Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)

Ilustraciones, mapas, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2026
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/26538
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/26538
Palabra clave:
Estructuración genética
Nicho ecológico
Anfibios andinos
Modelos de nicho ecológico
Biología
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_563c3478a119a1cf9a3083b44bac634b
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/26538
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
title Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
spellingShingle Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
Estructuración genética
Nicho ecológico
Anfibios andinos
Modelos de nicho ecológico
Biología
title_short Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
title_full Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
title_fullStr Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
title_full_unstemmed Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
title_sort Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)
dc.contributor.none.fl_str_mv Rodríguez Rey, Ghennie T.
Márquez Pizano, Roberto
Forero Rodríguez, Juan Sebastián
Grupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)
dc.subject.none.fl_str_mv Estructuración genética
Nicho ecológico
Anfibios andinos
Modelos de nicho ecológico
Biología
topic Estructuración genética
Nicho ecológico
Anfibios andinos
Modelos de nicho ecológico
Biología
description Ilustraciones, mapas, gráficas
publishDate 2026
dc.date.none.fl_str_mv 2026-01-23T16:27:52Z
2026-01-23T16:27:52Z
2026-01-22
2030-01-01
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/26538
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/26538
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/https://doi.org/10.1111/ecog.01132
Allendorf, F. W., Luikart, G., & Aitken, S. N. (2012). Conservation and the genetics of populations (2 ed.). Wiley-Blackwell.
Amézquita, A., Márquez, R., Medina, R., Mejía-Vargas, D., Kahn, T. R., Suárez, G., & Mazariegos, L. (2013). A new species of Andean poison frog, Andinobates (Anura: Dendrobatidae), from the northwestern Andes of Colombia. Zootaxa, 3620(1), 163–178. https://doi.org/10.11646/zootaxa.3620.1.8
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32-46. https://doi.org/https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Arteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L.,…Guayasamin, J. M. (2016). Comparative Phylogeography Reveals Cryptic Diversity and Repeated Patterns of Cladogenesis for Amphibians and Reptiles in Northwestern Ecuador. PLOS ONE, 11(4), e0151746. https://doi.org/10.1371/journal.pone.0151746
Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729-744. https://doi.org/https://doi.org/10.1046/j.1365-294X.2003.02063.x
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T.,…Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2011.02.011
Bockelmann, A. C., Reusch, T. B. H., Bijlsma, R., & Bakker, J. P. (2003). Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Molecular Ecology, 12(2), 505-515. https://doi.org/https://doi.org/10.1046/j.1365- 294X.2003.01706.x
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G.,…Guisan, A. (2012). MeaSuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00698.x
Brown, Jason & Evan, Twomey & Amézquita, Adolfo & Barbosa, Moisés & Souza, De & Caldwell, Jana-Lee & Lötters, Stefan & von May, Rudolf & Melo-Sampaio, Paulo & Mejia-Vargas, Daniel & Perez Peña, Pedro & Pepper, Mark & Poelman, Erik & Sanchez-Rodriguez, Manuel & Summers, Kyle. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa. 3083. 1-120. 10.1055/sos-SD-201-00174
Casas‐Cardona, S., Márquez, R., Vargas‐Salinas, F., & Hebets, E. (2018). Different colour morphs of the poison frog Andinobates bombetes (Dendrobatidae) are similarly effective visual predator deterrents. Ethology, 124(4), 245-255. https://doi.org/10.1111/eth.12729
Chaves-Portilla, G., Salazar, E., Gil-Acero, J., Dorado-Correa, A., Márquez, R., Rueda-Almonacid, V., & Amézquita, A. (2021). A new species of Andean golden poison frog (Andinobates, Dendrobatidae) from the Eastern Andes of Colombia. Zootaxa, 5047, 531-546. https://doi.org/10.11646/zootaxa.5047.5.3
Clark, M. I., Bradburd, G. S., Akopyan, M., Vega, A., Rosenblum, E. B., & Robertson, J. M. (2021). Genetic isolation by distance underlies color pattern divergence in red-eyed treefrogs (<em>Agalychnis callidryas</em>). bioRxiv, 2021.2005.2021.445051. https://doi.org/10.1101/2021.05.21.445051
Diniz-Filho, J. A. F., Rodrigues, H., Telles, M. P. D. C., Oliveira, G. D., Terribile, L. C., Soares, T. N., & Nabout, J. C. (2015). Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Molecular Ecology Resources, 15(5), 1059-1066. https://doi.org/https://doi.org/10.1111/1755-0998.12374
Dixon, P. (2003), VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14: 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
Drake, J. (2015). Range bagging: A new method for ecological niche modelling from presence-only data. Journal of the Royal Society, Interface / the Royal Society, 12. https://doi.org/10.1098/rsif.2015.0086
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
Etherington, T. (2016). Least-Cost Modelling and Landscape Ecology: Concepts, Applications, and Opportunities. Current Landscape Ecology Reports, 1. https://doi.org/10.1007/s40823-016- 0006-9
Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic Consequences of Range Expansions. Annual Review of Ecology, Evolution, and Systematics, 40, 481-501.
Farber, O., & Kadmon, R. (2003). Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160(1), 115-130. https://doi.org/https://doi.org/10.1016/S0304-3800(02)00327-7
Ferreira, A. S., Lima, A. P., Jehle, R., Ferrao, M., & Stow, A. (2020). The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. In J Hered (Vol. 111, pp. 457-470). https://doi.org/10.1093/jhered/esaa034
Frankham, R. (2003). Genetics and conservation biology. Comptes Rendus. Biologies, 326(S1), 22-29. https://doi.org/10.1016/S1631-0691(03)00023-4
Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). Introduction to conservation genetics. Cambridge University Press.
