Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema

En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/23816
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/23816
https://doi.org/10.17151/biosa.2020.19.1.1
Palabra clave:
contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUCALDA_553981dc3d8c25753a04e7d8cbc84c27
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/23816
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
Applications of xenometabolomics for the identification of biomarkers of toxicity: a review of the topic
title Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
spellingShingle Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
title_short Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_full Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_fullStr Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_full_unstemmed Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_sort Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
dc.subject.none.fl_str_mv contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
topic contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
description En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación de metabolitos respuesta. Finalmente, se busca comprender la aplicación de la metabolómica y la xenometabolómica frente a la identificación de biomarcadores de toxicidad en el medio ambiente y en los alimentos, ante la presencia de agentes contaminantes actuales como plaguicidas, metales pesados, plásticos y microplásticos, que permiten ver la importancia de estas ciencias en la identificación de biomarcadores mediante el desarrollo de las ómicas.
publishDate 2025
dc.date.none.fl_str_mv 2025-02-05T00:00:00Z
2025-10-08T21:17:12Z
2025-02-05T00:00:00Z
2025-10-08T21:17:12Z
2025-02-05
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
Text
info:eu-repo/semantics/article
Journal article
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
status_str publishedVersion
dc.identifier.none.fl_str_mv 1657-9550
https://repositorio.ucaldas.edu.co/handle/ucaldas/23816
10.17151/biosa.2020.19.1.1
2462-960X
https://doi.org/10.17151/biosa.2020.19.1.1
identifier_str_mv 1657-9550
10.17151/biosa.2020.19.1.1
2462-960X
url https://repositorio.ucaldas.edu.co/handle/ucaldas/23816
https://doi.org/10.17151/biosa.2020.19.1.1
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 30
1
7
19
Biosalud
Afsa, S., Vieira, M., Nogueira, A., Mansour, H., & Nunes, B. (2022). A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. Environmental Science and Pollution Research, 29(13), 19132–19147. https://doi.org/10.1007/s11356-021-16977-7
Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842
Al-Salhi, R., Abdul-Sada, A., Lange, A., Tyler, C., & Hill, E. (2012). The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environmental Science & Technology, 46(16), 9080–9088. https://doi.org/10.1021/es3014453
Aliferis, K. (2020). Chapter 6 - Metabolomics in plant protection product research and development: discovering the mode(s)-of-action and mechanisms of toxicity. En D. Álvarez-Muñoz & M. B. T.-E. M. Farré (eds.). Environmental Metabolomics. (pp. 163–194). Elsevier. https://doi.org/10.1016/C2018-0-03345-9
Beger, R., Yu, L. R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65. https://doi.org/10.1016/j.cotox.2017.06.008
Betancourt-Arango, J. P., Villaroel-Solis, E. E., Fiscal-Ladino, J. A., & Taborda-Ocampo, G. (2024). Volatilomics: An emerging discipline within Omics Sciences - A systematic review [version 1; peer review: awaiting peer review]. F1000Research, 13(991). https://doi.org/10.12688/f1000research.149773.1
Beyoğlu, D., Zhou, Y., Chen, C., & Idle, J. R. (2018). Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochemical Pharmacology, 156, 491–500. https://doi.org/10.1016/j.bcp.2018.09.022
Blaauboer, B. J., Boekelheide, K., Clewell, H. J., Daneshian, M., Dingemans, M. M. L., Goldberg, A. M., Heneweer, M., Jaworska, J., Kramer, N. I., Leist, M., Seibert, H., Testai, E., Vandebriel, R. J., Yager, J. D., & Zurlo, J. (2012). The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex, 29(4), 411–425. https://doi.org/10.14573/altex.2012.4.411
Brandelli, A., Lopes, N. A., & Boelter, J. F. (2017). 2 - Food applications of nanostructured antimicrobials. In A. M. B. T.-F. P. Grumezescu (Ed.), Nanotechnology in the Agri-Food Industry (pp. 35–74). Academic Press. https://doi.org/10.1016/B978-0-12-804303-5.00002-X
Brendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual- Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 69(5), 1727–1738. https://doi.org/10.1021/acs.jafc.0c07447
Budny, J. A. (2014). Commentary: The French revolution, toxicity biomarkers and digging holes. International Journal of Toxicology, 33(4), 268–270. https://doi.org/10.1177/1091581814537036
Burdisso, P., Zoni, J., Raisa, R. M., & Vila, A. J. (2017). Metabolómica: Aplicaciones clave en salud y producción de alimentos. Revista BCR, 22–28.
