 383–389. Houlbert, C. (1920). Les insectes anatomie et physiologique générales: introduction à l'étude de l'entomologie biologique (Vol. 5). Octave Doin. Huang, J. N., Cheng, R. C., Li, D., & Tso, I. M. (2011). Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proceedings of the Royal Society B: Biological Sciences, 278(1710), 1356–1364. Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E., & Safran, R. J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 26(5), 231 239. Hughes, A., Liggins, E., & Stevens, M. (2019). Imperfect camouflage: how to hide in a variable world? Proceedings of the Royal Society B, 286(1902), 20190646. Ito, F., Hashim, R., Huei, Y. S., Kaufmann, E., Akino, T., & Billen, J. (2004). Spectacular Batesian mimicry in ants. Naturwissenschaften, 91, 481–484. Kelly, M. B., McLean, D. J., Wild, Z. K., & Herberstein, M. E. (2021). Measuring mimicry: methods for quantifying visual similarity. Animal Behaviour, 178, 115–126. Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297–315. Klein, L. L., & Svoboda, H. T. (2017). Comprehensive methods for leaf geometric morphometric analyses. Bio-protocol, 7(9), e2269. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. Koenderink, J., van Doorn, A., & Gegenfurtner, K. (2021). RGB colors and ecological optics. Frontiers in Computer Science, 3, 630370. Kumari, S., & Rastogi, N. (2018). Can a common and abundant plant-visiting ant species serve as a model for nine sympatric ant-mimicking arthropod species? Current Science, 114(10), 2189–2192. Lang, A. B., Kalko, E. K., Römer, H., Bockholdt, C., & Dechmann, D. K. (2006). Activity levels of bats and katydids in relation to the lunar cycle. Oecologia, 146, 659–666. Lythgoe, J. N. (1979). The ecology of vision. Clarendon Press. Maderspacher, F., & Stensmyr, M. (2011). Myrmecomorphomania. Current Biology, 21(9), R291 R293. Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs, 9(2), 278–293. Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1–16. Maoka, T., Kawase, N., Hironaka, M., & Nishida, R. (2021). Carotenoids of hemipteran insects, from the perspective of chemo-systematic and chemical ecological studies. Biochemical Systematics and Ecology, 95, 104241. McAtee, W. L. (1912). The experimental method of testing the efficiency of warning and cryptic coloration in protecting animals from their enemies. Proceedings of the Academy of Natural Sciences of Philadelphia, 64, 281–364. McLean, D. J., & Herberstein, M. E. (2021). Mimicry in motion and morphology: do information limitation, trade-offs or compensation relax selection for mimetic accuracy? Proceedings of the Royal Society B, 288(1952), 20210815. Mello, N. D., Sanchez, L. G., & Gawryszewski, F. M. (2022). Spatio-temporal colour variation of arthropods and their environment. Evolutionary Ecology, 36(1), 1–17. Millar, C. S. (2012). Decomposition of coniferous leaf litter. Biology of Plant Litter Decomposition, 1, 105–128. Montealegre-Z., F. (1997). Los Tettigoniidae del Valle del Cauca [Undergraduate thesis]. Universidad del Valle. Montealegre-Z., F., & Morris, G. K. (1999). Songs and systematics of some Tettigoniidae from Colombia and Ecuador, part I. Pseudophyllinae (Orthoptera). Journal of Orthoptera Research, 8, 163–236. Moreno-Rueda, G. (2020). The evolution of crypsis when pigmentation is physiologically costly. Morris, G. K., & Beier, M. (1982). Song structure and description of some Costa Rican katydids (Orthoptera: Tettigoniidae). Transactions of the American Entomological Society, 108, 287–314. Morris, G. K., & Mason, A. C. (1995). Covert stridulation: Novel sound generation by a South American katydid. Naturwissenschaften, 82, 96–98. Morris, G. K., Klimas, D. E., & Nickle, D. A. (1989). Acoustic signals and systematics of falseleaf katydids from Ecuador (Orthoptera, Tettigoniidae, Pseudophyllinae). Transactions of the American Entomological Society, 114(3–4), 215–263. Mugleston, J. D., Song, H., & Whiting, M. F. (2013). A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Molecular Phylogenetics and Evolution, 69(3), 1120–1134. Mugleston, J., Naegle, M., Song, H., Bybee, S. M., Ingley, S., Suvorov, A., & Whiting, M. F. (2016). Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebrate Systematics, 30(4), 335–352. Muhammad, R., Lee, S. H., Htun, K. T., Nettey-Oppong, E. E., Ali, A., Jeong, H. W., ... & Choi, S. H. (2023). Customized integrating-sphere system for absolute color measurement of silk cocoon with corrugated microstructure. Sensors, 23(24), 9778. Müller, F. V. (1878). Über die vortheile der mimicry bei schmetterlingen. Zoologischer Anzeiger, 1, 54. Nelson, X. J., & Jackson, R. R. (2009a). Aggressive use of Batesian mimicry by an ant-like jumping spider. Biology Letters, 5(6), 755–757. Nelson, X. J., & Jackson, R. R. (2009b). Collective Batesian mimicry of ant groups by aggregating spiders. Animal Behaviour, 78(1), 123–129. Nickle, D. A. (1983). A new species of Coccos Island, Costa Rica (Orthoptera: Tettigoniidae). Entomological News, 94(1), 1–6. Nickle, D. A., & Castner, J. L. (1995). Strategies utilized by katydids (Orthoptera: Tettigoniidae) against diurnal predators in rainforests of northeastern Peru. Journal of Orthoptera Research, 4, 75–88. O’Hanlon, J. C., Holwell, G. I., & Herberstein, M. E. (2014). Predatory pollinator deception: Does the orchid mantis resemble a model species? Current Zoology, 60(1), 90–103. Okay, S. (1953). Formation of green pigment and colour changes in Orthoptera. Bulletin of Entomological Research, 44(2), 299–315. Oliveira, R. S., Diniz, P., Araujo-Lima, V., Rosário, G., & Duca, C. (2020). Contrast to background influences predation on aposematic but not cryptic artificial caterpillars in a Brazilian coastal shrubland. Journal of Tropical Ecology, 36(3), 109–114. Parmentier, T., Dekoninck, W., & Wenseleers, T. (2017). Arthropods associate with their red wood ant host without matching nestmate recognition cues. Journal of Chemical Ecology, 43, 644–661. Pekar, S., Martišová, M., Tóthová, A. Š., & Haddad, C. R. (2022). Mimetic accuracy and co evolution of mimetic traits in ant-mimicking species. iScience, 25(10). Pekar, S., Petrakova, L., Bulbert, M. W., Whiting, M. J., & Herberstein, M. E. (2017a). The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. eLife, 6, e22089. Pekar, S., Petrakova, L., Corcobado, G., & Whyte, R. (2017b). Revision of eastern Australian ant mimicking spiders of the genus Myrmarachne (Araneae, Salticidae) reveals a complex of species and forms. Zoological Journal of the Linnean Society, 179(3), 642–676. Perez, K. E., & King-Heiden, T. C. (2018). Geometric morphometrics as a tool to evaluate teratogenic effects in zebrafish (Danio rerio). In Teratogenicity Testing: Methods and Protocols (pp. 373–391). Permana, M. D., Sakti, L. K., Luthfiah, A., Firdaus, M. L., Takei, T., Eddy, D. R., & Rahayu, I. (2023). A simple method for determination of methylene blue using smartphone-based digital image colorimetry. Trends in Sciences, 20(4), 5149. Pflüger, H. J. (1977). The control of the rocking movements of the phasmid Carausius morosus Br. Journal of Comparative Physiology, 120, 181–202. Poulton, E. B. (1890). The colours of animals: Their meaning and use, especially considered in the case of insects (Vol. 67). D. Appleton. PRISMA. (2020). PRISMA 2020 Statement Guidelines. https://www.prisma-statement.org/prisma 2020-statement R Core Team. (2023). R: A language and environment for statistical computing (Version 4.9.4). R Foundation for Statistical Computing. https://www.R-project.org/ Rashed, A., Beatty, C. D., Forbes, M. R., & Sherratt, T. N. (2005). Prey selection by dragonflies in relation to prey size and wasp-like colours and patterns. Animal Behaviour, 70(5), 1195 1202. Robinson, D. J. (1980). Acoustic communication between the sexes of the bush cricket, Leptophyes punctatissima. Physiological Entomology, 5(2), 183–189. Rodgers, G. M., Gladman, N. W., Corless, H. F., & Morrell, L. J. (2013). Costs of colour change in fish: food intake and behavioural decisions. Journal of Experimental Biology, 216(14), 2760–2767. Rohlf, F. (2005). TpsDig, digitize landmarks and outlines (Version 2.05). Department of Ecology and Evolution, State University of New York