Funk, W. C., Blouin, M. S., Corn, P. S., Maxell, B. A., Pilliod, D. S., Amish, S., & Allendorf, F. W. (2005). Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 14(2), 483-496. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02426.x
Genty, G., Guarnizo, C. E., Ramírez, J. P., Barrientos, L., & Crawford, A. J. (2020). Landscape genetics and species delimitation in the Andean palm rocket frog, <em>Rheobates</em> spp. bioRxiv, 2020.2008.2006.239137. https://doi.org/10.1101/2020.08.06.239137
Ghassemi-Khademi, T., Khosravi, R., Sadeghi, S., Hedayat, N., Silva, D. P., Shebl, M.,…Al-Raisi, A. A. (2023). Phylogenetic structure and ecological niche modeling of the red dwarf honey bee across its native range. Apidologie, 54(5), 47. https://doi.org/10.1007/s13592-023-01028-6
Gombin, J., Vaidyanathan, R., & Agafonkin, V. (2025). concaveman: A Very Fast 2D Concave Hull Algorithm. In https://joelgombin.github.io/concaveman/
González-del-Pliego, P., Scheffers, B. R., Freckleton, R. P., Basham, E. W., Araújo, M. B., AcostaGalvis, A. R.,…Edwards, D. P. (2020). Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. Journal of Animal Ecology, 89(11), 2451-2460. https://doi.org/https://doi.org/10.1111/1365-2656.13309
González-Acosta, C., Amézquita, A., & Vargas-Salinas, F. (2024). Variation in the advertisement call of the poison frog Andinobates bombetes relates to geographic distance between populations, but not to divergence in warning coloration. Studies on Neotropical Fauna and Environment, 59(3), 686–698. https://doi.org/10.1080/01650521.2023.2238560
Goudet, J. (2005). hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5(1), 184-186. https://doi.org/https://doi.org/10.1111/j.1471- 8286.2004.00828.x
Goutte, S., & Boissinot, S. (2025). Long-term evolutionary persistence of a cryptic color polymorphism in frogs. Proceedings of the National Academy of Sciences, 122(37), e2425898122. https://doi.org/10.1073/pnas.2425898122
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., & Moritz, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs Evolution, 58(8), 1781-1793. https://doi.org/https://doi.org/10.1111/j.0014- 3820.2004.tb00461.x
Grant, W. A. S., & Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5), 415-426. https://doi.org/10.1093/jhered/89.5.415
Grant, Taran & Rada, Marco & Anganoy-Criollo, Marvin & Batista, Abel & Dias, Pedro & Jeckel, Adriana & Jacob Machado, Denis & Rueda-Almonacid, José. (2017). Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). South American Journal of Herpetology. 12. S1-S90. 10.2994/SAJH-D-17-00017.1.
Guarnizo, C. E., & Cannatella, D. C. (2014). Geographic Determinants of Gene Flow in Two Sister Species of Tropical Andean Frogs. Journal of Heredity, 105(2), 216-225. https://doi.org/10.1093/jhered/est092
Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity. PLOS ONE, 10(5), e0127312. https://doi.org/10.1371/journal.pone.0127312
Hijmans, R. J. (2025). terra: Spatial Data Analysis. In https://rspatial.org/terra/
Hillman, S. S., Drewes, R. C., Hedrick, M. S., & Hancock, T. V. (2014). Physiological Vagility: Correlations with Dispersal and Population Genetic Structure of Amphibians. Physiological and Biochemical Zoology, 87(1), 105-112. https://doi.org/10.1086/671109
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
Jiang, S., Luo, M.-X., Gao, R.-H., Zhang, W., Yang, Y.-Z., Li, Y.-J., & Liao, P.-C. (2019). Isolationby-environment as a driver of genetic differentiation among populations of the only broadleaved evergreen shrub Ammopiptanthus mongolicus in Asian temperate deserts. Scientific Reports, 9(1), 12008. https://doi.org/10.1038/s41598-019-48472-y
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics (Oxford, England), 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Joyce, A. L., Bernal, J. S., Vinson, S. B., Hunt, R. E., Schulthess, F., & Medina, R. F. (2010). Geographic variation in male courtship acoustics and genetic divergence of populations of the Cotesia flavipes species complex. Entomologia Experimentalis et Applicata, 137(2), 153-164. https://doi.org/https://doi.org/10.1111/j.1570-7458.2010.01048.x
Juarez, B. H., & O’Connell, L. A. (2023). Climate and Morphology Drive Breeding Periods in Frogs. bioRxiv, 2022.2007.2021.501061. https://doi.org/10.1101/2022.07.21.501061
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W.,…Kessler, M. (2017). Climatologies at high resolution for the earth’s land Surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
Kassambara, A. (2025). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. In https://CRAN.R-project.org/package=rstatix
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. https://doi.org/10.1007/BF01731581
Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171- 2186. https://doi.org/https://doi.org/10.1002/hyp.9740
Leigh, J., & Bryant, D. (2015). PopART: Full-Feature Software for Haplotype Network Construction. Methods in Ecology and Evolution, 6. https://doi.org/10.1111/2041-210X.12410
Liu, Y., Dietrich, C. H., & Wei, C. (2019). Genetic divergence, population differentiation and phylogeography of the cicada Subpsaltria yangi based on molecular and acoustic data: an example of the early stage of speciation? BMC Evolutionary Biology, 19(1), 5. https://doi.org/10.1186/s12862-018-1317-8
Liu, Y., Dietrich, C. H., & Wei, C. (2024). The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Molecular Phylogenetics and Evolution, 199, 108146. https://doi.org/https://doi.org/10.1016/j.ympev.2024.108146
Maddison, W., & Maddison, D. (2009). MESQUITE: a modular system for evolutionary analysis. Evolution, 11.
