Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel
Tablas, figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22172
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22172
- Palabra clave:
- 610 - Medicina y salud
3. Ciencias Médicas y de la Salud
Trastorno del espectro autista
Diagnóstico temprano
Pruebas genéticas
Variabilidad genética
Austim Spectrum Disorder
Early diagnosis
Genetic Testing
Genetic variability
Genética humana
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUCALDA_500c82792a4da626a980f4412f9db637 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22172 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel Clinical-molecular characterization of patients with autism spectrum disorder treated at the genetics consultation in a fourth-level hospital |
title |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
spellingShingle |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel 610 - Medicina y salud 3. Ciencias Médicas y de la Salud Trastorno del espectro autista Diagnóstico temprano Pruebas genéticas Variabilidad genética Austim Spectrum Disorder Early diagnosis Genetic Testing Genetic variability Genética humana |
title_short |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
title_full |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
title_fullStr |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
title_full_unstemmed |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
title_sort |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto Nivel |
dc.contributor.none.fl_str_mv |
Risueño-Blanco, José Alirio Sepúlveda Gallego, Luz Elena Universidad de Caldas Ocampo Mahecha, Sandra Jhoana DUQUE MONTOYA, DANIELA Serna Rivera, Cristian Camilo |
dc.subject.none.fl_str_mv |
610 - Medicina y salud 3. Ciencias Médicas y de la Salud Trastorno del espectro autista Diagnóstico temprano Pruebas genéticas Variabilidad genética Austim Spectrum Disorder Early diagnosis Genetic Testing Genetic variability Genética humana |
topic |
610 - Medicina y salud 3. Ciencias Médicas y de la Salud Trastorno del espectro autista Diagnóstico temprano Pruebas genéticas Variabilidad genética Austim Spectrum Disorder Early diagnosis Genetic Testing Genetic variability Genética humana |
description |
Tablas, figuras |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05-08T14:17:17Z 2025-05-08T14:17:17Z 2025 |
dc.type.none.fl_str_mv |
Trabajo de grado - Especialización http://purl.org/coar/resource_type/c_93fc Text info:eu-repo/semantics/report |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22172 Universidad de Caldas Repositorio Institucional de la Universidad de Caldas repositorio.ucaldas.edu.co/ |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22172 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional de la Universidad de Caldas repositorio.ucaldas.edu.co/ |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Primers [Internet]. 2020 Jan 1 [cited 2024 Dec 7];6(1). Available from: https://DOI:10.1038/s41572-019-0138-4 Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: A systematic review update [Internet]. Vol. 15, Autism Research. John Wiley and Sons Inc; 2022 [cited 2024 Dec 7]. p. 778–90. Available from: https://DOI: 10.1002/aur.2696 García-Zambrano S, Orozco-Barrios LG, Jacobs E. Estimation of the prevalence of autism spectrum disorders in Colombia based on the governmental data system. Res Autism Spectr Disord [Internet]. 2022 Oct 1 [cited 2024 Dec 7];98. Available from: https://DOI:10.1016/j.rasd.2022.102045 Fernanda Bonilla M, Roberto Chaskel. Trastorno del espectro autista [Internet]. Bogotá; 2016 [cited 2024 Dec 7]. Available from: https://scp.com.co/wpcontent/uploads/2016/04/2.-Trastorno-espectro.pdf Laura Grosso M. El autismo en las últimas ediciones de los manuales diagnósticos internacionales. Revista Inclusiones [Internet]. 2022 [cited 2024 Dec 7];10:52–62. Available from: https://doi.org/10.58210/fprc3503 Talero-Gutiérrez C, Rodríguez M, De La Rosa D, Morales G, Vélez-Van-Meerbeke A. Caracterización de niños y adolescentes con trastornos del espectro autista en una institución de Bogotá, Colombia. Neurologia [Internet]. 2012 Mar [cited 2024 Dec 7];27(2):90–6. Available from: https://10.1016/j.nrl.2011.03.005 De La Peña sanabria ID, Berdejo Giovanetti L, Chavarriaga Ruiz N, López Gulfo DC, Rueda Manjarez LM, Sánchez Charria OD, et al. Caracterización de niños y adolescentes con trastornos del espectro autista en Barranquilla, Colombia. Pediatria (Bucur) [Internet]. 2021 Oct 3 [cited 2024 Dec 7];54(2):63–70. Available from: https://doi.org/10.14295/rp.v54i2.244 Havdahl A, Niarchou M, Starnawska A, Uddin M, Van Der Merwe C, Warrier V. Genetic contributions to autism spectrum disorder [Internet]. Vol. 51, Psychological Medicine. Cambridge University Press; 2021 [cited 2024 Dec 7]. p. 2260–73. Available from: https://DOI: 10.1017/S0033291721000192 Suen YN, Chau APY, Wong SMY, Hui CLM, Chan SKW, Lee EHM, et al. Comorbidity of autism spectrum and attention deficit/hyperactivity disorder symptoms and their associations with 1-year mental health outcomes in adolescents and young adults. Psychiatry Res [Internet]. 2024 Jan 1 [cited 2024 Dec 7];331. Available from: https://doi:10.1016/j.psychres.2023.115657 America Psychiatric Association. Suplemento del manual diagnóstico y estadístico de trastornos mentales, quinta edición [Internet]. 2018. Available from: https://psychiatryonline.org. Nuñez Rios Diana Leandra. Caracterización clínica y estudio genético de una cohorte Colombiana con trastorno del espectro autista [Internet]. [Bogotá]: Universidad de los Andes; 2020 [cited 2024 Nov 15]. Available from: http://hdl.handle.net/1992/50932 Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder [Internet]. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023 [cited 2024 Dec 7]. Available from: https://DOI: 10.3390/ijms242316768 Kreiman BL, Boles RG. State of the Art of Genetic Testing for Patients With Autism: A Practical Guide for Clinicians [Internet]. Vol. 34, Seminars in Pediatric Neurology. W.B. Saunders; 2020 [cited 2024 Dec 7]. Available from: https://DOI: 10.1016/j.spen.2020.100804 Abdi M, Aliyev E, Trost B, Kohailan M, Aamer W, Syed N, et al. Genomic architecture of autism spectrum disorder in Qatar: The BARAKA-Qatar Study. Genome Med [Internet]. 2023 Dec 1 [cited 2024 Dec 7];15(1). Available from: https://doi.org/10.1186/s13073-023-01228-w Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine [Internet]. 2013 [cited 2024 Dec 7];15(5):399–407. Available from: https://doi: 10.1038/gim.2013.32 Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. LargeScale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell [Internet]. 2020 Feb 6 [cited 2024 Dec 7];180(3):568-584.e23. Available from: https://10.1016/j.cell.2019.12.036 Garrido-Torres N, Marqués Rodríguez R, Alemany-Navarro M, Sánchez-García J, García-Cerro S, Ayuso MI, et al. Exploring genetic testing requests, genetic alterations and clinical associations in a cohort of children with autism spectrum disorder. Eur Child Adolesc Psychiatry [Internet]. 2024 Nov 1 [cited 2025 Mar 23];33:3829–40. Available from: https://doi: 10.1007/s00787-024-02413-x. Loth E, Murphy DG, Spooren W. Defining precision medicine approaches to autism spectrum disorders: Concepts and challenges. Front Psychiatry [Internet]. 2016 Nov 29 [cited 2024 Dec 7];7. Available from: https://doi: 10.3389/fpsyt.2016.00188 Delgado Reyes AC, Agudelo Hernández AF. Trastornos del neurodesarrollo: una comparación entre el DSM-5 y la CIE-11. Psicoespacios: Revista virtual de la Institución Universitaria de Envigado [Internet]. 2021 [cited 2024 Nov 14];15(27):1– 16. Available from: https://doi.org/10.25057/21452776.1417 Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, et al. Role of genetics in the etiology of autistic spectrum disorder: Towards a hierarchical diagnostic strategy [Internet]. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017 [cited 2024 Dec 7]. Available from: https://DOI: 10.3390/ijms18030618 Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder—current evidence in the field [Internet]. Vol. 60, Journal of Applied Genetics. Springer Verlag; 2019 [cited 2024 Dec 7]. p. 37–47. Available from: https://DOI: 10.1007/s13353-018-00480-w Ye BS, Leung AOW, Wong MH. The association of environmental toxicants and autism spectrum disorders in children [Internet]. Vol. 227, Environmental Pollution. Elsevier Ltd; 2017 [cited 2025 Mar 23]. p. 234–42. Available from: https://doi: 10.1016/j.envpol.2017.04.039. Yenkoyan K, Mkhitaryan M, Bjørklund G. Environmental Risk Factors in Autism Spectrum Disorder: A Narrative Review. Curr Med Chem [Internet]. 2024 Jan 1 [cited 2025 Mar 21];31(17):2345–60. Available from: https://DOI: 10.2174/0109298673252471231121045529 Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder [Internet]. Vol. 27, Neuroscientist. SAGE Publications Inc.; 2021 [cited 2024 Dec 7]. p. 650–67. Available from: https://DOI: 10.1177/1073858420952046 Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand [Internet]. 2017 Jan 1 [cited 2024 Dec 7];135(1):29–41. Available from: https://DOI: 10.1111/acps.12666 Rubio S, Pacheco-Orozco RA, Gómez AM, Perdomo S, García-Robles R. Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica [Internet]. 