at Stony Brook. Romero Zúñiga, R. I. (2009). Los saltamontes Pseudophyllinae (Ensifera: Tettigoniidae) de las colecciones entomológicas en Colombia. Romero Zúñiga, R. I., Rengifo, J. C., & Andrade, C. L. (2018). Morfometría comparada de las tegminas de saltamontes (Orthoptera: Tettigoniidae). Boletín Científico Centro de Museos Museo de Historia Natural, 22(1), 151–162. Rudas, G., Marcelo, D., Armenteras, D., Rodríguez, N., Morales, M., Delgado, L. C., & Sarmiento, A. (2007). Biodiversidad y actividad humana: relaciones en ecosistemas de bosque subandino en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: camouflage without crypsis. Science, 327(5961), 51. Speed, M. P. (1999). Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evolutionary Ecology, 13, 755–776. Stevens, M., & Merilaita, S. (Eds.). (2011). Animal camouflage: Mechanisms and function. Cambridge University Press. Subramaniam, N., Tamma, K., & Uma, D. (2023). An arachnid’s guide to being an ant: morphological and behavioral mimicry in ant-mimicking spiders. Behavioral Ecology, 34(1), 99–107. Thayer, A. H. (1896). The law which underlies protective coloration. The Auk, 13(4), 477–482. Thayer, A. H. (1909). Concealing-coloration in the animal kingdom: An exposition of the laws of disguise through color and pattern: Being a summary of Abbott H. Thayer’s discoveries. Macmillan. Thornhill, R. (1979). Male and female sexual selection and the evolution of mating strategies in insects. In Sexual selection and reproductive competition in insects (pp. 81–121). Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.). Thomson Brooks/Cole. Vantaux, A., Roux, O., Magro, A., Ghomsi, N. T., Gordon, R. D., Dejean, A., & Orivel, J. (2010). Host-specific myrmecophily and myrmecophagy in the tropical coccinellid Diomus thoracicus in French Guiana. Biotropica, 42(5), 622–629. White, T. E. (2018). Cryptic coloration. In Encyclopedia of animal cognition and behavior (pp. 1862–1864). Springer. Yang, C., Wang, J., Lyu, N., & Lloyd, H. (2021). Comparison of digital photography and spectrometry for evaluating colour perception in humans and other trichromatic species. Behavioral Ecology and Sociobiology, 75(1), 1–11. |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
dc.format.none.fl_str_mv |
48 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Colombia, Caldas, Manizales Biología |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Colombia, Caldas, Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145011304955904 |
spelling |
Elementos del camuflaje: Relación morfológica entre las tegminas de Pseudophyllinae (Orthoptera: Tettigoniidae) y las hojas de plantas570 - Biología1. Ciencias NaturalesAnálisis RGBHomocromíaHomomorfíaMorfometría geométricaPterochrozinaeTettigoniidaeGeometric morphometricsHomocromyHomomorphyRGB analysisBiologíaInsectoAdaptación biológicaEcologíaBiodiversidadFiguras, tablasLos Pseudophyllinae destacan por su capacidad de camuflaje mediante adaptaciones en sus alas anteriores (tegminas) imitando hojas vivas y/o muertas. Sin embargo, no está claro el mecanismo de conexión entre ambos organismos y como es su mediación morfológica. Por tanto, este estudio tuvo como objetivo evaluar la relación de la morfología desde la homocromía y homomorfía de las tegminas de la subfamilia Pseudophyllinae (Tettigoniidae) con las de las hojas de familias de plantas presentes en el entorno. Para llevar a cabo este trabajo se realizó una búsqueda de información siguiendo las directrices PRISMA y una revisión de colecciones biológicas. Se realizaron cuatro salidas de campo en localidades del departamento de Caldas, en las cuales se recolectaron grillos durante la noche mediante búsquedas activas en árboles y arbustos. Para la información de las plantas del entorno, se realizó una parcela tipo Gentry en el transecto de la búsqueda libre. Posteriormente, las tegminas y hojas fueron escaneadas y analizadas morfométricamente mediante ANOVA Procrustes, PCA y CVA. Asimismo, se fotografiaron para analizar y comparar la coloración de los valores RGB mediante un MANOVA y PERMANOVA. Se encontraron diferencias