Merow, C., Smith, M., & Silander, J. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Meza-Joya, F. L., & Torres, M. (2016). Spatial diversity patterns of Pristimantis frogs in the Tropical Andes. Ecology and Evolution, 6(7), 1901-1913. https://doi.org/https://doi.org/10.1002/ece3.1968
Mejía-Vargas, D., Ramírez-Castañeda, V., Dorado-Correa, A., Tolosa, Y., Batista, A.A., Barrientos, L.S., Bravo-Valencia, L., Cely-Santos, S.M., Galindo-Uribe, D.M., Gil-Acero, J., Hernández, J.A., Lamadrid-Feris, F., Luna-Mora, V.F., Medina, R., Palacios-Rodríguez, P., Salazar, E.N., Vargas-Salinas, F., Amézquita, A., Márquez, R. En revisión. A DNA sequence variation dataset across the understudied Andean poison frog genus Andinobates. Ecology.
Mikulicek, P., & Pišút, P. (2012). Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape. European Journal of Wildlife Research, 58. https://doi.org/10.1007/s10344-012-0631-5
Miller, M., & Pfeiffer, W. T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees (Vol. 14). https://doi.org/10.1109/GCE.2010.5676129
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
Montero-Mendieta, S., De la Riva, I., Irisarri, I., Leonard, J. A., Webster, M. T., & Vilà, C. (2021). Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 161, 107167. https://doi.org/https://doi.org/10.1016/j.ympev.2021.107167
Morente-López, J., Kass, J. M., Lara-Romero, C., Serra-Diaz, J. M., Soto-Correa, J. C., Anderson, R. P., & Iriondo, J. M. (2022). Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. Global Change Biology, 28(13), 4143-4162. https://doi.org/https://doi.org/10.1111/gcb.16181
Mosher, C. M., Johnson, C. J., & Murray, B. W. (2022). Reduced genetic diversity associated with the northern expansion of an amphibian species with high habitat specialization, Ascaphus truei, resolved using two types of genetic markers. Ecology and Evolution, 12(3), e8716. https://doi.org/https://doi.org/10.1002/ece3.8716
Moss, J. B., Tumulty, J. P., & Fischer, E. K. (2023). Evolution of acoustic signals associated with cooperative parental behavior in a poison frog. Proceedings of the National Academy of Sciences, 120(17), e2218956120. https://doi.org/10.1073/pnas.2218956120
Muñoz, A., Velasquez-Alvarez, A., Guarnizo, C., & Crawford, A. (2014). Of peaks and valleys: Testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid-elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42. https://doi.org/10.1111/jbi.12409
Myers, C. W., & Daly, J. W. (1980). Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. American Museum novitates ; no. 2692.
Navas, C. (2006). Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology. Integrative and comparative biology, 46, 82-91. https://doi.org/10.1093/icb/icj001
Nowakowski, A. J., Watling, J. I., Whitfield, S. M., Todd, B. D., Kurz, D. J., & Donnelly, M. A. (2017). Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conservation Biology, 31(1), 96-105. https://doi.org/https://doi.org/10.1111/cobi.12769
Nuñez-Penichet, C., Cobos, M. E., & Soberón, J. (2021). Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Frontiers of Biogeography, 13. https://doi.org/10.21425/F5FBG52142
Páez-Vacas, M. I., Trumbo, D. R., & Funk, W. C. (2022). Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity, 128(1), 33-44. https://doi.org/10.1038/s41437-021-00481-2
Paradis, E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics, 26(3), 419-420. https://doi.org/10.1093/bioinformatics/btp696
Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. https://doi.org/10.1093/bioinformatics/bty633
Pebesma, E., & Bivand, R. (2025). sf: Simple Features for R. In https://r-spatial.github.io/sf/
Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M., & Araújo, M. (2011). Ecological Niches and Geographic Distributions (Vol. 49). https://doi.org/10.1515/9781400840670
Pinto-Sánchez, N. R., Ibáñez, R., Madriñán, S., Sanjur, O. I., Bermingham, E., & Crawford, A. J. (2012). The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phylogenetics and Evolution, 62(3), 954-972. https://doi.org/https://doi.org/10.1016/j.ympev.2011.11.022
Pongratz, N., Gerace, L., & Michiels, N. K. (2002). Genetic differentiation within and between populations of a hermaphroditic freshwater planarian. Heredity, 89(1), 64-69. https://doi.org/10.1038/sj.hdy.6800102
Pröhl, H., Ron, S. R., & Ryan, M. J. (2010). Ecological and genetic divergence between two lineages of Middle American túngara frogs Physalaemus (= Engystomops) pustulosus. BMC Evolutionary Biology, 10(1), 146. https://doi.org/10.1186/1471-2148-10-146
Rambaut, A. (2018). FigTree v1. 4.4. In.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032
Rojas, B., & Vargas-Salinas, F. (2024). Developments in the study of poison frog evolutionary ecology II: decoding hidden messages in their coloration and unique behaviours. Evolutionary Ecology, 38(5), 551-570. https://doi.org/10.1007/s10682-024-10316-1
Schield, D. R., Adams, R. H., Card, D. C., Corbin, A. B., Jezkova, T., Hales, N. R.,…Castoe, T. A. (2018). Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus). Molecular Phylogenetics and Evolution, 127, 669-681. https://doi.org/https://doi.org/10.1016/j.ympev.2018.06.013
Simões, M., Romero-Álvarez, D., Nuñez-Penichet, C., Jiménez Jiménez, L., & Cobos, M. E. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15, 67-68. https://doi.org/10.17161/bi.v15i2.13376
Soberón, J., & Peterson, A. T. (2020). What is the shape of the fundamental Grinnellian niche? Theoretical Ecology, 13(1), 105-115. https://doi.org/10.1007/s12080-019-0432-5