2020 Apr 2 [cited 2024 Dec 7];61(2). Available from: https://doi.org/10.11144/Javeriana.umed61-2.sngs Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis [Internet]. Vol. 27, European Journal of Human Genetics. Nature Publishing Group; 2019 [cited 2024 Dec 7]. Available from: https://doi.org/10.1038/s41431-018-0244-x Aleena Alex LP. Sanger sequencing and its recent advances- a review. Palarch’s Journal Of Archaeology Of Egypt/Egyptology [Internet]. 2020 [cited 2024 Dec 7];17(7):698–705. Available from: https://archives.palarch.nl/index.php/jae/article/view/1270 Deharvengt SJ, Petersen LM, Jung HS, Tsongalis GJ. Nucleic acid analysis in the clinical laboratory. In: Contemporary Practice in Clinical Chemistry [Internet]. Elsevier; 2020 [cited 2024 Dec 7]. p. 215–34. Available from: https://DOI:10.1016/B978-0-12-815499-1.00013-2 Park JY, Kricka LJ, Clark P, Londin E, Fortina P. Clinical genomics: When whole genome sequencing is like a whole-body CT scan [Internet]. Vol. 60, Clinical Chemistry. American Association for Clinical Chemistry Inc.; 2014 [cited 2024 Dec 7]. p. 1390–2. Available from: https://doi: 10.1373/clinchem.2014.230276 Crossley BM, Bai J, Glaser A, Maes R, Porter E, Killian ML, et al. Guidelines for Sanger sequencing and molecular assay monitoring. Journal of Veterinary Diagnostic Investigation [Internet]. 2020 Nov 1 [cited 2024 Dec 7];32(6):767–75. Available from: https://DOI: 10.1177/1040638720905833 Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. NextGeneration Sequencing Technology: Current Trends and Advancements [Internet]. Vol. 12, Biology. Multidisciplinary Digital Publishing Institute (MDPI); 2023 [cited 2024 Dec 7]. p. 1–25. Available from: https://DOI: 10.3390/biology12070997 Lohmann K, Klein C. Next Generation Sequencing and the Future of Genetic Diagnosis [Internet]. Vol. 11, Neurotherapeutics. Springer Science and Business Media, LLC; 2014 [cited 2024 Dec 7]. p. 699–707. Available from: https://DOI: 10.1007/s13311-014-0288-8 Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA - Journal of the American Medical Association [Internet]. 2015 Sep 1 [cited 2025 Mar 23];314(9):595–903. Available from: https://doi: 10.1001/jama.2015.10078. Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, et al. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. 2022; Available from: https://doi.org/10.3390/genes Apte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD [Internet]. Vol. 14, IBRO Neuroscience Reports. Elsevier B.V.; 2023 [cited 2024 Dec 6]. p. 384–92. Available from: . https://10.1016/j.ibneur.2023.03.011 Ferri SL, Abel T, Brodkin ES. Sex Differences in Autism Spectrum Disorder: a Review. Curr Psychiatry Rep [Internet]. 2018 Feb 1 [cited 2024 Dec 7];20(2). Available from: https:// DOI: 10.1007/s11920-018-0874-2 Qiu S, Qiu Y, Li Y, Cong X. Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses [Internet]. Vol. 12, Translational Psychiatry. Springer Nature; 2022 [cited 2024 Dec 7]. Available from: https://doi.org/10.1038/s41398-022-02009-6 Creemers JWM, Nuytens K, Tuand K. Neurobeachin Gene in Autism. In: Comprehensive Guide to Autism [Internet]. Springer New York; 2014 [cited 2024 Dec 7]. p. 825–44. Available from: https://DOI:10.1007/SpringerReference_331151 Mulhern MS, Stumpel C, Stong N, Brunner HG, Bier L, Lippa N, et al. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol [Internet]. 2018 Nov 1 [cited 2024 Dec 7];84(5):788–95. Available from: https://doi:10.1002/ana.25350 Hansen AW, Arora P, Khayat MM, Smith LJ, Lewis AM, Rossetti LZ, et al. Germline mutation in POLR2A: a heterogeneous, multi-systemic developmental disorder characterized by transcriptional dysregulation. Human Genetics and Genomics Advances [Internet]. 2021 Jan 14 [cited 2024 Dec 7];2(1). Available from: https://doi:10.1016/j.xhgg.2020.100014 Katy P, Curtis R, Luigi B. GeneReviews. 2005 [cited 2024 Dec 7]. p. 1–34 PhelanMcDermid Syndrome-SHANK3 Related. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1198/pdf/Bookshelf_NBK1198.pdf De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism [Internet]. 2018 Apr 27 [cited 2024 Dec 7];9(1). Available from: https://doi:10.1186/s13229-018-0205-9 Levy T, Foss-Feig JH, Betancur C, Siper PM, Trelles-Thorne MDP, Halpern D, et al. Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: Results from the developmental synaptopathies consortium. Hum Mol Genet [Internet]. 2022 Feb 15 [cited 2024 Dec 7];31(4):625–37. Available from: https://doi:10.1093/hmg/ddab280 Siano MA, De Maggio I, Petillo R, Cocciadiferro D, Agolini E, Majolo M, et al. De Novo Mutation in KMT2C Manifesting as Kleefstra Syndrome 2: Case Report and Literature Review. Pediatr Rep [Internet]. 2022 Mar 1 [cited 2024 Dec 7];14(1):131– 9. Available from: https://doi: 10.3390/pediatric14010019. Whitford W, Taylor J, Hayes I, Smith W, Snell RG, Lehnert K, et al. A novel 11 base pair deletion in KMT2C resulting in Kleefstra syndrome 2. Mol Genet Genomic Med [Internet]. 2024 Jan 1 [cited 2024 Dec 7];12(1). Available from: https://doi: 10.1002/mgg3.2350 Banka S, Sayer R, Breen C, Barton S, Pavaine J, Sheppard SE, et al. Genotype– phenotype specificity in Menke–Hennekam syndrome caused by missense variants in exon 30 or 31 of CREBBP. Am J Med Genet A [Internet]. 2019 Jun 1 [cited 2024 Dec 7];179(6):1058–62. Available from: https://doi: 10.1002/ajmg.a.61131 Sima A, Smădeanu RE, Simionescu AA, Nedelea F, Vlad AM, Becheanu C. Menke– Hennekam Syndrome: A Literature Review and a New Case Report. Children [Internet]. 2022 May 1 [cited 2024 Dec 7];9(5). Available from: https://DOI: 10.3390/children9050759 Aron W. C, Rauch L. G, Benavides G. F, Repetto L. MG. Rett syndrome: MECP2 gene molecular analysis in chilean patients. Rev Chil Pediatr [Internet]. 2019 Mar 1 [cited 2024 Dec 7];90(2):152–6. Available from: https://DOI: 10.32641/rchped.v90i2.724 50. E. Candeloa, G. Caicedoa, H E. Candeloa, G. Caicedoa, H. Pachajoa. Ampliando el fenotipo del síndrome FOXG1. Neurología [Internet]. 2020 [cited 2024 Dec 7];35(3):207–21. Available from: https://DOI: 10.1016/j.nrl.2017.09.004 Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet [Internet]. 2011 Jun [cited 2024 Dec 7];48(6):396–406. Available from: https://doi: 10.1136/jmg.2010.087528. Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, et al. FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome. Am J Hum Genet [Internet]. 2008 Jul 11 [cited 2024 Dec 7];83(1):89–93. Available from: https://doi: 10.1016/j.ajhg.2008.05.015. Reiff M, Giarelli E, Bernhardt BA, Easley E, Spinner NB, Sankar PL, et al. Parents’ Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders. J Autism Dev Disord [Internet]. 2015 Oct 22 [cited 2024 Dec 7];45(10):3262–75. Available from: https://doi: 10.1007/s10803-015-2489- Rudolph-Rothfeld W, Vonthein R. Cost-Effectiveness of Autism Diagnostic Based on Genetic Testing. Res Sq [Internet]. 2021 Jul 30 [cited 2024 Dec 7];1–22. Available from: https://doi.org/10.21203/rs.3.rs-731486/v1 Salari N, Rasoulpoor S, Rasoulpoor S, Shohaimi S, Jafarpour S, Abdoli N, et al. The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis. Ital J Pediatr [Internet]. 2022 Dec 1 [cited 2024 Dec 7];48(1). Available from: https://DOI: 10.1186/s13052-022-01310-w Montiel-Nava C, Peña J. Epidemiological findings of pervasive developmental disorders in a Venezuelan study. Autism [Internet]. 2008 [cited 2024 Dec 7];(2):191– 202. Available from: https://DOI: 10.1177/1362361307086663 Fombonne E, Marcin C, Manero AC, Bruno R, Diaz C, Villalobos M, et al. Prevalence of Autism Spectrum Disorders in Guanajuato, Mexico: The Leon survey. J Autism Dev Disord [Internet]. 2016 May 1 [cited 2024 Dec 7];46(5):1669–85. Available from: https://DOI: 10.1007/s10803-016-2696-6 Paula CS, Ribeiro SH, Fombonne E, Mercadante MT. Brief report: Prevalence of pervasive developmental disorder in Brazil: A pilot study. J Autism Dev Disord [Internet]. 2011 Dec [cited 2024 Dec 7];41(12):1738–42. Available from: https:// DOI: 10.1007/s10803-011-1200-6 Rai D, Lewis G, Lundberg M, Araya R, Svensson A, Dalman C, et al. Parental socioeconomic status and risk of offspring autism spectrum disorders in a swedish population-based study. J Am Acad Child Adolesc Psychiatry [Internet]. 2012 [cited 2025 Mar 23];51(5):467–76. Available from: https://doi: 10.1016/j.jaac.2012.02.012. Delobel-Ayoub M, Ehlinger V, Klapouszczak D, Maffre T, Raynaud JP, Delpierre C, et al. Socioeconomic disparities and prevalence of autism spectrum disorders and intellectual disability. PLoS One [Internet]. 2015 Nov 5 [cited 2025 Mar 23];10(11):e0141964. Available from: https://doi:10.1371/journal.pone.0141964 Raina SK, Chander V, Bhardwaj AK, Kumar D, Sharma S, Kashyap V, et al. Prevalence of autism spectrum disorder among rural, urban, and tribal children (1- 10 Years of Age). J Neurosci Rural Pract [Internet]. 2017 Jul 1 [cited 2025 Mar 23];8(3):368–74. Available from: https://doi:10.4103/jnrp.jnrp_329_16 Espinosa E, Mera P, Toledo D. Trastorno del espectro autista: Caracterización clínica en pacientes de dos centros de referencia en Bogotá, Colombia. Revista Med [Internet]. 2017 [cited 2024 Dec 7];26(1):24–34. Available from: https://doi.org/10.18359/rmed.3990 Gutiérrez-Ruiz KP. Early characteristics and predictors of clinical severity in Autism Spectrum Disorder. Revista CES Psicologia [Internet]. 