significativas entre la forma de los organismos (p=0,003). Para el color, no se encontraron diferencias significativas entre las tegminas y hojas (p=0,165) pero si entre las tegminas y hojarasca (p=0,01). Estos resultados concuerdan con lo establecido como mimetismo imperfecto este señala que una mayor semejanza entre el modelo y la copia, puede afectar a este en términos de su fitness. Finalmente, los resultados sugieren que en el mecanismo críptico hoja-tegmina parecerse solo en color, pero no en la forma es suficiente para engañar al depredador sin afectar su fitness.Pseudophyllinae are notable for their camouflage ability, achieved through adaptations in their forewings (tegmina) that mimic living and/or dead leaves. However, the mechanism linking these organisms and the morphological mediation involved remains unclear. Therefore, this study aimed to evaluate the relationship between the morphology specifically the homochromy (color matching) and homomorphy (shape matching) of the tegmina in the Pseudophyllinae subfamily (Tettigoniidae) and the leaves of plant families in their environment. To conduct this research, we performed a systematic literature search following PRISMA guidelines and reviewed biological collections. Fieldwork was carried out at four locations in the Caldas department, where katydids were collected at night through active searches on trees and shrubs. For environmental plant data, a Gentry-style plot was established along the free-search transect. Subsequently, the tegmina and leaves were scanned and analyzed morphometrically using Procrustes ANOVA, PCA, and CVA. They were also photographed to analyze and compare RGB color values using MANOVA and PERMANOVA. Significant differences were found in shape between the organisms (p = 0.003). For color, no significant differences were detected between tegmina and leaves (p = 0.165), but differences were found between tegmina and leaf litter (p = 0.01). These results align with the concept of imperfect mimicry, which suggests that a higher resemblance between the model (leaf) and the mimic (tegmina) may negatively impact the mimic’s fitness. Finally, findings indicate that in the leaf-tegmina cryptic mechanism, matching color alone—without matching shape—is sufficient to deceive predators without compromising fitness.Introducción -- Capítulo 1: Revisión bibliográfica y de colecciones entomológicas -- Materiales y métodos -- Revisión bibliográfica sobre relación tamaño-forma de artrópodos que presentan cripsis -- Revisión de colecciones entomológicas -- Resultados -- Revisión bibliográfica sobre relación tamaño-forma de artrópodos que presentan cripsis -- Revisión de colecciones entomológicas -- Discusión -- Revisión bibliográfica sobre relación tamaño-forma de artrópodos que presentan cripsis -- Revisión de colecciones entomológicas -- Capítulo 2: Relación morfológica entre las tegminas de Pseudophyllinae y las hojas de plantas -- Materiales y métodos -- Área de estudio -- Colecta de muestras entomológicas -- Colecta de muestras botánicas -- Morfometría y análisis RGB -- Comparación y análisis estadísticos -- Resultados -- Muestras entomológicas -- Muestras botánicas -- Homomorfía (Análisis morfométricos) -- Homocromía (Análisis RGB) -- Discusión -- Homomorfía (Análisis morfométricos) -- Homocromía (Análisis RGB) -- Conclusiones y recomendaciones -- Conclusiones -- Recomendaciones -- Referencias bibliográficasPregradoLos muestreos fueron realizados en Colombia en cuatro localidades del departamento de Caldas: en el Jardín Botánico (T1) de la Universidad de Caldas, del municipio de Manizales. Un fragmento de bosque periurbano subandino altamente perturbado por la actividad antropogénica (Rudas et al., 2007), ubicado en medio de la ciudad con un rango altitudinal de 2100-2150 m.s.n.m. y a los 5°03'22"N 75°29'44"W; en la Reserva Natural Riomanso (T2), del municipio de Norcasia. Un remanente de bosque seco tropical (bs-T) (Holdridge, 1979) con un rango altitudinal de 200 a 280 m.s.n.m. y a los 5°40'3"N 74°46'43"W; en el Ecoparque los Yarumos (T3), del municipio de Manizales, un área