Cao, W., Wu, Z., Liang, C., Jing, P., Cui, S., Yang, G., & Lin, L. (2018). Determination of deltamethrin and its toxicity biomarkers in rabbit urine by high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography (Se Pu), 36(6), 523 – 530. https://doi.org/10.3724/SP.J.1123.2018.03002
Capela E Silva, F., Sousa, A. C., Pastorinho, M. R., Mizukawa, H., & Ishizuka, M. (2022). Editorial: Animal Poisoning and Biomarkers of Toxicity. In Frontiers in veterinary science (Vol. 9, p. 891483). https://doi.org/10.3389/fvets.2022.891483
Capitão, A., Santos, J., Barreto, A., Amorim, M. J. B., & Maria, V. L. (2022). Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 12(9). https://doi.org/10.3390/nano12091478
Chen, W., Zhu, R., Ye, X., Sun, Y., Tang, Q., Liu, Y., Yan, F., Yu, T., Zheng, X., & Tu, P. (2022). Foodderived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food Funct., 13(3), 1447–1458. https://doi.org/10.1039/D1FO02983E
Chetwynd, A. J., David, A., Hill, E. M., & Abdul-Sada, A. (2014). Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno) metabolome. Journal of Mass Spectrometry : JMS, 49(10), 1063–1069. https://doi.org/10.1002/jms.3426
Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., & Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104. https://doi.org/10.1016/j.cotox.2020.01.002
Dang, Q., Zhao, X., Yang, T., Gong, T., He, X., Tan, W., & Xi, B. (2022). Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Science of The Total Environment, 824, 153837. https://doi.org/10.1016/j.scitotenv.2022.153837
David, A., Abdul-Sada, A., Lange, A., Tyler, C. R., & Hill, E. M. (2014). A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography. A, 1365, 72–85. https://doi.org/10.1016/j.chroma.2014.09.001
De Oliveira, J. S. P., Vieira, L. G., Carvalho, W. F., de Souza, M. B., de Lima Rodrigues, A. S., Simões, K., de Melo De Silva, D., dos Santos Mendonça, J., Hirano, L. Q. L., Santos, A. L. Q., & Malafaia, G. (2020). Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment, 737, 140304. https://doi.org/10.1016/j.scitotenv.2020.140304
Dear, J. W., & Antoine, D. J. (2014). Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Review of Clinical Pharmacology, 7(2), 181–189. https://doi.org/10.1586/17512433.2014.880650
Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y. K., & Shukla, S. (2022). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2022.2059650
Do Amaral, A., Costa-Gomes, J., Weimer, G., Marins, A., Loro, V., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114
Dong, H., Yan, G. L., Han, Y., Sun, H., Zhang, A. H., Li, X. N., & Wang, X. J. (2015). UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chinese Journal of Natural Medicines, 13(9), 687–698. https://doi.org/10.1016/S1875-5364(15)30067-4
El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002
Essers, A. J. A., Alink, G. M., Speijers, G. J. A., Alexander, J., Bouwmeister, P. J., van den Brandt, P. A., Ciere, S., Gry, J., Herrman, J., Kuiper, H. A., Mortby, E., Renwick, A. G., Shrimpton, D. H., Vainio, H., Vittozzi, L., & Koeman, J. H. (1998). Food plant toxicants and safety: Risk assessment and regulation of inherent toxicants in plant foods. Environmental Toxicology and Pharmacology, 5(3), 155–172. https://doi.org/10.1016/S1382-6689(98)00003-9
Fan, A. M. (2014). Chapter 64 - Biomarkers in toxicology, risk assessment, and environmental chemical regulations. Biomarkers in Toxicology, pp. 1057–1080. Academic Press. https://doi.org/10.1016/B978-0-12-404630-6.00064-6
Gallego, J. L., & Olivero-Verbel, J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, 116558. https://doi.org/10.1016/j.envpol.2021.116558
Garcia-Calvo, E., Machuca, A., Nerín, C., Rosales-Conrado, N., Anunciação, D. S., & Luque-Garcia, J. L. (2020). Integration of untargeted and targeted mass spectrometry-based metabolomics provides novel insights into the potential toxicity associated to surfynol. Food and Chemical Toxicology, 146, 111849. https://doi.org/10.1016/j.fct.2020.111849
Gibson, J. (2015). Air pollution, climate change, and health. The Lancet. Oncology, 16(6), e269. https://doi.org/10.1016/S1470-2045(15)70238-X
Hassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain Phase i and II Enzymes as Toxicity Biomarker: An Overview. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2429-z
Iqbal, M., Abbas, M., Adil, M., Nazir, A., & Ahmad, I. (2020). Aflatoxins Biosynthesis, Toxicity and Intervention Strategies: A Review. SSRN Electronic Journal, 5(3), 168–191. https://doi.org/10.2139/ssrn.3407341
Jaskulak, M., & Grobelak, A. (2019). Chapter 6 - Cadmium Phytotoxicity—Biomarkers. En M. Hasanuzzaman, M. N. Vara Prasad, & K. Nahar (Eds.), Cadmium Tolerance in Plants. (pp. 177–191). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00006-0