2019 [cited 2024 Dec 7];12(2):12–25. Available from: https://DOIhttpdxdoiorg1021615.pdf Ana M. Acero Ortega; María C. Lattig; Diana L. Nuñez. Acercamiento al diagnóstico genético en Trastornos del Espectro Autista mediante análisis de variación en número de copias [Internet]. [Bogotá]: Universidad de los Andes; 2019 [cited 2024 Nov 15]. Available from: http://hdl.handle.net/1992/45753 Valencia AV, Páez AL, Sampedro ME, Ávila C, Cardona JC, Mesa C, et al. Evidencia de asociación entre el gen SLC6A4 y efectos epistáticos con variantes en HTR2A en la etiología del autismo en la población antioqueña. Biomedica [Internet]. 2012 [cited 2024 Dec 7];32(4):585–601. Available from: https://DOI:10.7705/biomedica.v32i4.593 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine [Internet]. 2015 [cited 2024 Dec 7];17(5):405–24. Available from: https://doi.org/10.1038/gim.2015.30 Díaz Ibarra EA, Abella Pinzón JA, Medina YF. Methodology: How to develop a case report or case series report [Internet]. Vol. 30, Revista Colombiana de Reumatologia. Asociacion Colombiana de Reumatologia; 2023 [cited 2024 Dec 7]. p. 129–36. Available from: https://doi.org/10.1016/j.rcreu.2021.05.022. Gjin Ndrepepa, David Antoniucci, Adnan Kastrati, Julinda Mehilli, Albert Schömig. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA [Internet]. 2009 [cited 2024 Dec 6];5(301):487–8. Available from: http://doi:10.1001/jama.2009.32 Carlos J, Pérez R, Rodríguez Esparragón F, Rodríguez Pérez JC, Bello MAG. Guía práctica a los estudios de asociación genética. Consideraciones sobre su utilidad clínica. Nefrología [Internet]. 2009 [cited 2024 Dec 6];6(29):582-588. Available from: https://DOI: 10.3265/Nefrologia.2009.29.6.5483.en.full Attia J, Ioannidis JPA, Thakkinstian A, Mcevoy M, Scott RJ, Minelli C, et al. How to Use an Article About Genetic Association B: Are the Results of the Study Valid? JAMA [Internet]. 2009 [cited 2024 Dec 7];301(2):74–81. Available from: https://DOI: 10.1001/jama.2008.901 Bower KM. When to Use Fisher’s Exact Test [Internet]. 2003 Aug. Available from: https://www.researchgate.net/publication/265026286 Nachar N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution [Internet]. Vol. 4, Tutorials in Quantitative Methods for Psychology. 2008 [cited 2024 Dec 7]. Available from: https://DOI:10.20982/tqmp.04.1.p013 Harrison SM, Biesecker LG, Rehm HL, Genomics M, Genetics M, Hospital MG. Overview of specifications to the ACMG/AMP variant interpretation guidelines. 2020 [cited 2024 Dec 7];103(1):1–20. Available from: https://DOI: 10.1002/cphg.93 Mulhern MS, Stumpel C, Stong N, Brunner HG, Bier L, Lippa N, et al. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol [Internet]. 2018 Nov 1 [cited 2024 Dec 7];84(5):788–95. Available from: https://doi:10.1002/ana.25350 Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, et al. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes. The American Journal of Human Genetics [Internet]. 2024 Aug 8 [cited 2024 Nov 9];111(8):1626–42. Available from: https://doi: 10.1016/j.ajhg.2024.06.009 Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [KCDCOM-ADs]: An emerging class of congenital regulopathies. Clin Epigenetics [Internet]. 2020 Jan 10 [cited 2024 Dec 7];12(1):1– 20. Available from: https://doi.org/10.1186/s13148-019-0802-2 Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol [Internet]. 2017 [cited 2024 Dec 7];18(1):1–12. Available from: https://DOI: 10.1186/s13059-017- 1353-5 Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, et al. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. Genes (Basel) [Internet]. 2022;470(13):1. Available from: https://doi.org/10.3390/genes Phelan K, Boccuto L, Powell CM, Boeckers TM, van Ravenswaaij-Arts C, Rogers RC, et al. Phelan-McDermid syndrome: a classification system after 30 years of experience. Orphanet J Rare Dis [Internet]. 2022 Dec 1 [cited 2024 Dec 7];17(27):1– 4. Available from: https://doi.org/10.1186/s13023-022-02180-5 Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms [Internet]. Vol. 16, Nature Structural and Molecular Biology. 2009 [cited 2024 Dec 7]. p. 107– 13. Available from: https://DOI: 10.1038/nsmb.1550 Hernández Gómez M, Meléndez Hernández R, Ramírez Arroyo E, Mayén Molina DG. Síndrome de Phelan-McDermid: reporte de un caso y revisión de la literatura. Acta Pediátrica de México [Internet]. 2018 Jan 16 [cited 2024 Dec 7];1(1):42. Available from: https://doi.org/10.18233/apm1no1pp42-511539. Qin L, Williams JB, Tan T, Liu T, Cao Q, Ma K, et al. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun [Internet]. 2021 Dec 1 [cited 2024 Dec 7];12(1). Available from: https://DOI: 10.1038/s41467-021-26972-8 Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copynumber variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). GENETICS in MEDICINE [Internet]. 2020;(22):245–57. Available from: https://doi.org/10.1038/s41436- Chung BHY, Drmic I, Marshall CR, Grafodatskaya D, Carter M, Fernandez BA, et al. Phenotypic spectrum associated with duplication of Xp11.22-p11.23 includes Autism Spectrum Disorder. Eur J Med Genet [Internet]. 2011 Sep [cited 2024 Dec 7];54(5). Available from: https://DOI: 10.1016/j.ejmg.2011.05.008 Bitgenia. Bitgenia. 2018 [cited 2024 Dec 7]. p. 1–4 Recomendaciones del ACMG/AMP para la clasificación de variantes versión 2.0. Hacia la automatización. Available from: https://www.bitgenia.com/clasificacion-de-variantes-version-2-0- hacia-la-automatizacion/ Pantaleón F. G, Juvier R. T. Bases moleculares del síndrome de Rett, una Mirada actual. Rev Chil Pediatr [Internet]. 2015 Jun 1 [cited 2024 Dec 7];86(3):142–51. Available from: http://dx.doi.org/10.1016/j.rchipe.2015.07.001. Das DK, Jadhav V, Ghattargi VC, Udani V. Novel mutation in Forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome. Gene [Internet]. 2014 Mar 15 [cited 2024 Dec 7];538(1):109–12. Available from: https://doi: 10.1016/j.gene.2013.12.063. Robinson EB, Lichtenstein P, Anckarsäter H, Happé F, Ronald A. Examining and interpreting the female protective effect against autistic behavior. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5258–62. Dworzynski K, Ronald A, Bolton P, Happé F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry [Internet]. 2012 Aug [cited 2024 Dec 7];51(8):788–97. Available from: https:// DOI: 10.1016/j.jaac.2012.05.018 Vidarte A, Zambrano JR, Mattheis A. Access and Equity for Students with Dis/abilities in Colombian Higher Education. Educ Policy Anal Arch [Internet]. 2022 [cited 2024 Dec 7];30. Available from: https://doi.org/10.14507/epaa.30.6044 Montiel-Nava C, Montenegro MC, Ramirez AC, Valdez D, Rosoli A, Garcia R, et al. Age of autism diagnosis in Latin American and Caribbean countries. Autism [Internet]. 2024 Jan 1 [cited 2024 Dec 7];28(1):58–72. Available from: https://DOI: 10.1177/13623613221147345 Mishaal RA, Ben-Itzchak E, Zachor DA. Age of autism spectrum disorder diagnosis is associated with child’s variables and parental experience. Res Autism Spectr Disord [Internet]. 2014 [cited 2024 Dec 7];8(7):873–80. Available from: https://DOI:10.1016/j.rasd.2014.04.001 Ribeiro SHB, de Paula CS, Bordini D, Mari JJ, Caetano SC. Barriers to early identification of autism in Brazil. Revista Brasileira de Psiquiatria [Internet]. 2017 Oct 1 [cited 2024 Dec 7];39(4):352–4. Available from: https://DOI: 10.1590/1516-4446- 2016-2141 Araripe B, Montiel-Nava C, Bordini D, Cunha GR, Garrido G, Cukier S, et al. Profile of Service Use and Barriers to Access to Care among Brazilian Children and Adolescents with Autism Spectrum Disorders. Brain Sci [Internet]. 2022 Oct 1 [cited 2025 Mar 23];12(10):1421. Available from: https://doi:10.3390/brainsci12101421 Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders and the NDD Exome Scoping Review Work Group. Available from: https://doi.org/10.1038/s41436- Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA - Journal of the American Medical Association [Internet]. 2015 Sep 1 [cited 2024 Dec 7];314(9):595– 903. Available from: https://doi: 10.1001/jama.2015.10078 Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine [Internet]. 2021 Aug 1 [cited 2024 Dec 7];23(8):1381–90. Available from: https://doi: 10.1038/s41436-021-01172-3 Autism Spectrum Disorders (ASD) Panel Test - PreventionGenetics [Internet]. [cited 2025 Mar 22]. Available from: https://www.preventiongenetics.com/testInfo?val=Autism-Spectrum-Disorders- %28ASD%29-Panel Vissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders [Internet]. Vol. 17, Nature Reviews Genetics. Nature Publishing Group; 2016 [cited 2024 Dec 7]. p. 9–18. Available from: https://doi: 10.1038/nrg3999 Griesi-Oliveira K, Sertié AL. Autism spectrum disorders: an updated guide for genetic counseling. Einstein (Sao Paulo) [Internet]. 2017 Apr 1 [cited 2025 Mar 23];15(2):233–8. Available from: https://doi: 10.1590/S1679-45082017RB4020. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet [Internet]. 2019 Mar 1 [cited 2024 Dec 7];51(3):431–44. Available from: https://doi: 10.1038/s41588-019-0344-8 Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature [Internet]. 2011 Apr 28 [cited 2024 Dec 7];472(7344):437–42. Available from: https://DOI: 10.1038/nature09965 Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet [Internet]. 