protegida de bosque húmedo tropical (bh-T) (Rudas et al., 2007) con un rango altitudinal de 2000 a 2200 m.s.n.m. a los 5°03'57"N 75°28'53"W y en la Reserva Forestal Protectora Bosques Chec (T4), un área protegida de bh-T (Rudas et al., 2007) con un rango altitudinal entre 2300 y 2600 m.s.n.m. a los 5°01'48"N 75°24'44"W (Fig. 8; Tabla 2).Biólogo(a)EntomologíaUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesBiologíaLlano Arias, Camilo AndrésBIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)Piedrahita Bonilla, Oscar2025-06-10T21:10:23Z2030-01-012025-06-10T21:10:23Z2025-06-10Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis48 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22361Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAslam, M., Nedvěd, O., & Sam, K. (2020). Attacks by predators on artificial cryptic and aposematic insect larvae. Entomologia Experimentalis et Applicata, 168(2), 184–190.Baker, A., Sarria-S, F. A., Morris, G. K., Jonsson, T., & Montealegre-Z, F. (2017). Wing resonances in a new dead-leaf-mimic katydid (Tettigoniidae: Pterochrozinae) from the Andean cloud forests. Zoologischer Anzeiger, 270, 60–70.Barrone, J., Vidal, M. C., & Stevenson, R. (2023). Sphingid caterpillars’ conspicuous patches do not function as distractive marks or warning against predators. Ecology and Evolution, 13(7), e10334Bates, H. W. (1862). Contributions to an Insect Fauna of the Amazon Valley. —Lepidoptera: — Heliconinae. Zoological Journal of the Linnean Society, 6(22), 73–77.Braun, H. (2002). Los grillos (Orthoptera: Tettigoniidae) de un bosque de niebla en los andes del Ecuador - investigaciones faunísticas, bioacústicas y ecológicas [Doctoral thesis]. Dennaturwissenschaftlichen fakultâten der frederich- Alexander-universitât eilangen NûmburgBraun, H. (2015). On the family-group ranks of katydids (Orthoptera, Tettigoniidae). Zootaxa, 3956(1), 149–150.Breed, M. D., & Moore, J. (2021). Animal behavior. Academic Press.Briggs, D. E., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246(4927), 241–243.Briggs, D. E., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246(4927), 241–243.Castner, J. L., & Nickle, D. A. (1995). Notes on the biology and ecology of the leaf-mimicking katydid Typophyllum bolivari Vignon (Orthoptera: Tettigoniidae: Pseudophyllinae: Pterochrozini). Journal of Orthoptera Research, 105–109Chamorro-Rengifo, J., Cadena-Castaneda, O. J., Braun, H., Montealegre-Z, F., Romero, R. I., Serna Marquez, F. H., & Gonzales, R. (2011). Checklist and new distribution records of katydids (Orthoptera: Tettigoniidae) from Colombia. Zootaxa, 3023(1), 1–42.Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. Pseudophyllinae Burmeister, 1838. Orthoptera Species File. Retrieved on 2025-03-28 from http://orthoptera.speciesfile.org/otus/802833/overviewCigliano, M. M., Braun, H., Eades, D. C., & Otte, D. Tettigoniidae Krauss, 1902. Orthoptera Species File. Retrieved on 2025-04-29 from http://orthoptera.speciesfile.org/otus/841537/overviewCott, H. B. (1940). Adaptive coloration in animals.Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 165–193.Cushing, P. E. (2012). Spider‐ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology, 2012(1), 151989.Durkee, C. A., Weiss, M. R., & Uma, D. B. (2011). Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders. Environmental Entomology, 40(5), 1223–1231.Edmunds, M. (2000). Why are there good and poor mimics? Biological Journal of the Linnean Society, 70(3), 459–466.Elia, M., Khalil, A., Bagnères, A. G., & Lorenzi, M. C. (2018). Appeasing their hosts: a novel strategy for parasite brood. Animal Behaviour, 146, 123–134.Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315–352.Endler, J. A., & Mielke Jr, P. W. (2005). Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86(4), 405–431.Fernández-Lereé, C. G., Ávila-García, A., Sánchez, C., Borda, E., López-Vivas, J. M., Huato Soberanis, L., & Gómez-Gutiérrez, J. (2023). Zenopontonia soror caridean shrimp exhibits dynamical mimicry with sea star host switching. Journal of Experimental Marine Biology and Ecology, 568, 151936.Fischer, G., Friedman, N. R., Huang, J.