Jong, M.-C., Li, J., Noor, H. M., He, Y., & Gin, K. Y.H. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of The Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459
Josić, D, Peršurić, Ž., Rešetar, D., Martinović, T., Saftić, L., & Kraljević Pavelić, S. (2017). Chapter Six - Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 81, 187–229). Academic Press. https://doi.org/10.1016/bs.afnr.2016.12.001
Josić, Djuro, Rešetar, D., Peršurić, Ž., Martinović, T., & Kraljevic Pavelić, S. (2017). Chapter 29 - Detection of Microbial Toxins by -Omics Methods: A Growing Role of Proteomics. En M. L. Colgrave (Ed.), Proteomics in Food Science. (pp. 485–506). Academic Press. https://doi.org/10.1016/B978-0-12-804007-2.00029-1
Khoo, L. W., Kow, A. S. F., Maulidiani, M., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). Hematological, biochemical, histopathological and1H-NMR Metabolomics application in acute toxicity evaluation of clinacanthus nutans water leaf extract. Molecules, 23(9). https://doi.org/10.3390/molecules23092172
Köhler, H. R., Hiittenrauch, K., Berkus, M., Gräff, S., & Alberti, G. (1996). Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Applied Soil Ecology, 3(1), 1–15. https://doi.org/10.1016/0929-1393(95)00073-9
Li, Q., Yan, X., Zhang, Y., Zhou, J., Yang, L., Wu, S., Peng, C., & Pan, X. (2022). Risk compounds, potential mechanisms and biomarkers of traditional Chinese medicine-induced reproductive toxicity. Journal of Applied Toxicology, 42(11), 1734–1756. https://doi.org/10.1002/jat.4290
Li, Z., Zheng, L., Shi, J., Zhang, G., Lu, L., Zhu, L., Zhang, J., & Liu, Z. (2015). Toxic markers of matrine determined using 1H-NMR-based metabolomics in cultured cells in vitro and rats in vivo. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/598412
Liem, J. F., Suryandari, D. A., Malik, S. G., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., & Pangaribuan, B. (2022). The Role of CYP2B6∗6 Gene Polymorphisms in 3,5,6-Trichloro- 2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers. Journal of Preventive Medicine and Public Health, 55(3), 280–288. https://doi.org/10.3961/jpmph.21.641
Louden, C., & Roberts, R. A. (2020). Validating In Vitro Toxicity Biomarkers Against Clinical Endpoints. In Biomarkers in Drug Discovery and Development (pp. 379–388). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119187547.ch19
Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021
Lu, F., Cao, M., Wu, B., Li, X., Liu, H., Chen, D., & Liu, S. (2013). Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology, 149(1), 311–320. https://doi.org/10.1016/j.jep.2013.06.040
Lu, T. P., & Chen, J. J. (2015). Identification of drug-induced toxicity biomarkers for treatment determination. Pharmaceutical Statistics, 14(4), 284–293. https://doi.org/10.1002/pst.1684
Lytou, A. E., Panagou, E. Z., & Nychas, G. J. E. (2019). Volatilomics for food quality and authentication. Current Opinion in Food Science, 28, 88–95. https://doi.org/10.1016/j.cofs.2019.10.003
Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M. da, & Rodrigues, A. S. de L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Science of The Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994
Marques, A., Lourenço, H. M., Nunes, M. L., Roseiro, C., Santos, C., Barranco, A., Rainieri, S., Langerholc, T., & Cencic, A. (2011). New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Research International, 44(2), 510–522. https://doi.org/10.1016/j.foodres.2010.12.003
Mason, C. L., Leedale, J., Tasoulis, S., Jarman, I., Antoine, D. J., & Webb, S. D. (2018). Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT: Pharmacometrics \& Systems Pharmacology, 7(6), 394–403. https://doi.org/10.1002/psp4.12298
Medina, E. (2020). Aplicación de la metabolómica al control de la seguridad de los alimentos y la prevención de las enfermedades. [tesis de Maestría, Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/157877/Medina - Aplicación de la metabolómica en el control de la seguridad de los alimentos y en la pre....pdf?sequence=1&isAllowed=y
Mendrick, D. L. (2008). Genomic and genetic biomarkers of toxicity. Toxicology, 245(3), 175–181. https://doi.org/10.1016/j.tox.2007.11.013
Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
Mohamad-Shalan, N. A. A., Mustapha, N. M., & Mohamed, S. (2017). Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice. Regulatory Toxicology and Pharmacology, 83, 46–53. https://doi.org/10.1016/j.yrtph.2016.11.022
Nusair, S. D., Ananbeh, M., Zayed, A., Ahmad, M. I., & Qinna, N. A. (2022). Postmortem sampling time effect on toxicity biomarkers in rats exposed to an acute lethal methomyl dose. Toxicology Reports, 9, 1674–1680. https://doi.org/10.1016/j.toxrep.2022.08.010
Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631–632, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269
Pathak, S., Catanzaro, R., Vasan, D., Marotta, F., Chabria, Y., Jothimani, G., Verma, R. S., Ramachandran, M., Khuda-Bukhsh, A. R., & Banerjee, A. (2020). Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug and Chemical Toxicology, 43(5), 454–467. https://doi.org/10.1080/01480545.2018.1499773
Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration & Biodegradation, 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992
Puente, C., & Ramaroson, R. (2006). Medicion y analisis de los compuestos organicos volatiles en la atmosfera: Ultimas tecnicas, aplicabilidad y resultados a nivel europeo. Revista ION, 19(1), 43–47. https://revistas.uis.edu.co/index.php/revistaion/article/view/539
Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., Chari, B. P. V, Saka, S., Vechalapu, R. R., Kamal, M. A., Tarasov, V. V, Chubarev, V. N., Siva Kumar, K., & Aliev, G. (2018). Chapter 2 - Probiotics: Supplements, Food, Pharmaceutical Industry. En A. M. Grumezescu & A. M. Holban (Eds.). Therapeutic, Probiotic, and Unconventional Foods. (pp. 15–25). Academic Press. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
Ríos-Sánchez, E., Gónzalez-Zamora, A., Olivas-Calderón, E. H., Anguiano-Vega, G. A., & Pérez-Morales, R. (2019). Hidrocarburos Aromáticos Policíclicos: Una revisión actualizada de un problema antiguo. Quimica Farmacéutica y Clinica. 2(9), 36–47.
Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047
Sahu, S. C. (2022). Genomic and Epigenomic Biomarkers for Predictive Toxicity and Disease. In Genomic and Epigenomic Biomarkers of Toxicology and Disease (pp. 1–5). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781119807704.ch1
Shipelin, V. A., Smirnova, T. A., Gmoshinskii, I. V., & Tutelyan, V. A. (2015). Analysis of Toxicity Biomarkers of Fullerene C60 Nanoparticles by Confocal Fluorescent Microscopy. Bulletin of Experimental Biology and Medicine, 158(4), 443–449. https://doi.org/10.1007/s10517-015-2781-4
Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95. https://doi.org/10.1016/j.ecoenv.2019.04.018
Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by directinfusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10(6), 1050–1058. https://doi.org/10.1007/s11306-014-0693-3
Süloğlu, A. K., Koçkaya, E. A., & Selmanoğlu, G. (2022). Toxicity of benzyl benzoate as a food additive and pharmaceutical agent. Toxicology and Industrial Health, 38(4), 221–233. https://doi.org/10.1177/07482337221086133
Ullah, S., Ahmad, S., Altaf, Y., Dawar, F. U., Anjum, S. I., Baig, M. M. F. A., Fahad, S., Al-Misned, F., Atique, U., Guo, X., Nabi, G., & Wanghe, K. (2022). Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: A multi-biomarkers based study. Journal of King Saud University - Science, 34(2), 101752. https://doi.org/10.1016/j.jksus.2021.101752
Vasileiadis, S., Brunetti, G., Marzouk, E., Wakelin, S., Kowalchuk, G. A., Lombi, E., & Donner, E. (2018). Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 52(15), 8745–8755. https://doi.org/10.1021/acs.est.8b00677
Yan, H., Qiao, Z., Shen, B., Xiang, P., & Shen, M. (2016). Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Science International, 267, 129–135. https://doi.org/10.1016/j.forsciint.2016.08.027
Yang, S., Ulhassan, Z., Shah, A. M., Khan, A. R., Azhar, W., Hamid, Y., Hussain, S., Sheteiwy, M. S., Salam, A., & Zhou, W. (2021). Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 166, 1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013
Yebenes, G. de M. J., Loza, E., & Carmona, L. (2015). Predicting Toxicity: Biomarkers and the Value of the Patient’s Opinion. In Current Pharmaceutical Design (Vol. 21, Issue 2, pp. 233–240). http://dx.doi.org/10.2174/1381612820666140825124352
Yesildag, K., Eroz, R., Genc, A., Dogan, T., & Satici, E. (2022). Evaluation of the protective effects of morin against acrylamide-induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. Journal of Food Biochemistry, 46(7), e14111. https://doi.org/10.1111/jfbc.14111
Yu, D., Yong, D., & Dong, S. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. Journal of Environmental Sciences, 25(4), 785–790. https://doi.org/10.1016/S1001-0742(12)60119-3
Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova, 14(25), 121–138. https://doi.org/10.22490/24629448.173
Núm. 1 , Año 2020 : Enero-Junio
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/9851/7756
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
publisher.none.fl_str_mv Universidad de Caldas
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/9851
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532558812446720