2011 Aug [cited 2024 Dec 7];20(15):3093–108. Available from: https:// DOI: 10.1093/hmg/ddr212 Mencarelli MA, Spanhol-Rosseto A, Artuso R, Rondinella D, De Filippis R, BahiBuisson N, et al. Novel FOXG1 mutations associated with the congenital variant of Rett syndrome. J Med Genet [Internet]. 2010 Jan [cited 2024 Dec 7];47(1):49–53. Available from: https://doi: 10.1136/jmg.2009.067884 Hennekam RCM. Rubinstein-Taybi syndrome [Internet]. Vol. 14, European Journal of Human Genetics. 2006 [cited 2025 Mar 23]. p. 981–5. Available from: https://doi:10.1038/sj.ejhg.5201594 Moortgat S, Berland S, Aukrust I, Maystadt I, Baker L, Benoit V, et al. HUWE1 variants cause dominant X-linked intellectual disability: A clinical study of 21 patients. European Journal of Human Genetics [Internet]. 2018 Jan 1 [cited 2024 Dec 7];26(1):64–74. Available from: https://doi: 10.1038/s41431-017-0038-6 Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, et al. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms [Internet]. Vol. 62, Sleep Medicine Reviews. W.B. Saunders Ltd; 2022 [cited 2024 Dec 7]. Available from: https://DOI: 10.1016/j.smrv.2022.101595 Monteiro P, Feng G. SHANK proteins: Roles at the synapse and in autism spectrum disorder [Internet]. Vol. 18, Nature Reviews Neuroscience. Nature Publishing Group; 2017 [cited 2024 Dec 7]. p. 147–57. Available from: https://DOI: 10.1038/nrn.2016.183 Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder [Internet]. Vol. 12, Frontiers in Cellular Neuroscience. Frontiers Media S.A.; 2018 [cited 2024 Dec 7]. Available from: https://doi.org/10.3389/fncel.2018.00470 Bro D, O’Hara R, Primeau M, Hanson-Kahn A, Hallmayer J, Bernstein JA. Sleep disturbances in individuals with phelan-mcdermid syndrome: Correlation with caregivers’ sleep quality and daytime functioning. Sleep [Internet]. 2017 Feb 1 [cited 2024 Dec 7];40(2). Available from: https://doi: 10.1093/sleep/zsw062. Laura P, Marie G, Romuald B, Catherine B, Sylvie R, Arnold M, et al. 22q13 deletion syndrome: communication disorder or autism? Evidence from a specific clinical and neurophysiological phenotype. Transl Psychiatry [Internet]. 2018 Dec 1 [cited 2024 Dec 7];8(1). Available from: https://doi: 10.1038/s41398-018-0212-9. Miller AC, Voelker LH, Shah AN, Moens CB. Neurobeachin is required postsynaptically for electrical and chemical synapse formation. Current Biology [Internet]. 2015 Jan 5 [cited 2024 Dec 7];25(1):16–28. Available from: https://DOI: 10.1016/j.cub.2014.10.071 Nair R, Lauks J, Jung SY, Cooke NE, de Wit H, Brose N, et al. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. Journal of Cell Biology [Internet]. 2013 [cited 2024 Dec 7];200(1):61–80. Available from: https:// doi: 10.1083/jcb.201207113 Medrihan L, Rohlmann A, Fairless R, Andrae J, Döring M, Missler M, et al. Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. Journal of Physiology [Internet]. 2009 Nov [cited 2024 Dec 7];587(21):5095–106. Available from: https://doi: 10.1113/jphysiol.2009.178236 Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine Acetyltransferases CBP and p300 as Therapeutic Targets in Cognitive and Neurodegenerative Disorders. 2013 [cited 2024 Dec 7];28(19):5051–64. Available from: https://DOI: 10.2174/13816128113199990382 Menke LA, van Belzen MJ, Alders M, Cristofoli F, Ehmke N, Fergelot P, et al. CREBBP mutations in individuals without Rubinstein–Taybi syndrome phenotype. Am J Med Genet A [Internet]. 2016 Oct 1 [cited 2024 Dec 7];170(10):2681–93. Available from: https://DOI: 10.1002/ajmg.a.37800 Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, et al. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am J Hum Genet [Internet]. 2018 Jan 4 [cited 2024 Dec 7];102(1):175–87. Available from: https://doi: 10.1016/j.ajhg.2017.11.013 Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann Neurol [Internet]. 2010 Dec [cited 2024 Dec 7];68(6):944–50. Available from: https://DOI: 10.1002/ana.22124 Philippe C, Amsallem D, Francannet C, Lambert L, Saunier A, Verneau F, et al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. J Med Genet [Internet]. 2010 [cited 2024 Dec 7];47(1):59–65. Available from: https://doi: 10.1136/jmg.2009.067355. Monteggia LM, Kavalali ET. Rett Syndrome and the Impact of MeCP2 Associated Transcriptional Mechanisms on Neurotransmission [Internet]. Vol. 65, Biological Psychiatry. 2009 [cited 2024 Dec 7]. p. 204–10. Available from: https:// doi: 10.1016/j.biopsych.2008.10.036 Jang HN, Kim T, Jung AY, Lee BH, Yum MS, Ko TS. Identification of FOXG1 mutations in infantile hypotonia and postnatal microcephaly. Medicine (United States) [Internet]. 2021 Nov 24 [cited 2025 Mar 23];100(47). Available from: https://doi: 10.1097/MD.0000000000027949 Collins SC, Bray SM, Suhl JA, Cutler DJ, Coffee B, Zwick ME, et al. Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males. Am J Med Genet A [Internet]. 2010 Oct [cited 2024 Dec 7];152 A(10):2512– 20. Available from: https://doi: 10.1002/ajmg.a.33626 Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B, et al. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. European Journal of Human Genetics [Internet]. 2016 Mar 1 [cited 2024 Dec 7];24(3):373–80. Available from: https://doi: 10.1038/ejhg.2015.123. Grams SE, Argiropoulos B, Lines M, Chakraborty P, Mcgowan-Jordan J, Geraghty MT, et al. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications. Am J Med Genet A [Internet]. 2016 Apr 1 [cited 2024 Dec 7];170(4):967–77. Available from: https://doi: 10.1002/ajmg.a.37519 Iwase S, Bérubé NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M, et al. Epigenetic etiology of intellectual disability. Journal of Neuroscience [Internet]. 2017 Nov 8 [cited 2024 Dec 7];37(45):10773–82. Available from: https://DOI: 10.1523/JNEUROSCI.1840-17.2017 Zhao X, D’Arca D, Lim WK, Brahmachary M, Carro MS, Ludwig T, et al. The N-MycDLL3 Cascade Is Suppressed by the Ubiquitin Ligase Huwe1 to Inhibit Proliferation and Promote Neurogenesis in the Developing Brain. Dev Cell [Internet]. 2009 Aug 18 [cited 2024 Dec 7];17(2):210–21. Available from: https://doi: 10.1016/j.devcel.2009.07.009. Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders [Internet]. Vol. 7, Epigenomics. Future Medicine Ltd.; 2015 [cited 2024 Dec 7]. p. 503–18. Available from: https://DOI: 10.2217/epi.15.1 Werling DM, Geschwind DH. Sex differences in autism spectrum disorders [Internet]. Vol. 26, Current Opinion in Neurology. 2013 [cited 2024 Dec 7]. p. 146– 53. Available from: https://DOI: 10.1097/WCO.0b013e32835ee548 Acero-Garcés DO, Saldarriaga W, Cabal-Herrera AM, Rojas CA, Hagerman RJ. Fragile X Syndrome in children. Colomb Med [Internet]. 2023 Jul 24 [cited 2024 Dec 7];54(2). Available from: https://doi.org/10.25100/cm.v54i2.5089. |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
91 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias para la Salud Colombia, Caldas, Manizales Especialización en Epidemiología |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias para la Salud Colombia, Caldas, Manizales Especialización en Epidemiología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145020088877056 |
spelling |
Caracterización Clínica-Molecular De Pacientes Con Trastorno Del Espectro Autista Atendidos En La Consulta De Genética En Un Hospital De Cuarto NivelClinical-molecular characterization of patients with autism spectrum disorder treated at the genetics consultation in a fourth-level hospital610 - Medicina y salud3. Ciencias Médicas y de la SaludTrastorno del espectro autistaDiagnóstico tempranoPruebas genéticasVariabilidad genéticaAustim Spectrum DisorderEarly diagnosisGenetic TestingGenetic variabilityGenética humanaTablas, figurasEste estudio descriptivo, observacional, retrospectivo y transversal caracterizó clínica y molecularmente a pacientes con trastorno del espectro autista atendidos en genética en un hospital de IV nivel en Colombia entre 2013 y 2023, cuyo propósito fue incluir registros de pacientes con diagnóstico clínico de autismo que cumplieran con criterios DSM-V. La muestra final quedó conformada por 72 pacientes cuyos registros cumplían con los criterios de inclusión; en esa muestra se pudo evidenciar predominancia de hombres (70.8%) frente a las mujeres (29.2%) en una edad promedio de 23.10 meses. Se encontró que el síntoma debutante más predominante fue la regresión en el desarrollo del lenguaje (63.9%), siendo uno de los síntomas más representativos según la revisión literaria y su tendencia actual. Desde el componente molecular de la muestra analizada 10 pacientes fueron identificados con variantes genéticas relacionadas con trastorno del espectro autista, esto equivale a un porcentaje estimado de 13,9%; mientras que el 86.1% no presentaron variantes. Además, dentro de los hallazgos figuran variantes en genes tales como SHANK3, CREBBP, FOXG1, entre otros, previamente no reportadas en estudios colombianos. Como conclusiones, este estudio reveló tres hallazgos principales: Primero, existe un retraso significativo de aproximadamente 27 meses entre la aparición de síntomas iniciales (23 meses) y el diagnóstico formal (51 meses), evidenciando la necesidad de mejorar los protocolos de detección temprana. Segundo, se destaca el valor diagnóstico de la