Spear, S. F., Peterson, C. R., Matocq, M. D., & Storfer, A. (2005). Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology, 14(8), 2553-2564. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02573.x
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1823-1830. https://doi.org/10.1098/rspb.2010.1295
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
Teacher, A. G. F., Garner, T. W. J., & Nichols, R. A. (2009). European phylogeography of the common frog (Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity, 102(5), 490-496. https://doi.org/10.1038/hdy.2008.133
Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16), 3907-3930. https://doi.org/https://doi.org/10.1111/j.1365-294X.2012.05664.x
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232- W235. https://doi.org/10.1093/nar/gkw256
Tsai, C.-L., Kubota, K., Pham, H.-T., & Yeh, W.-B. (2021). Ancestral Haplotype Retention and Population Expansion Determine the Complicated Population Genetic Structure of the Hilly Lineage of Neolucanus swinhoei Complex (Coleoptera, Lucanidae) on the Subtropical Taiwan Island. Insects, 12(3), 227.
Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey [Original Research]. Frontiers in Ecology and Evolution, Volume 10 - 2022.
Vargas-Salinas, F., Rodríguez-Collazos, L., & Suárez-Mayorga, A. (2014). Andinobates bombetes (Myers y Daly 1980). Catálogo de Anfibios y Reptiles de Colombia, 2, 13-18.
Vrijenhoek, R. C. (1994). Genetic diversity and fitness in small populations. In V. Loeschcke, S. K. Jain, & J. Tomiuk (Eds.), Conservation Genetics (pp. 37-53). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8510-2_5
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular ecology, 23(23), 5649– 5662. https://doi.org/10.1111/mec.12938
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R.,…Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686
Wollenberg-Valero, K. C., Marshall, J. C., Bastiaans, E., Caccone, A., Camargo, A., Morando, M.,…Steinfartz, S. (2019). Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes, 10(9)
Woodruff, D. S. (2001). Populations, Species, and Conservation Genetics. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (pp. 811-829). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-226865-2/00355-2
Wüster, W. (2025). Shedding the mitochondrial blinkers: A long-overdue challenge for species delimitation in herpetology [10.3897/vz.75.e161536]. Vertebrate Zoology, 75, 259-275.
Xing, B., Lin, L., & Wu, Q. (2025). Application of mitochondrial genomes to species identification and evolution. Electronic Journal of Biotechnology, 76, 39-48. https://doi.org/https://doi.org/10.1016/j.ejbt.2025.04.001
Xu, Y., Shen, Z., Ying, L., Zang, R., & Jiang, Y. (2019). Effects of current climate, paleo-climate, and habitat heterogeneity in determining biogeographical patterns of evergreen broad-leaved woody plants in China. Journal of Geographical Sciences, 29(7), 1142-1158. https://doi.org/10.1007/s11442-019-1650-x
Zarza, E., Reynoso, V. H., & Emerson, B. C. (2011). Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. Journal of Biogeography, 38(7), 1394-1405. https://doi.org/https://doi.org/10.1111/j.1365-2699.2011.02485.x
Zhao, W., Wang, X., Li, L., Li, J., Yin, H., Zhao, Y., & Chen, X. (2021). Evaluation of environmental factors affecting the genetic diversity, genetic structure, and the potential distribution of Rhododendron aureum Georgi under changing climate. Ecology and Evolution, 11(18), 12294- 12306. https://doi.org/https://doi.org/10.1002/ece3.7803
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
dc.format.none.fl_str_mv 33 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532491356504064
spelling Estructura poblacional y modelamiento de nicho de la especie endémica, Andinobates bombetes (Anura: Dendrobatidae)Estructuración genéticaNicho ecológicoAnfibios andinosModelos de nicho ecológicoBiologíaIlustraciones, mapas, gráficasLa comprensión de los procesos que estructuran la variación genética en especies ampliamente distribuidas es fundamental para interpretar patrones de diversidad y evolución en regiones biodiversas como los Andes. En este estudio se analizó la estructuración genética y la diferenciación ambiental en la rana venenosa Andinobates bombetes, integrando información genética mitocondrial, análisis espaciales y modelos de nicho ecológico. A partir de secuencias mitocondriales se identificaron dos linajes bien diferenciados, asociados a las regiones Norte y Sur de la distribución de la especie, lo que evidencia una estructura genética no aleatoria. Para evaluar la correspondencia entre esta estructuración genética y el ambiente, se caracterizó el espacio climático ocupado por cada linaje mediante un análisis de componentes principales (PCA) y comparaciones univariadas de variables bioclimáticas, las cuales revelaron diferencias significativas, particularmente a lo largo de gradientes térmicos y de precipitación. Adicionalmente, los modelos de nicho ecológico permitieron identificar áreas climáticamente adecuadas tanto dentro como fuera de las zonas actualmente ocupadas, lo que sugiere que la presencia de condiciones ambientales favorables no implica necesariamente conectividad efectiva entre linajes. En conjunto, los resultados indican que la estructuración genética observada en A. bombetes ocurre en un contexto de diferenciación ambiental y resaltan la utilidad de integrar información genética y ambiental para