-P., Narula, N., Knowles, L. L., Fisher, B. L., Mikheyev, A. S., & Economo, E. P. (2020). Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Current Biology, 30(18), 3639–3646.e4.Font, E. (2019). Mimicry, camouflage and perceptual exploitation: the evolution of deception in nature. Biosemiotics, 12(1), 7–24.Gallego-Ropero, M. C., & Feitosa, R. M. (2014). Evidences of batesian mimicry and parabiosis in ants of the Brazilian Savanna. Sociobiology, 61(3), 281.Gavini, S. S., Quintero, C., & Tadey, M. (2019). Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecologica, 95, 100–107.Gentry, A. H. (1982). Patterns of neotropical plant species diversity. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary Biology (Vol. 15, pp. 1–84). Springer.Goodman, A. (2021). Correlation between substrate selection and body color of neotropical katydids (Orthoptera: Tettigoniidae). Ecological Entomology, 46(2), 487–491.Guillermo-Ferreira, R., Cezário, R. R., Datto-Liberato, F. H., & Lopez, V. M. A coloração em Odonata: o que é e como medir.Hashimoto, Y., Endo, T., Itioka, T., Hyodo, F., Yamasaki, T., & Mohamed, M. (2016). Pattern of co-occurrence between ant-mimicking jumping spiders and sympatric ants in a Bornean tropical rainforest. Raffles Bulletin of Zoology, 64, 70–75.Hill, G. E., & McGraw, K. J. (2006). Bird coloration. Vol. I: Mechanisms and measurements. Harvard University Press.Holdridge, L. R. (1987). Ecología basada en zonas de vida (No. 83). IICA Biblioteca Venezuela.Holmes, L. B., Woodrow, C., Sarria-S, F. A., Celiker, E., & Montealegre-Z, F. (2024). Wing mechanics and acoustic communication of a new genus of sylvan katydid (Orthoptera: Tettigoniidae: Pseudophyllinae) from the Central Cordillera cloud forest of Colombia. PeerJ, 12, e17501.Hossie, T. J., & Sherratt, T. N. (2013). Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour, 86(2), 383–389.Houlbert, C. (1920). Les insectes anatomie et physiologique générales: introduction à l'étude de l'entomologie biologique (Vol. 5). Octave Doin.Huang, J. N., Cheng, R. C., Li, D., & Tso, I. M. (2011). Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proceedings of the Royal Society B: Biological Sciences, 278(1710), 1356–1364.Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E., & Safran, R. J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 26(5), 231 239.Hughes, A., Liggins, E., & Stevens, M. (2019). Imperfect camouflage: how to hide in a variable world? Proceedings of the Royal Society B, 286(1902), 20190646.Ito, F., Hashim, R., Huei, Y. S., Kaufmann, E., Akino, T., & Billen, J. (2004). Spectacular Batesian mimicry in ants. Naturwissenschaften, 91, 481–484.Kelly, M. B., McLean, D. J., Wild, Z. K., & Herberstein, M. E. (2021). Measuring mimicry: methods for quantifying visual similarity. Animal Behaviour, 178, 115–126.Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297–315.Klein, L. L., & Svoboda, H. T. (2017). Comprehensive methods for leaf geometric morphometric analyses. Bio-protocol, 7(9), e2269.Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357.Koenderink, J., van Doorn, A., & Gegenfurtner, K. (2021). RGB colors and ecological optics. Frontiers in Computer Science, 3, 630370.Kumari, S., & Rastogi, N. (2018). Can a common and abundant plant-visiting ant species serve as a model for nine sympatric ant-mimicking arthropod species? Current Science, 114(10), 2189–2192.Lang, A. B., Kalko, E. K., Römer, H., Bockholdt, C., & Dechmann, D. K. (2006). Activity levels of bats and katydids in relation to the lunar cycle. Oecologia, 146, 659–666.Lythgoe, J. N. (1979). The ecology of vision. Clarendon Press.Maderspacher, F., & Stensmyr, M. (2011). Myrmecomorphomania. Current Biology, 21(9), R291 R293.Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs, 9(2), 278–293.Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1–16.Maoka, T., Kawase, N., Hironaka, M., & Nishida, R. (2021). Carotenoids of hemipteran insects, from the perspective of chemo-systematic and chemical ecological studies. Biochemical Systematics and Ecology, 95, 104241.McAtee, W. L. (1912). The experimental method of testing the efficiency of warning and cryptic coloration in protecting animals from their enemies. Proceedings of the Academy of Natural Sciences of Philadelphia, 64, 281–364.McLean, D. J., & Herberstein, M. E. (2021). Mimicry in motion and morphology: do information limitation, trade-offs or compensation relax selection for mimetic accuracy? Proceedings of the Royal Society B, 288(1952), 20210815.Mello, N. D., Sanchez, L. G., & Gawryszewski, F. M. (2022). Spatio-temporal colour variation of arthropods and their environment. Evolutionary Ecology, 36(1), 1–17.Millar, C. S. (2012). Decomposition of coniferous leaf litter. Biology of Plant Litter Decomposition, 1, 105–128.Montealegre-Z., F. (1997). Los Tettigoniidae del Valle del Cauca [Undergraduate thesis]. Universidad del Valle.Montealegre-Z., F., & Morris, G. K. (1999). Songs and systematics of some Tettigoniidae from Colombia and Ecuador, part I. Pseudophyllinae (Orthoptera). Journal of Orthoptera Research, 8, 163–236.Moreno-Rueda, G. (2020). The evolution of crypsis when pigmentation is physiologically costly.Morris, G. K., & Beier, M. (1982). Song structure and description of some Costa Rican katydids (Orthoptera: Tettigoniidae). Transactions of the American Entomological Society, 108, 287–314.Morris, G. K., & Mason, A. C. (1995). Covert stridulation: Novel sound generation by a South American katydid. Naturwissenschaften, 82, 96–98.Morris, G. K., Klimas, D. E., & Nickle, D. A. (1989). Acoustic signals and systematics of falseleaf katydids from Ecuador (Orthoptera, Tettigoniidae, Pseudophyllinae). Transactions of the American Entomological Society, 114(3–4), 215–263.Mugleston, J. D., Song, H., & Whiting, M. F. (2013). A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Molecular Phylogenetics and Evolution, 69(3), 1120–1134.Mugleston, J., Naegle, M., Song, H., Bybee, S. M., Ingley, S., Suvorov, A., & Whiting, M. F. (2016). Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebrate Systematics, 30(4), 335–352.Muhammad, R., Lee, S. H., Htun, K. T., Nettey-Oppong, E. E., Ali, A., Jeong, H. W., ... & Choi, S. H. (2023). Customized integrating-sphere system for absolute color measurement of silk cocoon with corrugated microstructure. Sensors, 23(24), 9778.Müller, F. V. (1878). Über die vortheile der mimicry bei schmetterlingen. Zoologischer Anzeiger, 1, 54.Nelson, X. J., & Jackson, R. R. (2009a). Aggressive use of Batesian mimicry by an ant-like jumping spider. Biology Letters, 5(6), 755–757.Nelson, X. J., & Jackson, R. R. (2009b). Collective Batesian mimicry of ant groups by aggregating spiders. Animal Behaviour, 78(1), 123–129.Nickle, D. A. (1983). A new species of Coccos Island, Costa Rica (Orthoptera: Tettigoniidae). Entomological News, 94(1), 1–6.Nickle, D. A., & Castner, J. L. (1995). Strategies utilized by katydids (Orthoptera: Tettigoniidae) against diurnal predators in rainforests of northeastern Peru. Journal of Orthoptera Research, 4, 75–88.O’Hanlon, J. C., Holwell, G. I., & Herberstein, M. E. (2014). Predatory pollinator deception: Does the orchid mantis resemble a model species? Current Zoology, 60(1), 90–103.Okay, S. (1953). Formation of green pigment and colour changes in Orthoptera. Bulletin of Entomological Research, 44(2), 299–315.Oliveira, R. S., Diniz, P., Araujo-Lima, V., Rosário, G., & Duca, C. (2020). Contrast to background influences predation on aposematic but not cryptic artificial caterpillars in a Brazilian coastal shrubland. Journal of Tropical Ecology, 36(3), 109–114.Parmentier, T., Dekoninck, W., & Wenseleers, T. (2017). Arthropods associate with their red wood ant host without matching nestmate recognition cues. Journal of Chemical Ecology, 43, 644–661.Pekar, S., Martišová, M., Tóthová, A. Š., & Haddad, C. R. (2022). Mimetic accuracy and co evolution of mimetic traits in ant-mimicking species. iScience, 25(10).Pekar, S., Petrakova, L., Bulbert, M. W., Whiting, M. J., & Herberstein, M. E. (2017a). The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. eLife, 6, e22089.Pekar, S., Petrakova, L., Corcobado, G., & Whyte, R. (2017b). Revision of