secuenciación de exoma, que identificó el 80% de las variantes genéticas encontradas en este estudio, aunque reconociendo que su alto costo representa un desafío para su implementación rutinaria en comparación con pruebas más dirigidas. Tercero, se confirmó la heterogeneidad genética del trastorno del espectro autista al identificar variaciones en genes relacionados con diversos procesos neurobiológicos.This descriptive, observational, retrospective, and cross-sectional study clinically and molecularly characterized patients with autism spectrum disorder treated in genetics at a level IV hospital in Colombia between 2013 and 2023, with the purpose of including records of patients with clinical diagnosis of autism who met DSM-V criteria. The final sample consisted of 72 patients whose records met the inclusion criteria; in this sample, a predominance of males (70.8%) compared to females (29.2%) was evident, with an average age of 23.10 months. The most predominant initial symptom was regression in language development (63.9%), being one of the most representative symptoms according to the literature review and its current trend. From the molecular component of the analyzed sample, 10 patients were identified with genetic variants related to autism spectrum disorder, equivalent to an estimated percentage of 13.9%; while 86.1% did not present variants. Additionally, the findings include variants in genes such as SHANK3, CREBBP, FOXG1, among others, previously not reported in Colombian studies. As conclusions, this study revealed three main findings: First, there is a significant delay of approximately 27 months between the appearance of initial symptoms (23 months) and formal diagnosis (51 months), highlighting the need to improve early detection protocols. Second, the diagnostic value of exome sequencing is emphasized, which identified 80% of the genetic variants found in this study, while recognizing that its high cost represents a challenge for its routine implementation compared to more targeted tests. Third, the genetic heterogeneity of autism spectrum disorder was confirmed by identifying variations in genes related to various neurobiological processes.RESUMEN -- INTRODUCCIÓN -- PLANTEAMIENTO DEL PROBLEMA -- JUSTIFICACIÓN -- MARCO TEÓRICO -- Introducción al trastorno del espectro autista -- La era de los estudios genéticos -- Estado del arte sobre la etiología genética en autismo -- Descripción de datos, población características sociodemográficas -- Estado del arte en Colombia con relación al TEA -- OBJETIVOS -- Objetivo general -- Objetivos específicos -- METODOLOGÍA -- Tipo de estudio -- Población -- Selección y tamaño de muestra -- Criterios de inclusión y exclusión -- Procedimientos para la recolección de información -- Estrategia de selección y recolección de datos -- Definición y operacionalización de variables -- Plan de análisis -- Fuentes de información -- Instrumento de recolección de información -- ASPECTOS BIOÉTICOS --RESULTADOS -- Caracterización población -- Caracterización sociodemográfica -- Caracterización Clínica -- Nota: elaboración propia -- Caracterización fenotípica de pacientes con variantes relacionadas a TEA -- Caracterización genotípica de pacientes con variantes relacionadas a TEA -- Paciente 1 con la variante en el gen NBE -- Paciente 2 con variante en el gen KMT2C -- Paciente 3 con variante en el gen POLR2A -- Paciente 4 con variante en el gen SHANK3 -- Paciente 5 con variante en el gen SHANK3 -- Paciente 6 con variante en el gen SHANK3 -- Paciente 7 con duplicación Xp11.23 -- Paciente 8 con variante en el gen CREBBP -- Paciente 9 con variante en el gen FOXG1 -- Paciente 10 con la variante en el gen MECP2 -- Comparación exploratoria análisis bivariado -- DISCUSIÓN -- Caracterización demografía -- Caracterización Clínica -- Caracterización del fenotipo -- Caracterización del genotipo --LIMITACIONES -- CONCLUSIONES --RECOMENDACIONES -- Bibliografía -- ANEXOSEspecializaciónEstudio descriptivo, retrospectivo, observacional, transversal. Se realizó una caracterización de los pacientes con diagnóstico clínico de trastorno del espectro autista que cumplieron con los criterios diagnósticos del trastorno del espectro autista según DSM 5, atendidos en la consulta de genética del Hospital Universitario Clínica San Rafael, identificados en las bases de datos de las historias clínicas de las consulta de genética del hospital mencionado, durante el periodo comprendido entre agosto del 2013 a noviembre del 2023, que respondieran al CIE-10 relacionado a autismo (F84 Trastornos Generalizados del Desarrollo, F84.0 Autismo infantil, F84.1 Autismo atípico). Se recopiló variables tanto demográficas y clínicas de las historias clínicas de los pacientes reclutadosEspecialista en EpidemiologíaUniversidad de CaldasFacultad de Ciencias para la SaludColombia, Caldas, ManizalesEspecialización en EpidemiologíaRisueño-Blanco, José AlirioSepúlveda Gallego, Luz ElenaUniversidad de CaldasOcampo Mahecha, Sandra JhoanaDUQUE MONTOYA, DANIELASerna Rivera, Cristian CamiloOcampo Mahecha, Sandra Jhoana2025-05-08T14:17:17Z2025-05-08T14:17:17Z2025Trabajo de grado - Especializaciónhttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/report91 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22172Universidad de CaldasRepositorio Institucional de la Universidad de Caldasrepositorio.ucaldas.edu.co/spaLord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Primers [Internet]. 2020 Jan 1 [cited 2024 Dec 7];6(1). Available from: https://DOI:10.1038/s41572-019-0138-4Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: A systematic review update [Internet]. Vol. 15, Autism Research. John Wiley and Sons Inc; 2022 [cited 2024 Dec 7]. p. 778–90. Available from: https://DOI: 10.1002/aur.2696García-Zambrano S, Orozco-Barrios LG, Jacobs E. Estimation of the prevalence of autism spectrum disorders in Colombia based on the governmental data system. Res Autism Spectr Disord [Internet]. 2022 Oct 1 [cited 2024 Dec 7];98. Available from: https://DOI:10.1016/j.rasd.2022.102045Fernanda Bonilla M, Roberto Chaskel. Trastorno del espectro autista [Internet]. Bogotá; 2016 [cited 2024 Dec 7]. Available from: https://scp.com.co/wpcontent/uploads/2016/04/2.-Trastorno-espectro.pdfLaura Grosso M. El autismo en las últimas ediciones de los manuales diagnósticos internacionales. Revista Inclusiones [Internet]. 2022 [cited 2024 Dec 7];10:52–62. Available from: https://doi.org/10.58210/fprc3503Talero-Gutiérrez C, Rodríguez M, De La Rosa D, Morales G, Vélez-Van-Meerbeke A. Caracterización de niños y adolescentes con trastornos del espectro autista en una institución de Bogotá, Colombia. Neurologia [Internet]. 2012 Mar [cited 2024 Dec 7];27(2):90–6. Available from: https://10.1016/j.nrl.2011.03.005De La Peña sanabria ID, Berdejo Giovanetti L, Chavarriaga Ruiz N, López Gulfo DC, Rueda Manjarez LM, Sánchez Charria OD, et al. Caracterización de niños y adolescentes con trastornos del espectro autista en Barranquilla, Colombia. Pediatria (Bucur) [Internet]. 2021 Oct 3 [cited 2024 Dec 7];54(2):63–70. Available from: https://doi.org/10.14295/rp.v54i2.244Havdahl A, Niarchou M, Starnawska A, Uddin M, Van Der Merwe C, Warrier V. Genetic contributions to autism spectrum disorder [Internet]. Vol. 51, Psychological Medicine. Cambridge University Press; 2021 [cited 2024 Dec 7]. p. 2260–73. Available from: https://DOI: 10.1017/S0033291721000192Suen YN, Chau APY, Wong SMY, Hui CLM, Chan SKW, Lee EHM, et al. Comorbidity of autism spectrum and attention deficit/hyperactivity disorder symptoms and their associations with 1-year mental health outcomes in adolescents and young adults. Psychiatry Res [Internet]. 2024 Jan 1 [cited 2024 Dec 7];331. Available from: https://doi:10.1016/j.psychres.2023.115657America Psychiatric Association. Suplemento del manual diagnóstico y estadístico de trastornos mentales, quinta edición [Internet]. 2018. Available from: https://psychiatryonline.org.Nuñez Rios Diana Leandra. Caracterización clínica y estudio genético de una cohorte Colombiana con trastorno del espectro autista [Internet]. [Bogotá]: Universidad de los Andes; 2020 [cited 2024 Nov 15]. Available from: http://hdl.handle.net/1992/50932Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder [Internet]. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023 [cited 2024 Dec 7]. Available from: https://DOI: 10.3390/ijms242316768Kreiman BL, Boles RG. State of the Art of Genetic Testing for Patients With Autism: A Practical Guide for Clinicians [Internet]. Vol. 34, Seminars in Pediatric Neurology. W.B. Saunders; 2020 [cited 2024 Dec 7]. Available from: https://DOI: 10.1016/j.spen.2020.100804Abdi M, Aliyev E, Trost B, Kohailan M, Aamer W, Syed N, et al. Genomic architecture of autism spectrum disorder in Qatar: The BARAKA-Qatar Study. Genome Med [Internet]. 2023 Dec 1 [cited 2024 Dec 7];15(1). Available from: https://doi.org/10.1186/s13073-023-01228-wSchaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine [Internet]. 2013 [cited 2024 Dec 7];15(5):399–407. Available from: https://doi: 10.1038/gim.2013.32Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. LargeScale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell [Internet]. 