explorar los factores que contribuyen a la divergencia poblacional, constituyendo este estudio un primer acercamiento integrador que sienta las bases para investigaciones futuras basadas en marcadores nucleares o enfoques genómicos en especies andinas.Understanding the processes shaping genetic variation in widely distributed species is essential for interpreting patterns of diversity and evolution in biodiversity-rich regions such as the Andes. In this study, we investigated genetic structure and environmental differentiation in the poison frog Andinobates bombetes by integrating mitochondrial genetic data, spatial analyses, and ecological niche models. Analyses of mitochondrial sequences revealed two well-differentiated lineages associated with the northern and southern regions of the species’ distribution, indicating a non-random spatial organization of genetic variation. To assess the correspondence between genetic structure and environmental conditions, the climatic space occupied by each lineage was characterized using principal component analysis (PCA) and univariate comparisons of bioclimatic variables, which revealed significant differences, particularly along thermal and precipitation gradients. Ecological niche models further identified climatically suitable areas both within and beyond the currently occupied regions, suggesting that the presence of suitable environmental conditions does not necessarily imply effective connectivity between lineages. Overall, these results indicate that the genetic structuring observed in A. bombetes occurs within a context of environmental differentiation and highlight the value of integrating genetic and environmental data to explore factors contributing to population divergence, providing a foundation for future studies using nuclear markers or genomic approaches in Andean species.Introducción -- Metodología -- Análisis filogenético -- Diversidad y estructuración genética -- Modelado del nicho ecológico y solapamiento entre linajes – Resultados -- Análisis filogenético -- Diversidad y estructuración genética -- Modelado del nicho ecológico y solapamiento entre linajes – Discusión -- Filogenia y diversidad genética -- Modelado del nicho ecológico y solapamiento entre linajes – Conclusiones -- Referencias bibliográficas -- Material suplementarioPregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, CaldasBiologíaRodríguez Rey, Ghennie T.Márquez Pizano, RobertoForero Rodríguez, Juan SebastiánGrupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)Amaya Gutiérrez, Estephania2026-01-23T16:27:52Z2030-01-012026-01-23T16:27:52Z2026-01-22Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a8533 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26538Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/https://doi.org/10.1111/ecog.01132Allendorf, F. W., Luikart, G., & Aitken, S. N. (2012). Conservation and the genetics of populations (2 ed.). Wiley-Blackwell.Amézquita, A., Márquez, R., Medina, R., Mejía-Vargas, D., Kahn, T. R., Suárez, G., & Mazariegos, L. (2013). A new species of Andean poison frog, Andinobates (Anura: Dendrobatidae), from the northwestern Andes of Colombia. Zootaxa, 3620(1), 163–178. https://doi.org/10.11646/zootaxa.3620.1.8Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32-46. https://doi.org/https://doi.org/10.1111/j.1442-9993.2001.01070.pp.xArteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L.,…Guayasamin, J. M. (2016). Comparative Phylogeography Reveals Cryptic Diversity and Repeated Patterns of Cladogenesis for Amphibians and Reptiles in Northwestern Ecuador. PLOS ONE, 11(4), e0151746. https://doi.org/10.1371/journal.pone.0151746Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729-744. https://doi.org/https://doi.org/10.1046/j.1365-294X.2003.02063.xBarve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T.,…Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2011.02.011Bockelmann, A. C., Reusch, T. B. H., Bijlsma, R., & Bakker, J. P. (2003). Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Molecular Ecology, 12(2), 505-515. https://doi.org/https://doi.org/10.1046/j.1365- 294X.2003.01706.xBroennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G.,…Guisan, A. (2012). MeaSuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00698.xBrown, Jason & Evan, Twomey & Amézquita, Adolfo & Barbosa, Moisés & Souza, De & Caldwell, Jana-Lee & Lötters, Stefan & von May, Rudolf & Melo-Sampaio, Paulo & Mejia-Vargas, Daniel & Perez Peña, Pedro & Pepper, Mark & Poelman, Erik & Sanchez-Rodriguez, Manuel & Summers, Kyle. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa. 3083. 1-120. 10.1055/sos-SD-201-00174Casas‐Cardona, S., Márquez, R., Vargas‐Salinas, F., & Hebets, E. (2018). Different colour morphs of the poison frog Andinobates bombetes (Dendrobatidae) are similarly effective visual predator deterrents. Ethology, 124(4), 245-255. https://doi.org/10.1111/eth.12729Chaves-Portilla, G., Salazar, E., Gil-Acero, J., Dorado-Correa, A., Márquez, R., Rueda-Almonacid, V., & Amézquita, A. (2021). A new species of Andean golden poison frog (Andinobates, Dendrobatidae) from the Eastern Andes of Colombia. Zootaxa, 5047, 531-546. https://doi.org/10.11646/zootaxa.5047.5.3Clark, M. I., Bradburd, G. S., Akopyan, M., Vega, A., Rosenblum, E. B., & Robertson, J. M. (2021). Genetic isolation by distance underlies color pattern divergence in red-eyed treefrogs (<em>Agalychnis callidryas</em>). bioRxiv, 2021.2005.2021.445051. https://doi.org/10.1101/2021.05.21.445051Diniz-Filho, J. A. F., Rodrigues, H., Telles, M. P. D. C., Oliveira, G. D., Terribile, L. C., Soares, T. N., & Nabout, J. C. (2015). Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Molecular Ecology Resources, 15(5), 1059-1066. https://doi.org/https://doi.org/10.1111/1755-0998.12374Dixon, P. (2003), VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14: 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.xDrake, J. (2015). Range bagging: A new method for ecological niche modelling from presence-only data. Journal of the Royal Society, Interface / the Royal Society, 12. https://doi.org/10.1098/rsif.2015.0086Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340Etherington, T. (2016). Least-Cost Modelling and Landscape Ecology: Concepts, Applications, and Opportunities. Current Landscape Ecology Reports, 1. https://doi.org/10.1007/s40823-016- 0006-9Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic Consequences of Range Expansions. Annual Review of Ecology, Evolution, and Systematics, 40, 481-501.Farber, O., & Kadmon, R. (2003). Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160(1), 115-130. https://doi.org/https://doi.org/10.1016/S0304-3800(02)00327-7Ferreira, A. S., Lima, A. P., Jehle, R., Ferrao, M., & Stow, A. (2020). The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. In J Hered (Vol. 111, pp. 457-470). https://doi.org/10.1093/jhered/esaa034Frankham, R. (2003). Genetics and conservation biology. Comptes Rendus. Biologies, 326(S1), 22-29. https://doi.org/10.1016/S1631-0691(03)00023-4Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). Introduction to conservation genetics. Cambridge University Press.Funk, W. C., Blouin, M. S., Corn, P. S., Maxell, B. A., Pilliod, D. S., Amish, S., & Allendorf, F. W. (2005). Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 14(2), 483-496. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02426.xGenty, G., Guarnizo, C. E., Ramírez, J. P., Barrientos, L., & Crawford, A. J. (2020). Landscape genetics and species delimitation in the Andean palm rocket frog, <em>Rheobates</em> spp. bioRxiv, 2020.2008.2006.239137. https://doi.org/10.1101/2020.08.06.239137Ghassemi-Khademi, T., Khosravi, R., Sadeghi, S., Hedayat, N., Silva, D. P., Shebl, M.,…Al-Raisi, A. A. (2023). Phylogenetic structure and ecological niche modeling of the red dwarf honey bee across its native range. Apidologie, 54(5), 47. https://doi.org/10.1007/s13592-023-01028-6Gombin, J., Vaidyanathan, R., & Agafonkin, V. (2025). concaveman: A Very Fast 2D Concave Hull Algorithm. In https://joelgombin.github.io/concaveman/González-del-Pliego, P., Scheffers, B. R., Freckleton, R. P., Basham, E. W., Araújo, M. B., AcostaGalvis, A. R.,…Edwards, D. P. (2020). Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. Journal of Animal Ecology, 89(11), 2451-2460. https://doi.org/https://doi.org/10.1111/1365-2656.13309González-Acosta, C., Amézquita, A., & Vargas-Salinas, F. (2024). Variation in the advertisement call of the poison frog Andinobates bombetes relates to geographic distance between populations, but not to divergence in warning coloration. Studies on Neotropical Fauna and Environment, 59(3), 686–698. https://doi.org/10.1080/01650521.2023.2238560Goudet, J. (2005). hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5(1), 184-186. https://doi.org/https://doi.org/10.1111/j.1471- 8286.2004.00828.xGoutte, S., & Boissinot, S. (2025). Long-term evolutionary persistence of a cryptic color polymorphism in frogs. Proceedings of the National Academy of Sciences, 122(37), e2425898122. https://doi.org/10.1073/pnas.2425898122Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., & Moritz, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs Evolution, 58(8), 1781-1793. https://doi.org/https://doi.org/10.1111/j.0014- 3820.2004.tb00461.xGrant, W. A. S., & Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5), 415-426. https://doi.org/10.1093/jhered/89.5.415Grant, Taran & Rada, Marco & Anganoy-Criollo, Marvin & Batista, Abel & Dias, Pedro & Jeckel, Adriana & Jacob Machado, Denis & Rueda-Almonacid, José. (2017). Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). South American Journal of Herpetology. 12. S1-S90. 10.2994/SAJH-D-17-00017.1.Guarnizo, C. E., & Cannatella, D. C. (2014). Geographic Determinants of Gene Flow in Two Sister Species of Tropical Andean Frogs. Journal of Heredity, 105(2), 216-225. https://doi.org/10.1093/jhered/est092Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity. PLOS ONE, 10(5), e0127312. https://doi.org/10.1371/journal.pone.0127312Hijmans, R. J. (2025). terra: Spatial Data Analysis. In https://rspatial.org/terra/Hillman, S. S., Drewes, R. C., Hedrick, M. S., & Hancock, T. V. (2014). Physiological Vagility: Correlations with Dispersal and Population Genetic Structure of Amphibians. Physiological and Biochemical Zoology, 87(1), 105-112. https://doi.org/10.1086/671109Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754Jiang, S., Luo, M.-X., Gao, R.-H., Zhang, W., Yang, Y.-Z., Li, Y.-J., & Liao, P.