spelling Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del temaApplications of xenometabolomics for the identification of biomarkers of toxicity: a review of the topiccontaminantes emergentesciencias ómicasbiomarcadores de toxicidadxenometabolómicaemerging contaminantsomic sciencestoxicity biomarkersxenometabolomicsEn el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación de metabolitos respuesta. Finalmente, se busca comprender la aplicación de la metabolómica y la xenometabolómica frente a la identificación de biomarcadores de toxicidad en el medio ambiente y en los alimentos, ante la presencia de agentes contaminantes actuales como plaguicidas, metales pesados, plásticos y microplásticos, que permiten ver la importancia de estas ciencias en la identificación de biomarcadores mediante el desarrollo de las ómicas.In today’s world lies the importance of identifying biomarkers of toxicity as a preventive way in the presence of various chemical contaminants that act as xenobiotic agents in various organiss, in addition to allowing the evaluation of food safety in various matrices, through the development of new exploratory methodologies such as metabolomics and xenometabolomics. In this way, the objective of this review lies in the analysis in relation to the information reported towards the determination of toxicity biomarkers studied in plants and different food products, in addition to the analysis of the different current applications of omics sciences for the determination of response metabolites. Finally, it seeks to understand the application of metabolomics and xenometabolomics to the identification of biomarkers of toxicity in the environment and in food, in the presence of current pollutants such as pesticides, heavy metals, plastics and microplastics, which allow us to see the importance of these sciences in the identification of biomarkers through the development of omics.Universidad de Caldas2025-02-05T00:00:00Z2025-10-08T21:17:12Z2025-02-05T00:00:00Z2025-10-08T21:17:12Z2025-02-05Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdf1657-9550https://repositorio.ucaldas.edu.co/handle/ucaldas/2381610.17151/biosa.2020.19.1.12462-960Xhttps://doi.org/10.17151/biosa.2020.19.1.1https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/9851spa301719BiosaludAfsa, S., Vieira, M., Nogueira, A., Mansour, H., & Nunes, B. (2022). A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. Environmental Science and Pollution Research, 29(13), 19132–19147. https://doi.org/10.1007/s11356-021-16977-7Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842Al-Salhi, R., Abdul-Sada, A., Lange, A., Tyler, C., & Hill, E. (2012). The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environmental Science & Technology, 46(16), 9080–9088. https://doi.org/10.1021/es3014453Aliferis, K. (2020). Chapter 6 - Metabolomics in plant protection product research and development: discovering the mode(s)-of-action and mechanisms of toxicity. En D. Álvarez-Muñoz & M. B. T.-E. M. Farré (eds.). Environmental Metabolomics. (pp. 163–194). Elsevier. https://doi.org/10.1016/C2018-0-03345-9Beger, R., Yu, L. R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65. https://doi.org/10.1016/j.cotox.2017.06.008Betancourt-Arango, J. P., Villaroel-Solis, E. E., Fiscal-Ladino, J. A., & Taborda-Ocampo, G. (2024). Volatilomics: An emerging discipline within Omics Sciences - A systematic review [version 1; peer review: awaiting peer review]. F1000Research, 13(991). https://doi.org/10.12688/f1000research.149773.1Beyoğlu, D., Zhou, Y., Chen, C., & Idle, J. R. (2018). Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochemical Pharmacology, 156, 491–500. https://doi.org/10.1016/j.bcp.2018.09.022Blaauboer, B. J., Boekelheide, K., Clewell, H. J., Daneshian, M., Dingemans, M. M. L., Goldberg, A. M., Heneweer, M., Jaworska, J., Kramer, N. I., Leist, M., Seibert, H., Testai, E., Vandebriel, R. J., Yager, J. D., & Zurlo, J. (2012). The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex, 29(4), 411–425. https://doi.org/10.14573/altex.2012.4.411Brandelli, A., Lopes, N. A., & Boelter, J. F. (2017). 2 - Food applications of nanostructured antimicrobials. In A. M. B. T.