2020 Feb 6 [cited 2024 Dec 7];180(3):568-584.e23. Available from: https://10.1016/j.cell.2019.12.036Garrido-Torres N, Marqués Rodríguez R, Alemany-Navarro M, Sánchez-García J, García-Cerro S, Ayuso MI, et al. Exploring genetic testing requests, genetic alterations and clinical associations in a cohort of children with autism spectrum disorder. Eur Child Adolesc Psychiatry [Internet]. 2024 Nov 1 [cited 2025 Mar 23];33:3829–40. Available from: https://doi: 10.1007/s00787-024-02413-x.Loth E, Murphy DG, Spooren W. Defining precision medicine approaches to autism spectrum disorders: Concepts and challenges. Front Psychiatry [Internet]. 2016 Nov 29 [cited 2024 Dec 7];7. Available from: https://doi: 10.3389/fpsyt.2016.00188Delgado Reyes AC, Agudelo Hernández AF. Trastornos del neurodesarrollo: una comparación entre el DSM-5 y la CIE-11. Psicoespacios: Revista virtual de la Institución Universitaria de Envigado [Internet]. 2021 [cited 2024 Nov 14];15(27):1– 16. Available from: https://doi.org/10.25057/21452776.1417Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, et al. Role of genetics in the etiology of autistic spectrum disorder: Towards a hierarchical diagnostic strategy [Internet]. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017 [cited 2024 Dec 7]. Available from: https://DOI: 10.3390/ijms18030618Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder—current evidence in the field [Internet]. Vol. 60, Journal of Applied Genetics. Springer Verlag; 2019 [cited 2024 Dec 7]. p. 37–47. Available from: https://DOI: 10.1007/s13353-018-00480-wYe BS, Leung AOW, Wong MH. The association of environmental toxicants and autism spectrum disorders in children [Internet]. Vol. 227, Environmental Pollution. Elsevier Ltd; 2017 [cited 2025 Mar 23]. p. 234–42. Available from: https://doi: 10.1016/j.envpol.2017.04.039.Yenkoyan K, Mkhitaryan M, Bjørklund G. Environmental Risk Factors in Autism Spectrum Disorder: A Narrative Review. Curr Med Chem [Internet]. 2024 Jan 1 [cited 2025 Mar 21];31(17):2345–60. Available from: https://DOI: 10.2174/0109298673252471231121045529Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder [Internet]. Vol. 27, Neuroscientist. SAGE Publications Inc.; 2021 [cited 2024 Dec 7]. p. 650–67. Available from: https://DOI: 10.1177/1073858420952046Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand [Internet]. 2017 Jan 1 [cited 2024 Dec 7];135(1):29–41. Available from: https://DOI: 10.1111/acps.12666Rubio S, Pacheco-Orozco RA, Gómez AM, Perdomo S, García-Robles R. Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica [Internet]. 2020 Apr 2 [cited 2024 Dec 7];61(2). Available from: https://doi.org/10.11144/Javeriana.umed61-2.sngsSilva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis [Internet]. Vol. 27, European Journal of Human Genetics. Nature Publishing Group; 2019 [cited 2024 Dec 7]. Available from: https://doi.org/10.1038/s41431-018-0244-xAleena Alex LP. Sanger sequencing and its recent advances- a review. Palarch’s Journal Of Archaeology Of Egypt/Egyptology [Internet]. 2020 [cited 2024 Dec 7];17(7):698–705. Available from: https://archives.palarch.nl/index.php/jae/article/view/1270Deharvengt SJ, Petersen LM, Jung HS, Tsongalis GJ. Nucleic acid analysis in the clinical laboratory. In: Contemporary Practice in Clinical Chemistry [Internet]. Elsevier; 2020 [cited 2024 Dec 7]. p. 215–34. Available from: https://DOI:10.1016/B978-0-12-815499-1.00013-2Park JY, Kricka LJ, Clark P, Londin E, Fortina P. Clinical genomics: When whole genome sequencing is like a whole-body CT scan [Internet]. Vol. 60, Clinical Chemistry. American Association for Clinical Chemistry Inc.; 2014 [cited 2024 Dec 7]. p. 1390–2. Available from: https://doi: 10.1373/clinchem.2014.230276Crossley BM, Bai J, Glaser A, Maes R, Porter E, Killian ML, et al. Guidelines for Sanger sequencing and molecular assay monitoring. Journal of Veterinary Diagnostic Investigation [Internet]. 2020 Nov 1 [cited 2024 Dec 7];32(6):767–75. Available from: https://DOI: 10.1177/1040638720905833Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. NextGeneration Sequencing Technology: Current Trends and Advancements [Internet]. Vol. 12, Biology. Multidisciplinary Digital Publishing Institute (MDPI); 2023 [cited 2024 Dec 7]. p. 1–25. Available from: https://DOI: 10.3390/biology12070997Lohmann K, Klein C. Next Generation Sequencing and the Future of Genetic Diagnosis [Internet]. Vol. 11, Neurotherapeutics. Springer Science and Business Media, LLC; 2014 [cited 2024 Dec 7]. p. 699–707. Available from: https://DOI: 10.1007/s13311-014-0288-8Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA - Journal of the American Medical Association [Internet]. 2015 Sep 1 [cited 2025 Mar 23];314(9):595–903. Available from: https://doi: 10.1001/jama.2015.10078.Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, et al. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. 2022; Available from: https://doi.org/10.3390/genesApte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD [Internet]. Vol. 14, IBRO Neuroscience Reports. Elsevier B.V.; 2023 [cited 2024 Dec 6]. p. 384–92. Available from: . https://10.1016/j.ibneur.2023.03.011Ferri SL, Abel T, Brodkin ES. Sex Differences in Autism Spectrum Disorder: a Review. Curr Psychiatry Rep [Internet]. 2018 Feb 1 [cited 2024 Dec 7];20(2). Available from: https:// DOI: 10.1007/s11920-018-0874-2Qiu S, Qiu Y, Li Y, Cong X. Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses [Internet]. Vol. 12, Translational Psychiatry. Springer Nature; 2022 [cited 2024 Dec 7]. Available from: https://doi.org/10.1038/s41398-022-02009-6Creemers JWM, Nuytens K, Tuand K. Neurobeachin Gene in Autism. In: Comprehensive Guide to Autism [Internet]. Springer New York; 2014 [cited 2024 Dec 7]. p. 825–44. Available from: https://DOI:10.1007/SpringerReference_331151Mulhern MS, Stumpel C, Stong N, Brunner HG, Bier L, Lippa N, et al. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol [Internet]. 2018 Nov 1 [cited 2024 Dec 7];84(5):788–95. Available from: https://doi:10.1002/ana.25350Hansen AW, Arora P, Khayat MM, Smith LJ, Lewis AM, Rossetti LZ, et al. Germline mutation in POLR2A: a heterogeneous, multi-systemic developmental disorder characterized by transcriptional dysregulation. Human Genetics and Genomics Advances [Internet]. 2021 Jan 14 [cited 2024 Dec 7];2(1). Available from: https://doi:10.1016/j.xhgg.2020.100014Katy P, Curtis R, Luigi B. GeneReviews. 2005 [cited 2024 Dec 7]. p. 1–34 PhelanMcDermid Syndrome-SHANK3 Related. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1198/pdf/Bookshelf_NBK1198.pdfDe Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism [Internet]. 2018 Apr 27 [cited 2024 Dec 7];9(1). Available from: https://doi:10.1186/s13229-018-0205-9Levy T, Foss-Feig JH, Betancur C, Siper PM, Trelles-Thorne MDP, Halpern D, et al. Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: Results from the developmental synaptopathies consortium. Hum Mol Genet [Internet]. 2022 Feb 15 [cited 2024 Dec 7];31(4):625–37. Available from: https://doi:10.1093/hmg/ddab280Siano MA, De Maggio I, Petillo R, Cocciadiferro D, Agolini E, Majolo M, et al. De Novo Mutation in KMT2C Manifesting as Kleefstra Syndrome 2: Case Report and Literature Review. Pediatr Rep [Internet]. 2022 Mar 1 [cited 2024 Dec 7];14(1):131– 9. Available from: https://doi: 10.3390/pediatric14010019.Whitford W, Taylor J, Hayes I, Smith W, Snell RG, Lehnert K, et al. A novel 11 base pair deletion in KMT2C resulting in Kleefstra syndrome 2. Mol Genet Genomic Med [Internet]. 2024 Jan 1 [cited 2024 Dec 7];12(1). Available from: https://doi: 10.1002/mgg3.2350Banka S, Sayer R, Breen C, Barton S, Pavaine J, Sheppard SE, et al. Genotype– phenotype specificity in Menke–Hennekam syndrome caused by missense variants in exon 30 or 31 of CREBBP. Am J Med Genet A [Internet]. 2019 Jun 1 [cited 2024 Dec 7];179(6):1058–62. Available from: https://doi: 10.1002/ajmg.a.61131Sima A, Smădeanu RE, Simionescu AA, Nedelea F, Vlad AM, Becheanu C. Menke– Hennekam Syndrome: A Literature Review and a New Case Report. Children [Internet]. 2022 May 1 [cited 2024 Dec 7];9(5). Available from: https://DOI: 10.3390/children9050759Aron W. C, Rauch L. G, Benavides G. F, Repetto L. MG. Rett syndrome: MECP2 gene molecular analysis in chilean patients. Rev Chil Pediatr [Internet]. 2019 Mar 1 [cited 2024 Dec 7];90(2):152–6. Available from: https://DOI: 10.32641/rchped.v90i2.724 50. E. Candeloa, G. Caicedoa, HE. Candeloa, G. Caicedoa, H. Pachajoa. Ampliando el fenotipo del síndrome FOXG1. Neurología [Internet]. 2020 [cited 2024 Dec 7];35(3):207–21. Available from: https://DOI: 10.1016/j.nrl.2017.09.004Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet [Internet]. 2011 Jun [cited 2024 Dec 7];48(6):396–406. Available from: https://doi: 10.1136/jmg.2010.087528.Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, et al. FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome. Am J Hum Genet [Internet]. 2008 Jul 11 [cited 2024 Dec 7];83(1):89–93. Available from: https://doi: 10.1016/j.ajhg.2008.05.015.Reiff M, Giarelli E, Bernhardt BA, Easley E, Spinner NB, Sankar PL, et al. Parents’ Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders. J Autism Dev Disord [Internet]. 2015 Oct 22 [cited 2024 Dec 7];45(10):3262–75. Available from: https://doi: 10.1007/s10803-015-2489-Rudolph-Rothfeld W, Vonthein R. Cost-Effectiveness of Autism Diagnostic Based on Genetic Testing. Res Sq [Internet]. 