eastern Australian ant mimicking spiders of the genus Myrmarachne (Araneae, Salticidae) reveals a complex of species and forms. Zoological Journal of the Linnean Society, 179(3), 642–676.Perez, K. E., & King-Heiden, T. C. (2018). Geometric morphometrics as a tool to evaluate teratogenic effects in zebrafish (Danio rerio). In Teratogenicity Testing: Methods and Protocols (pp. 373–391).Permana, M. D., Sakti, L. K., Luthfiah, A., Firdaus, M. L., Takei, T., Eddy, D. R., & Rahayu, I. (2023). A simple method for determination of methylene blue using smartphone-based digital image colorimetry. Trends in Sciences, 20(4), 5149.Pflüger, H. J. (1977). The control of the rocking movements of the phasmid Carausius morosus Br. Journal of Comparative Physiology, 120, 181–202.Poulton, E. B. (1890). The colours of animals: Their meaning and use, especially considered in the case of insects (Vol. 67). D. Appleton.PRISMA. (2020). PRISMA 2020 Statement Guidelines. https://www.prisma-statement.org/prisma 2020-statementR Core Team. (2023). R: A language and environment for statistical computing (Version 4.9.4). R Foundation for Statistical Computing. https://www.R-project.org/Rashed, A., Beatty, C. D., Forbes, M. R., & Sherratt, T. N. (2005). Prey selection by dragonflies in relation to prey size and wasp-like colours and patterns. Animal Behaviour, 70(5), 1195 1202.Robinson, D. J. (1980). Acoustic communication between the sexes of the bush cricket, Leptophyes punctatissima. Physiological Entomology, 5(2), 183–189.Rodgers, G. M., Gladman, N. W., Corless, H. F., & Morrell, L. J. (2013). Costs of colour change in fish: food intake and behavioural decisions. Journal of Experimental Biology, 216(14), 2760–2767.Rohlf, F. (2005). TpsDig, digitize landmarks and outlines (Version 2.05). Department of Ecology and Evolution, State University of New York at Stony Brook.Romero Zúñiga, R. I. (2009). Los saltamontes Pseudophyllinae (Ensifera: Tettigoniidae) de las colecciones entomológicas en Colombia.Romero Zúñiga, R. I., Rengifo, J. C., & Andrade, C. L. (2018). Morfometría comparada de las tegminas de saltamontes (Orthoptera: Tettigoniidae). Boletín Científico Centro de Museos Museo de Historia Natural, 22(1), 151–162.Rudas, G., Marcelo, D., Armenteras, D., Rodríguez, N., Morales, M., Delgado, L. C., & Sarmiento, A. (2007). Biodiversidad y actividad humana: relaciones en ecosistemas de bosque subandino en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: camouflage without crypsis. Science, 327(5961), 51.Speed, M. P. (1999). Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evolutionary Ecology, 13, 755–776.Stevens, M., & Merilaita, S. (Eds.). (2011). Animal camouflage: Mechanisms and function. Cambridge University Press.Subramaniam, N., Tamma, K., & Uma, D. (2023). An arachnid’s guide to being an ant: morphological and behavioral mimicry in ant-mimicking spiders. Behavioral Ecology, 34(1), 99–107.Thayer, A. H. (1896). The law which underlies protective coloration. The Auk, 13(4), 477–482.Thayer, A. H. (1909). Concealing-coloration in the animal kingdom: An exposition of the laws of disguise through color and pattern: Being a summary of Abbott H. Thayer’s discoveries. Macmillan.Thornhill, R. (1979). Male and female sexual selection and the evolution of mating strategies in insects. In Sexual selection and reproductive competition in insects (pp. 81–121).Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.). Thomson Brooks/Cole.Vantaux, A., Roux, O., Magro, A., Ghomsi, N. T., Gordon, R. D., Dejean, A., & Orivel, J. (2010). Host-specific myrmecophily and myrmecophagy in the tropical coccinellid Diomus thoracicus in French Guiana. Biotropica, 42(5), 622–629.White, T. E. (2018). Cryptic coloration. In Encyclopedia of animal cognition and behavior (pp. 1862–1864). Springer.Yang, C., Wang, J., Lyu, N., & Lloyd, H. (2021). Comparison of digital photography and spectrometry for evaluating colour perception in humans and other trichromatic species. Behavioral Ecology and Sociobiology, 75(1), 1–11.https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/223612025-06-11T08:00:38Z |