-F. P. Grumezescu (Ed.), Nanotechnology in the Agri-Food Industry (pp. 35–74). Academic Press. https://doi.org/10.1016/B978-0-12-804303-5.00002-XBrendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual- Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 69(5), 1727–1738. https://doi.org/10.1021/acs.jafc.0c07447Budny, J. A. (2014). Commentary: The French revolution, toxicity biomarkers and digging holes. International Journal of Toxicology, 33(4), 268–270. https://doi.org/10.1177/1091581814537036Burdisso, P., Zoni, J., Raisa, R. M., & Vila, A. J. (2017). Metabolómica: Aplicaciones clave en salud y producción de alimentos. Revista BCR, 22–28.Cao, W., Wu, Z., Liang, C., Jing, P., Cui, S., Yang, G., & Lin, L. (2018). Determination of deltamethrin and its toxicity biomarkers in rabbit urine by high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography (Se Pu), 36(6), 523 – 530. https://doi.org/10.3724/SP.J.1123.2018.03002Capela E Silva, F., Sousa, A. C., Pastorinho, M. R., Mizukawa, H., & Ishizuka, M. (2022). Editorial: Animal Poisoning and Biomarkers of Toxicity. In Frontiers in veterinary science (Vol. 9, p. 891483). https://doi.org/10.3389/fvets.2022.891483Capitão, A., Santos, J., Barreto, A., Amorim, M. J. B., & Maria, V. L. (2022). Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 12(9). https://doi.org/10.3390/nano12091478Chen, W., Zhu, R., Ye, X., Sun, Y., Tang, Q., Liu, Y., Yan, F., Yu, T., Zheng, X., & Tu, P. (2022). Foodderived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food Funct., 13(3), 1447–1458. https://doi.org/10.1039/D1FO02983EChetwynd, A. J., David, A., Hill, E. M., & Abdul-Sada, A. (2014). Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno) metabolome. Journal of Mass Spectrometry : JMS, 49(10), 1063–1069. https://doi.org/10.1002/jms.3426Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., & Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104. https://doi.org/10.1016/j.cotox.2020.01.002Dang, Q., Zhao, X., Yang, T., Gong, T., He, X., Tan, W., & Xi, B. (2022). Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Science of The Total Environment, 824, 153837. https://doi.org/10.1016/j.scitotenv.2022.153837David, A., Abdul-Sada, A., Lange, A., Tyler, C. R., & Hill, E. M. (2014). A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography. A, 1365, 72–85. https://doi.org/10.1016/j.chroma.2014.09.001De Oliveira, J. S. P., Vieira, L. G., Carvalho, W. F., de Souza, M. B., de Lima Rodrigues, A. S., Simões, K., de Melo De Silva, D., dos Santos Mendonça, J., Hirano, L. Q. L., Santos, A. L. Q., & Malafaia, G. (2020). Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment, 737, 140304. https://doi.org/10.1016/j.scitotenv.2020.140304Dear, J. W., & Antoine, D. J. (2014). Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Review of Clinical Pharmacology, 7(2), 181–189. https://doi.org/10.1586/17512433.2014.880650Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y. K., & Shukla, S. (2022). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2022.2059650Do Amaral, A., Costa-Gomes, J., Weimer, G., Marins, A., Loro, V., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114Dong, H., Yan, G. L., Han, Y., Sun, H., Zhang, A. H., Li, X. N., & Wang, X. J. (2015). UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chinese Journal of Natural Medicines, 13(9), 687–698. https://doi.org/10.1016/S1875-5364(15)30067-4El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002Essers, A. J. A., Alink, G. M., Speijers, G. J. A., Alexander, J., Bouwmeister, P. J., van den Brandt, P. A., Ciere, S., Gry, J., Herrman, J., Kuiper, H. A., Mortby, E., Renwick, A. G., Shrimpton, D. H., Vainio, H., Vittozzi, L., & Koeman, J. H. (1998). Food plant toxicants and safety: Risk assessment and regulation of inherent toxicants in plant foods. Environmental Toxicology and Pharmacology, 5(3), 155–172. https://doi.org/10.1016/S1382-6689(98)00003-9Fan, A. M. (2014). Chapter 64 - Biomarkers in toxicology, risk assessment, and environmental chemical regulations. Biomarkers in Toxicology, pp. 1057–1080. Academic Press. https://doi.org/10.1016/B978-0-12-404630-6.00064-6Gallego, J. L., & Olivero-Verbel, J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, 116558. https://doi.org/10.1016/j.envpol.2021.116558Garcia-Calvo, E., Machuca, A., Nerín, C., Rosales-Conrado, N., Anunciação, D. S., & Luque-Garcia, J. L. (2020). Integration of untargeted and targeted mass spectrometry-based metabolomics provides novel insights into the potential toxicity associated to surfynol. Food and Chemical Toxicology, 146, 111849. https://doi.org/10.1016/j.fct.2020.111849Gibson, J. (2015). Air pollution, climate change, and health. The Lancet. Oncology, 16(6), e269. https://doi.org/10.1016/S1470-2045(15)70238-XHassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain Phase i and II Enzymes as Toxicity Biomarker: An Overview. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2429-zIqbal, M., Abbas, M., Adil, M., Nazir, A., & Ahmad, I. (2020). Aflatoxins Biosynthesis, Toxicity and Intervention Strategies: A Review. SSRN Electronic Journal, 5(3), 168–191. https://doi.org/10.2139/ssrn.3407341Jaskulak, M., & Grobelak, A. (2019). Chapter 6 - Cadmium Phytotoxicity—Biomarkers. En M. Hasanuzzaman, M. N. Vara Prasad, & K. Nahar (Eds.), Cadmium Tolerance in Plants. (pp. 177–191). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00006-0Jong, M.-C., Li, J., Noor, H. M., He, Y., & Gin, K. Y.H. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of The Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459Josić, D, Peršurić, Ž., Rešetar, D., Martinović, T., Saftić, L., & Kraljević Pavelić, S. (2017). Chapter Six - Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 81, 187–229). Academic Press. https://doi.org/10.1016/bs.afnr.2016.12.001Josić, Djuro, Rešetar, D., Peršurić, Ž., Martinović, T., & Kraljevic Pavelić, S. (2017). Chapter 29 - Detection of Microbial Toxins by -Omics Methods: A Growing Role of Proteomics. En M. L. Colgrave (Ed.), Proteomics in Food Science. (pp. 485–506). Academic Press. https://doi.org/10.1016/B978-0-12-804007-2.00029-1Khoo, L. W., Kow, A. S. F., Maulidiani, M., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). Hematological, biochemical, histopathological and1H-NMR Metabolomics application in acute toxicity evaluation of clinacanthus nutans water leaf extract. Molecules, 23(9). https://doi.org/10.3390/molecules23092172Köhler, H. R., Hiittenrauch, K., Berkus, M., Gräff, S., & Alberti, G. (1996). Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Applied Soil Ecology, 3(1), 1–15. https://doi.org/10.1016/0929-1393(95)00073-9Li, Q., Yan, X., Zhang, Y., Zhou, J., Yang, L., Wu, S., Peng, C., & Pan, X. (2022). Risk compounds, potential mechanisms and biomarkers of traditional Chinese medicine-induced reproductive toxicity. Journal of Applied Toxicology, 42(11), 1734–1756. https://doi.org/10.1002/jat.4290Li, Z., Zheng, L., Shi, J., Zhang, G., Lu, L., Zhu, L., Zhang, J., & Liu, Z. (2015). Toxic markers of matrine determined using 1H-NMR-based metabolomics in cultured cells in vitro and rats in vivo. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/598412Liem, J. F., Suryandari, D. A., Malik, S. G., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., & Pangaribuan, B. (2022). The Role of CYP2B6∗6 Gene Polymorphisms in 3,5,6-Trichloro- 2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers. Journal of Preventive Medicine and Public Health, 55(3), 280–288. https://doi.org/10.3961/jpmph.21.641Louden, C., & Roberts, R. A. (2020). Validating In Vitro Toxicity Biomarkers Against Clinical Endpoints. In Biomarkers in Drug Discovery and Development (pp. 379–388). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119187547.ch19Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021Lu, F., Cao, M., Wu, B., Li, X., Liu, H., Chen, D., & Liu, S. (2013). Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology, 149(1), 311–320. https://doi.org/10.1016/j.jep.2013.06.040Lu, T. P., & Chen, J. J. (2015). Identification of drug-induced toxicity biomarkers for treatment determination. Pharmaceutical Statistics, 14(4), 284–293. https://doi.org/10.1002/pst.1684Lytou, A. E., Panagou, E. Z., & Nychas, G. J. E. (2019). Volatilomics for food quality and authentication. Current Opinion in Food Science, 28, 88–95. https://doi.org/10.1016/j.cofs.2019.10.003Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M. da, & Rodrigues, A. S. de L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Science of The Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994Marques, A., Lourenço, H. M., Nunes, M. L., Roseiro, C., Santos, C., Barranco, A., Rainieri, S., Langerholc, T., & Cencic, A. (2011). New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Research International, 44(2), 510–522. https://doi.org/10.1016/j.foodres.2010.12.003Mason, C. L., Leedale, J., Tasoulis, S., Jarman, I., Antoine, D. J., & Webb, S. D. (2018). Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT: Pharmacometrics \& Systems Pharmacology, 7(6), 394–403. https://doi.org/10.1002/psp4.12298Medina, E. (2020). Aplicación de la metabolómica al control de la seguridad de los alimentos y la prevención de las enfermedades. [tesis de Maestría, Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/157877/Medina - Aplicación de la metabolómica en el control de la seguridad de los alimentos y en la pre....pdf?sequence=1&isAllowed=yMendrick, D. L. (2008). Genomic and genetic biomarkers of toxicity. Toxicology, 245(3), 175–181. https://doi.org/10.1016/j.tox.2007.11.013Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646Mohamad-Shalan, N. A. A., Mustapha, N. M., & Mohamed, S. (2017). Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice. Regulatory Toxicology and Pharmacology, 83, 46–53. https://doi.org/10.1016/j.yrtph.2016.11.022Nusair, S. D., Ananbeh, M., Zayed, A., Ahmad, M. I., & Qinna, N. A. (2022). Postmortem sampling time effect on toxicity biomarkers in rats exposed to an acute lethal methomyl dose. Toxicology Reports, 9, 1674–1680. https://doi.org/10.1016/j.toxrep.2022.08.010Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631–632, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269Pathak, S., Catanzaro, R., Vasan, D., Marotta, F., Chabria, Y., Jothimani, G., Verma, R. S., Ramachandran, M., Khuda-Bukhsh, A. R., & Banerjee, A. (2020). Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug and Chemical Toxicology, 43(5), 454–467. https://doi.org/10.1080/01480545.2018.1499773Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration & Biodegradation, 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992Puente, C., & Ramaroson, R. (2006). Medicion y analisis de los compuestos organicos volatiles en la atmosfera: Ultimas tecnicas, aplicabilidad y resultados a nivel europeo. Revista ION, 19(1), 43–47. https://revistas.uis.edu.co/index.php/revistaion/article/view/539Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., Chari, B. P. V, Saka, S., Vechalapu, R. R., Kamal, M. A., Tarasov, V. V, Chubarev, V. N., Siva Kumar, K., & Aliev, G. (2018). Chapter 2 - Probiotics: Supplements, Food, Pharmaceutical Industry. En A. M. Grumezescu & A. M. Holban (Eds.). Therapeutic, Probiotic, and Unconventional Foods. (pp. 15–25). Academic Press. https://doi.org/10.1016/B978-0-12-814625-5.00002-9Ríos-Sánchez, E., Gónzalez-Zamora, A., Olivas-Calderón, E. H., Anguiano-Vega, G. A., & Pérez-Morales, R. (2019). Hidrocarburos Aromáticos Policíclicos: Una revisión actualizada de un problema antiguo. Quimica Farmacéutica y Clinica. 2(9), 36–47.Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047Sahu, S. C. (2022). Genomic and Epigenomic Biomarkers for Predictive Toxicity and Disease. In Genomic and Epigenomic Biomarkers of Toxicology and Disease (pp. 1–5). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781119807704.ch1Shipelin, V. A., Smirnova, T. A., Gmoshinskii, I. V., & Tutelyan, V. A. (2015). Analysis of Toxicity Biomarkers of Fullerene C60 Nanoparticles by Confocal Fluorescent Microscopy. Bulletin of Experimental Biology and Medicine, 158(4), 443–449. https://doi.org/10.1007/s10517-015-2781-4Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95. https://doi.org/10.1016/j.ecoenv.2019.04.018Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by directinfusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10(6), 1050–1058. https://doi.org/10.1007/s11306-014-0693-3Süloğlu, A. K., Koçkaya, E. A., & Selmanoğlu, G. (2022). Toxicity of benzyl benzoate as a food additive and pharmaceutical agent. Toxicology and Industrial Health, 38(4), 221–233. https://doi.org/10.1177/07482337221086133Ullah, S., Ahmad, S., Altaf, Y., Dawar, F. U., Anjum, S. I., Baig, M. M. F. A., Fahad, S., Al-Misned, F., Atique, U., Guo, X., Nabi, G., & Wanghe, K. (2022). Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: A multi-biomarkers based study. Journal of King Saud University - Science, 34(2), 101752. https://doi.org/10.1016/j.jksus.2021.101752Vasileiadis, S., Brunetti, G., Marzouk, E., Wakelin, S., Kowalchuk, G. A., Lombi, E., & Donner, E. (2018). Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 52(15), 8745–8755. https://doi.org/10.1021/acs.est.8b00677Yan, H., Qiao, Z., Shen, B., Xiang, P., & Shen, M. (2016). Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Science International, 267, 129–135. https://doi.org/10.1016/j.forsciint.2016.08.027Yang, S., Ulhassan, Z., Shah, A. M., Khan, A. R., Azhar, W., Hamid, Y., Hussain, S., Sheteiwy, M. S., Salam, A., & Zhou, W. (2021). Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 166, 1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013Yebenes, G. de M. J., Loza, E., & Carmona, L. (2015). Predicting Toxicity: Biomarkers and the Value of the Patient’s Opinion. In Current Pharmaceutical Design (Vol. 21, Issue 2, pp. 233–240). http://dx.doi.org/10.2174/1381612820666140825124352Yesildag, K., Eroz, R., Genc, A., Dogan, T., & Satici, E. (2022). Evaluation of the protective effects of morin against acrylamide-induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. Journal of Food Biochemistry, 46(7), e14111. https://doi.org/10.1111/jfbc.14111Yu, D., Yong, D., & Dong, S. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. Journal of Environmental Sciences, 25(4), 785–790. https://doi.org/10.1016/S1001-0742(12)60119-3Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova, 14(25), 121–138. https://doi.org/10.22490/24629448.173Núm. 1 , Año 2020 : Enero-Juniohttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/9851/7756https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Betancourt Arango, Juan PabloPatiño Ospina, AlejandroTaborda Ocampo, GonzaloFiscal Ladino, Jhon Alexanderoai:repositorio.ucaldas.edu.co:ucaldas/238162025-10-08T21:17:13Z