2021 Jul 30 [cited 2024 Dec 7];1–22. Available from: https://doi.org/10.21203/rs.3.rs-731486/v1Salari N, Rasoulpoor S, Rasoulpoor S, Shohaimi S, Jafarpour S, Abdoli N, et al. The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis. Ital J Pediatr [Internet]. 2022 Dec 1 [cited 2024 Dec 7];48(1). Available from: https://DOI: 10.1186/s13052-022-01310-wMontiel-Nava C, Peña J. Epidemiological findings of pervasive developmental disorders in a Venezuelan study. Autism [Internet]. 2008 [cited 2024 Dec 7];(2):191– 202. Available from: https://DOI: 10.1177/1362361307086663Fombonne E, Marcin C, Manero AC, Bruno R, Diaz C, Villalobos M, et al. Prevalence of Autism Spectrum Disorders in Guanajuato, Mexico: The Leon survey. J Autism Dev Disord [Internet]. 2016 May 1 [cited 2024 Dec 7];46(5):1669–85. Available from: https://DOI: 10.1007/s10803-016-2696-6Paula CS, Ribeiro SH, Fombonne E, Mercadante MT. Brief report: Prevalence of pervasive developmental disorder in Brazil: A pilot study. J Autism Dev Disord [Internet]. 2011 Dec [cited 2024 Dec 7];41(12):1738–42. Available from: https:// DOI: 10.1007/s10803-011-1200-6Rai D, Lewis G, Lundberg M, Araya R, Svensson A, Dalman C, et al. Parental socioeconomic status and risk of offspring autism spectrum disorders in a swedish population-based study. J Am Acad Child Adolesc Psychiatry [Internet]. 2012 [cited 2025 Mar 23];51(5):467–76. Available from: https://doi: 10.1016/j.jaac.2012.02.012.Delobel-Ayoub M, Ehlinger V, Klapouszczak D, Maffre T, Raynaud JP, Delpierre C, et al. Socioeconomic disparities and prevalence of autism spectrum disorders and intellectual disability. PLoS One [Internet]. 2015 Nov 5 [cited 2025 Mar 23];10(11):e0141964. Available from: https://doi:10.1371/journal.pone.0141964Raina SK, Chander V, Bhardwaj AK, Kumar D, Sharma S, Kashyap V, et al. Prevalence of autism spectrum disorder among rural, urban, and tribal children (1- 10 Years of Age). J Neurosci Rural Pract [Internet]. 2017 Jul 1 [cited 2025 Mar 23];8(3):368–74. Available from: https://doi:10.4103/jnrp.jnrp_329_16Espinosa E, Mera P, Toledo D. Trastorno del espectro autista: Caracterización clínica en pacientes de dos centros de referencia en Bogotá, Colombia. Revista Med [Internet]. 2017 [cited 2024 Dec 7];26(1):24–34. Available from: https://doi.org/10.18359/rmed.3990Gutiérrez-Ruiz KP. Early characteristics and predictors of clinical severity in Autism Spectrum Disorder. Revista CES Psicologia [Internet]. 2019 [cited 2024 Dec 7];12(2):12–25. Available from: https://DOIhttpdxdoiorg1021615.pdfAna M. Acero Ortega; María C. Lattig; Diana L. Nuñez. Acercamiento al diagnóstico genético en Trastornos del Espectro Autista mediante análisis de variación en número de copias [Internet]. [Bogotá]: Universidad de los Andes; 2019 [cited 2024 Nov 15]. Available from: http://hdl.handle.net/1992/45753Valencia AV, Páez AL, Sampedro ME, Ávila C, Cardona JC, Mesa C, et al. Evidencia de asociación entre el gen SLC6A4 y efectos epistáticos con variantes en HTR2A en la etiología del autismo en la población antioqueña. Biomedica [Internet]. 2012 [cited 2024 Dec 7];32(4):585–601. Available from: https://DOI:10.7705/biomedica.v32i4.593Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine [Internet]. 2015 [cited 2024 Dec 7];17(5):405–24. Available from: https://doi.org/10.1038/gim.2015.30Díaz Ibarra EA, Abella Pinzón JA, Medina YF. Methodology: How to develop a case report or case series report [Internet]. Vol. 30, Revista Colombiana de Reumatologia. Asociacion Colombiana de Reumatologia; 2023 [cited 2024 Dec 7]. p. 129–36. Available from: https://doi.org/10.1016/j.rcreu.2021.05.022.Gjin Ndrepepa, David Antoniucci, Adnan Kastrati, Julinda Mehilli, Albert Schömig. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA [Internet]. 2009 [cited 2024 Dec 6];5(301):487–8. Available from: http://doi:10.1001/jama.2009.32Carlos J, Pérez R, Rodríguez Esparragón F, Rodríguez Pérez JC, Bello MAG. Guía práctica a los estudios de asociación genética. Consideraciones sobre su utilidad clínica. Nefrología [Internet]. 2009 [cited 2024 Dec 6];6(29):582-588. Available from: https://DOI: 10.3265/Nefrologia.2009.29.6.5483.en.fullAttia J, Ioannidis JPA, Thakkinstian A, Mcevoy M, Scott RJ, Minelli C, et al. How to Use an Article About Genetic Association B: Are the Results of the Study Valid? JAMA [Internet]. 2009 [cited 2024 Dec 7];301(2):74–81. Available from: https://DOI: 10.1001/jama.2008.901Bower KM. When to Use Fisher’s Exact Test [Internet]. 2003 Aug. Available from: https://www.researchgate.net/publication/265026286Nachar N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution [Internet]. Vol. 4, Tutorials in Quantitative Methods for Psychology. 2008 [cited 2024 Dec 7]. Available from: https://DOI:10.20982/tqmp.04.1.p013Harrison SM, Biesecker LG, Rehm HL, Genomics M, Genetics M, Hospital MG. Overview of specifications to the ACMG/AMP variant interpretation guidelines. 2020 [cited 2024 Dec 7];103(1):1–20. Available from: https://DOI: 10.1002/cphg.93Mulhern MS, Stumpel C, Stong N, Brunner HG, Bier L, Lippa N, et al. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol [Internet]. 2018 Nov 1 [cited 2024 Dec 7];84(5):788–95. Available from: https://doi:10.1002/ana.25350Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, et al. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes. The American Journal of Human Genetics [Internet]. 2024 Aug 8 [cited 2024 Nov 9];111(8):1626–42. Available from: https://doi: 10.1016/j.ajhg.2024.06.009Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [KCDCOM-ADs]: An emerging class of congenital regulopathies. Clin Epigenetics [Internet]. 2020 Jan 10 [cited 2024 Dec 7];12(1):1– 20. Available from: https://doi.org/10.1186/s13148-019-0802-2Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol [Internet]. 2017 [cited 2024 Dec 7];18(1):1–12. Available from: https://DOI: 10.1186/s13059-017- 1353-5Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, et al. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. Genes (Basel) [Internet]. 2022;470(13):1. Available from: https://doi.org/10.3390/genesPhelan K, Boccuto L, Powell CM, Boeckers TM, van Ravenswaaij-Arts C, Rogers RC, et al. Phelan-McDermid syndrome: a classification system after 30 years of experience. Orphanet J Rare Dis [Internet]. 2022 Dec 1 [cited 2024 Dec 7];17(27):1– 4. Available from: https://doi.org/10.1186/s13023-022-02180-5Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms [Internet]. Vol. 16, Nature Structural and Molecular Biology. 2009 [cited 2024 Dec 7]. p. 107– 13. Available from: https://DOI: 10.1038/nsmb.1550Hernández Gómez M, Meléndez Hernández R, Ramírez Arroyo E, Mayén Molina DG. Síndrome de Phelan-McDermid: reporte de un caso y revisión de la literatura. Acta Pediátrica de México [Internet]. 2018 Jan 16 [cited 2024 Dec 7];1(1):42. Available from: https://doi.org/10.18233/apm1no1pp42-511539.Qin L, Williams JB, Tan T, Liu T, Cao Q, Ma K, et al. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun [Internet]. 2021 Dec 1 [cited 2024 Dec 7];12(1). Available from: https://DOI: 10.1038/s41467-021-26972-8Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copynumber variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). GENETICS in MEDICINE [Internet]. 2020;(22):245–57. Available from: https://doi.org/10.1038/s41436-Chung BHY, Drmic I, Marshall CR, Grafodatskaya D, Carter M, Fernandez BA, et al. Phenotypic spectrum associated with duplication of Xp11.22-p11.23 includes Autism Spectrum Disorder. Eur J Med Genet [Internet]. 2011 Sep [cited 2024 Dec 7];54(5). Available from: https://DOI: 10.1016/j.ejmg.2011.05.008Bitgenia. Bitgenia. 2018 [cited 2024 Dec 7]. p. 1–4 Recomendaciones del ACMG/AMP para la clasificación de variantes versión 2.0. Hacia la automatización. Available from: https://www.bitgenia.com/clasificacion-de-variantes-version-2-0- hacia-la-automatizacion/Pantaleón F. G, Juvier R. T. Bases moleculares del síndrome de Rett, una Mirada actual. Rev Chil Pediatr [Internet]. 2015 Jun 1 [cited 2024 Dec 7];86(3):142–51. Available from: http://dx.doi.org/10.1016/j.rchipe.2015.07.001.Das DK, Jadhav V, Ghattargi VC, Udani V. Novel mutation in Forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome. Gene [Internet]. 2014 Mar 15 [cited 2024 Dec 7];538(1):109–12. Available from: https://doi: 10.1016/j.gene.2013.12.063.Robinson EB, Lichtenstein P, Anckarsäter H, Happé F, Ronald A. Examining and interpreting the female protective effect against autistic behavior. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5258–62.Dworzynski K, Ronald A, Bolton P, Happé F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry [Internet]. 2012 Aug [cited 2024 Dec 7];51(8):788–97. Available from: https:// DOI: 10.1016/j.jaac.2012.05.018Vidarte A, Zambrano JR, Mattheis A. Access and Equity for Students with Dis/abilities in Colombian Higher Education. Educ Policy Anal Arch [Internet]. 2022 [cited 2024 Dec 7];30. Available from: https://doi.org/10.14507/epaa.30.6044Montiel-Nava C, Montenegro MC, Ramirez AC, Valdez D, Rosoli A, Garcia R, et al. Age of autism diagnosis in Latin American and Caribbean countries. Autism [Internet]. 