-C. (2019). Isolationby-environment as a driver of genetic differentiation among populations of the only broadleaved evergreen shrub Ammopiptanthus mongolicus in Asian temperate deserts. Scientific Reports, 9(1), 12008. https://doi.org/10.1038/s41598-019-48472-yJombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics (Oxford, England), 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521Joyce, A. L., Bernal, J. S., Vinson, S. B., Hunt, R. E., Schulthess, F., & Medina, R. F. (2010). Geographic variation in male courtship acoustics and genetic divergence of populations of the Cotesia flavipes species complex. Entomologia Experimentalis et Applicata, 137(2), 153-164. https://doi.org/https://doi.org/10.1111/j.1570-7458.2010.01048.xJuarez, B. H., & O’Connell, L. A. (2023). Climate and Morphology Drive Breeding Periods in Frogs. bioRxiv, 2022.2007.2021.501061. https://doi.org/10.1101/2022.07.21.501061Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W.,…Kessler, M. (2017). Climatologies at high resolution for the earth’s land Surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122Kassambara, A. (2025). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. In https://CRAN.R-project.org/package=rstatixKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. https://doi.org/10.1007/BF01731581Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171- 2186. https://doi.org/https://doi.org/10.1002/hyp.9740Leigh, J., & Bryant, D. (2015). PopART: Full-Feature Software for Haplotype Network Construction. Methods in Ecology and Evolution, 6. https://doi.org/10.1111/2041-210X.12410Liu, Y., Dietrich, C. H., & Wei, C. (2019). Genetic divergence, population differentiation and phylogeography of the cicada Subpsaltria yangi based on molecular and acoustic data: an example of the early stage of speciation? BMC Evolutionary Biology, 19(1), 5. https://doi.org/10.1186/s12862-018-1317-8Liu, Y., Dietrich, C. H., & Wei, C. (2024). The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Molecular Phylogenetics and Evolution, 199, 108146. https://doi.org/https://doi.org/10.1016/j.ympev.2024.108146Maddison, W., & Maddison, D. (2009). MESQUITE: a modular system for evolutionary analysis. Evolution, 11.Merow, C., Smith, M., & Silander, J. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36. https://doi.org/10.1111/j.1600-0587.2013.07872.xMeza-Joya, F. L., & Torres, M. (2016). Spatial diversity patterns of Pristimantis frogs in the Tropical Andes. Ecology and Evolution, 6(7), 1901-1913. https://doi.org/https://doi.org/10.1002/ece3.1968Mejía-Vargas, D., Ramírez-Castañeda, V., Dorado-Correa, A., Tolosa, Y., Batista, A.A., Barrientos, L.S., Bravo-Valencia, L., Cely-Santos, S.M., Galindo-Uribe, D.M., Gil-Acero, J., Hernández, J.A., Lamadrid-Feris, F., Luna-Mora, V.F., Medina, R., Palacios-Rodríguez, P., Salazar, E.N., Vargas-Salinas, F., Amézquita, A., Márquez, R. En revisión. A DNA sequence variation dataset across the understudied Andean poison frog genus Andinobates. Ecology.Mikulicek, P., & Pišút, P. (2012). Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape. European Journal of Wildlife Research, 58. https://doi.org/10.1007/s10344-012-0631-5Miller, M., & Pfeiffer, W. T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees (Vol. 14). https://doi.org/10.1109/GCE.2010.5676129Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015Montero-Mendieta, S., De la Riva, I., Irisarri, I., Leonard, J. A., Webster, M. T., & Vilà, C. (2021). Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 161, 107167. https://doi.org/https://doi.org/10.1016/j.ympev.2021.107167Morente-López, J., Kass, J. M., Lara-Romero, C., Serra-Diaz, J. M., Soto-Correa, J. C., Anderson, R. P., & Iriondo, J. M. (2022). Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. Global Change Biology, 28(13), 4143-4162. https://doi.org/https://doi.org/10.1111/gcb.16181Mosher, C. M., Johnson, C. J., & Murray, B. W. (2022). Reduced genetic diversity associated with the northern expansion of an amphibian species with high habitat specialization, Ascaphus truei, resolved using two types of genetic markers. Ecology and Evolution, 12(3), e8716. https://doi.org/https://doi.org/10.1002/ece3.8716Moss, J. B., Tumulty, J. P., & Fischer, E. K. (2023). Evolution of acoustic signals associated with cooperative parental behavior in a poison frog. Proceedings of the National Academy of Sciences, 120(17), e2218956120. https://doi.org/10.1073/pnas.2218956120Muñoz, A., Velasquez-Alvarez, A., Guarnizo, C., & Crawford, A. (2014). Of peaks and valleys: Testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid-elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42. https://doi.org/10.1111/jbi.12409Myers, C. W., & Daly, J. W. (1980). Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. American Museum novitates ; no. 2692.Navas, C. (2006). Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology. Integrative and comparative biology, 46, 82-91. https://doi.org/10.1093/icb/icj001Nowakowski, A. J., Watling, J. I., Whitfield, S. M., Todd, B. D., Kurz, D. J., & Donnelly, M. A. (2017). Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conservation Biology, 31(1), 96-105. https://doi.org/https://doi.org/10.1111/cobi.12769Nuñez-Penichet, C., Cobos, M. E., & Soberón, J. (2021). Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Frontiers of Biogeography, 13. https://doi.org/10.21425/F5FBG52142Páez-Vacas, M. I., Trumbo, D. R., & Funk, W. C. (2022). Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity, 128(1), 33-44. https://doi.org/10.1038/s41437-021-00481-2Paradis, E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics, 26(3), 419-420. https://doi.org/10.1093/bioinformatics/btp696Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. https://doi.org/10.1093/bioinformatics/bty633Pebesma, E., & Bivand, R. (2025). sf: Simple Features for R. In https://r-spatial.github.io/sf/Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M., & Araújo, M. (2011). Ecological Niches and Geographic Distributions (Vol. 49). https://doi.org/10.1515/9781400840670Pinto-Sánchez, N. R., Ibáñez, R., Madriñán, S., Sanjur, O. I., Bermingham, E., & Crawford, A. J. (2012). The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phylogenetics and Evolution, 62(3), 954-972. https://doi.org/https://doi.org/10.1016/j.ympev.2011.11.022Pongratz, N., Gerace, L., & Michiels, N. K. (2002). Genetic differentiation within and between populations of a hermaphroditic freshwater planarian. Heredity, 89(1), 64-69. https://doi.org/10.1038/sj.hdy.6800102Pröhl, H., Ron, S. R., & Ryan, M. J. (2010). Ecological and genetic divergence between two lineages of Middle American túngara frogs Physalaemus (= Engystomops) pustulosus. BMC Evolutionary Biology, 10(1), 146. https://doi.org/10.1186/1471-2148-10-146Rambaut, A. (2018). FigTree v1. 4.4. In.Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032Rojas, B., & Vargas-Salinas, F. (2024). Developments in the study of poison frog evolutionary ecology II: decoding hidden messages in their coloration and unique behaviours. Evolutionary Ecology, 38(5), 551-570. https://doi.org/10.1007/s10682-024-10316-1Schield, D. R., Adams, R. H., Card, D. C., Corbin, A. B., Jezkova, T., Hales, N. R.,…Castoe, T. A. (2018). Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus). Molecular Phylogenetics and Evolution, 127, 669-681. https://doi.org/https://doi.org/10.1016/j.ympev.2018.06.013Simões, M., Romero-Álvarez, D., Nuñez-Penichet, C., Jiménez Jiménez, L., & Cobos, M. E. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15, 67-68. https://doi.org/10.17161/bi.v15i2.13376Soberón, J., & Peterson, A. T. (2020). What is the shape of the fundamental Grinnellian niche? Theoretical Ecology, 13(1), 105-115. https://doi.org/10.1007/s12080-019-0432-5Spear, S. F., Peterson, C. R., Matocq, M. D., & Storfer, A. (2005). Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology, 14(8), 2553-2564. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02573.xSunday, J. M., Bates, A. E., & Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1823-1830. https://doi.org/10.1098/rspb.2010.1295Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121Teacher, A. G. F., Garner, T. W. J., & Nichols, R. A. (2009). European phylogeography of the common frog (Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity, 102(5), 490-496. https://doi.org/10.1038/hdy.2008.133Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16), 3907-3930. https://doi.org/https://doi.org/10.1111/j.1365-294X.2012.05664.xTrifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232- W235. https://doi.org/10.1093/nar/gkw256Tsai, C.-L., Kubota, K., Pham, H.-T., & Yeh, W.-B. (2021). Ancestral Haplotype Retention and Population Expansion Determine the Complicated Population Genetic Structure of the Hilly Lineage of Neolucanus swinhoei Complex (Coleoptera, Lucanidae) on the Subtropical Taiwan Island. Insects, 12(3), 227.Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey [Original Research]. Frontiers in Ecology and Evolution, Volume 10 - 2022.Vargas-Salinas, F., Rodríguez-Collazos, L., & Suárez-Mayorga, A. (2014). Andinobates bombetes (Myers y Daly 1980). Catálogo de Anfibios y Reptiles de Colombia, 2, 13-18.Vrijenhoek, R. C. (1994). Genetic diversity and fitness in small populations. In V. Loeschcke, S. K. Jain, & J. Tomiuk (Eds.), Conservation Genetics (pp. 37-53). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8510-2_5Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular ecology, 23(23), 5649– 5662. https://doi.org/10.1111/mec.12938Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R.,…Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686Wollenberg-Valero, K. C., Marshall, J. C., Bastiaans, E., Caccone, A., Camargo, A., Morando, M.,…Steinfartz, S. (2019). Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes, 10(9)Woodruff, D. S. (2001). Populations, Species, and Conservation Genetics. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (pp. 811-829). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-226865-2/00355-2Wüster, W. (2025). Shedding the mitochondrial blinkers: A long-overdue challenge for species delimitation in herpetology [10.3897/vz.75.e161536]. Vertebrate Zoology, 75, 259-275.Xing, B., Lin, L., & Wu, Q. (2025). Application of mitochondrial genomes to species identification and evolution. Electronic Journal of Biotechnology, 76, 39-48. https://doi.org/https://doi.org/10.1016/j.ejbt.2025.04.001Xu, Y., Shen, Z., Ying, L., Zang, R., & Jiang, Y. (2019). Effects of current climate, paleo-climate, and habitat heterogeneity in determining biogeographical patterns of evergreen broad-leaved woody plants in China. Journal of Geographical Sciences, 29(7), 1142-1158. https://doi.org/10.1007/s11442-019-1650-xZarza, E., Reynoso, V. H., & Emerson, B. C. (2011). Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. Journal of Biogeography, 38(7), 1394-1405. https://doi.org/https://doi.org/10.1111/j.1365-2699.2011.02485.xZhao, W., Wang, X., Li, L., Li, J., Yin, H., Zhao, Y., & Chen, X. (2021). Evaluation of environmental factors affecting the genetic diversity, genetic structure, and the potential distribution of Rhododendron aureum Georgi under changing climate. Ecology and Evolution, 11(18), 12294- 12306. https://doi.org/https://doi.org/10.1002/ece3.7803https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/265382026-01-24T08:00:33Z