2024 Jan 1 [cited 2024 Dec 7];28(1):58–72. Available from: https://DOI: 10.1177/13623613221147345Mishaal RA, Ben-Itzchak E, Zachor DA. Age of autism spectrum disorder diagnosis is associated with child’s variables and parental experience. Res Autism Spectr Disord [Internet]. 2014 [cited 2024 Dec 7];8(7):873–80. Available from: https://DOI:10.1016/j.rasd.2014.04.001Ribeiro SHB, de Paula CS, Bordini D, Mari JJ, Caetano SC. Barriers to early identification of autism in Brazil. Revista Brasileira de Psiquiatria [Internet]. 2017 Oct 1 [cited 2024 Dec 7];39(4):352–4. Available from: https://DOI: 10.1590/1516-4446- 2016-2141Araripe B, Montiel-Nava C, Bordini D, Cunha GR, Garrido G, Cukier S, et al. Profile of Service Use and Barriers to Access to Care among Brazilian Children and Adolescents with Autism Spectrum Disorders. Brain Sci [Internet]. 2022 Oct 1 [cited 2025 Mar 23];12(10):1421. Available from: https://doi:10.3390/brainsci12101421Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders and the NDD Exome Scoping Review Work Group. Available from: https://doi.org/10.1038/s41436-Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA - Journal of the American Medical Association [Internet]. 2015 Sep 1 [cited 2024 Dec 7];314(9):595– 903. Available from: https://doi: 10.1001/jama.2015.10078Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine [Internet]. 2021 Aug 1 [cited 2024 Dec 7];23(8):1381–90. Available from: https://doi: 10.1038/s41436-021-01172-3Autism Spectrum Disorders (ASD) Panel Test - PreventionGenetics [Internet]. [cited 2025 Mar 22]. Available from: https://www.preventiongenetics.com/testInfo?val=Autism-Spectrum-Disorders- %28ASD%29-PanelVissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders [Internet]. Vol. 17, Nature Reviews Genetics. Nature Publishing Group; 2016 [cited 2024 Dec 7]. p. 9–18. Available from: https://doi: 10.1038/nrg3999Griesi-Oliveira K, Sertié AL. Autism spectrum disorders: an updated guide for genetic counseling. Einstein (Sao Paulo) [Internet]. 2017 Apr 1 [cited 2025 Mar 23];15(2):233–8. Available from: https://doi: 10.1590/S1679-45082017RB4020.Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet [Internet]. 2019 Mar 1 [cited 2024 Dec 7];51(3):431–44. Available from: https://doi: 10.1038/s41588-019-0344-8Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature [Internet]. 2011 Apr 28 [cited 2024 Dec 7];472(7344):437–42. Available from: https://DOI: 10.1038/nature09965Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet [Internet]. 2011 Aug [cited 2024 Dec 7];20(15):3093–108. Available from: https:// DOI: 10.1093/hmg/ddr212Mencarelli MA, Spanhol-Rosseto A, Artuso R, Rondinella D, De Filippis R, BahiBuisson N, et al. Novel FOXG1 mutations associated with the congenital variant of Rett syndrome. J Med Genet [Internet]. 2010 Jan [cited 2024 Dec 7];47(1):49–53. Available from: https://doi: 10.1136/jmg.2009.067884Hennekam RCM. Rubinstein-Taybi syndrome [Internet]. Vol. 14, European Journal of Human Genetics. 2006 [cited 2025 Mar 23]. p. 981–5. Available from: https://doi:10.1038/sj.ejhg.5201594Moortgat S, Berland S, Aukrust I, Maystadt I, Baker L, Benoit V, et al. HUWE1 variants cause dominant X-linked intellectual disability: A clinical study of 21 patients. European Journal of Human Genetics [Internet]. 2018 Jan 1 [cited 2024 Dec 7];26(1):64–74. Available from: https://doi: 10.1038/s41431-017-0038-6Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, et al. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms [Internet]. Vol. 62, Sleep Medicine Reviews. W.B. Saunders Ltd; 2022 [cited 2024 Dec 7]. Available from: https://DOI: 10.1016/j.smrv.2022.101595Monteiro P, Feng G. SHANK proteins: Roles at the synapse and in autism spectrum disorder [Internet]. Vol. 18, Nature Reviews Neuroscience. Nature Publishing Group; 2017 [cited 2024 Dec 7]. p. 147–57. Available from: https://DOI: 10.1038/nrn.2016.183Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder [Internet]. Vol. 12, Frontiers in Cellular Neuroscience. Frontiers Media S.A.; 2018 [cited 2024 Dec 7]. Available from: https://doi.org/10.3389/fncel.2018.00470Bro D, O’Hara R, Primeau M, Hanson-Kahn A, Hallmayer J, Bernstein JA. Sleep disturbances in individuals with phelan-mcdermid syndrome: Correlation with caregivers’ sleep quality and daytime functioning. Sleep [Internet]. 2017 Feb 1 [cited 2024 Dec 7];40(2). Available from: https://doi: 10.1093/sleep/zsw062.Laura P, Marie G, Romuald B, Catherine B, Sylvie R, Arnold M, et al. 22q13 deletion syndrome: communication disorder or autism? Evidence from a specific clinical and neurophysiological phenotype. Transl Psychiatry [Internet]. 2018 Dec 1 [cited 2024 Dec 7];8(1). Available from: https://doi: 10.1038/s41398-018-0212-9.Miller AC, Voelker LH, Shah AN, Moens CB. Neurobeachin is required postsynaptically for electrical and chemical synapse formation. Current Biology [Internet]. 2015 Jan 5 [cited 2024 Dec 7];25(1):16–28. Available from: https://DOI: 10.1016/j.cub.2014.10.071Nair R, Lauks J, Jung SY, Cooke NE, de Wit H, Brose N, et al. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. Journal of Cell Biology [Internet]. 2013 [cited 2024 Dec 7];200(1):61–80. Available from: https:// doi: 10.1083/jcb.201207113Medrihan L, Rohlmann A, Fairless R, Andrae J, Döring M, Missler M, et al. Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. Journal of Physiology [Internet]. 2009 Nov [cited 2024 Dec 7];587(21):5095–106. Available from: https://doi: 10.1113/jphysiol.2009.178236Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine Acetyltransferases CBP and p300 as Therapeutic Targets in Cognitive and Neurodegenerative Disorders. 2013 [cited 2024 Dec 7];28(19):5051–64. Available from: https://DOI: 10.2174/13816128113199990382Menke LA, van Belzen MJ, Alders M, Cristofoli F, Ehmke N, Fergelot P, et al. CREBBP mutations in individuals without Rubinstein–Taybi syndrome phenotype. Am J Med Genet A [Internet]. 2016 Oct 1 [cited 2024 Dec 7];170(10):2681–93. Available from: https://DOI: 10.1002/ajmg.a.37800Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, et al. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am J Hum Genet [Internet]. 2018 Jan 4 [cited 2024 Dec 7];102(1):175–87. Available from: https://doi: 10.1016/j.ajhg.2017.11.013Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann Neurol [Internet]. 2010 Dec [cited 2024 Dec 7];68(6):944–50. Available from: https://DOI: 10.1002/ana.22124Philippe C, Amsallem D, Francannet C, Lambert L, Saunier A, Verneau F, et al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. J Med Genet [Internet]. 2010 [cited 2024 Dec 7];47(1):59–65. Available from: https://doi: 10.1136/jmg.2009.067355.Monteggia LM, Kavalali ET. Rett Syndrome and the Impact of MeCP2 Associated Transcriptional Mechanisms on Neurotransmission [Internet]. Vol. 65, Biological Psychiatry. 2009 [cited 2024 Dec 7]. p. 204–10. Available from: https:// doi: 10.1016/j.biopsych.2008.10.036Jang HN, Kim T, Jung AY, Lee BH, Yum MS, Ko TS. Identification of FOXG1 mutations in infantile hypotonia and postnatal microcephaly. Medicine (United States) [Internet]. 2021 Nov 24 [cited 2025 Mar 23];100(47). Available from: https://doi: 10.1097/MD.0000000000027949Collins SC, Bray SM, Suhl JA, Cutler DJ, Coffee B, Zwick ME, et al. Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males. Am J Med Genet A [Internet]. 2010 Oct [cited 2024 Dec 7];152 A(10):2512– 20. Available from: https://doi: 10.1002/ajmg.a.33626Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B, et al. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. European Journal of Human Genetics [Internet]. 2016 Mar 1 [cited 2024 Dec 7];24(3):373–80. Available from: https://doi: 10.1038/ejhg.2015.123.Grams SE, Argiropoulos B, Lines M, Chakraborty P, Mcgowan-Jordan J, Geraghty MT, et al. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications. Am J Med Genet A [Internet]. 2016 Apr 1 [cited 2024 Dec 7];170(4):967–77. Available from: https://doi: 10.1002/ajmg.a.37519Iwase S, Bérubé NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M, et al. Epigenetic etiology of intellectual disability. Journal of Neuroscience [Internet]. 2017 Nov 8 [cited 2024 Dec 7];37(45):10773–82. Available from: https://DOI: 10.1523/JNEUROSCI.1840-17.2017Zhao X, D’Arca D, Lim WK, Brahmachary M, Carro MS, Ludwig T, et al. The N-MycDLL3 Cascade Is Suppressed by the Ubiquitin Ligase Huwe1 to Inhibit Proliferation and Promote Neurogenesis in the Developing Brain. Dev Cell [Internet]. 2009 Aug 18 [cited 2024 Dec 7];17(2):210–21. Available from: https://doi: 10.1016/j.devcel.2009.07.009.Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders [Internet]. Vol. 7, Epigenomics. Future Medicine Ltd.; 2015 [cited 2024 Dec 7]. p. 503–18. Available from: https://DOI: 10.2217/epi.15.1Werling DM, Geschwind DH. Sex differences in autism spectrum disorders [Internet]. Vol. 26, Current Opinion in Neurology. 2013 [cited 2024 Dec 7]. p. 146– 53. Available from: https://DOI: 10.1097/WCO.0b013e32835ee548Acero-Garcés DO, Saldarriaga W, Cabal-Herrera AM, Rojas CA, Hagerman RJ. Fragile X Syndrome in children. Colomb Med [Internet]. 2023 Jul 24 [cited 2024 Dec 7];54(2). Available from: https://doi.org/10.25100/cm.v54i2.5089.https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/221722025-05-09T08:00:35Z |