Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo
Objetivo. Se realizó una revisión sistemática de la literatura para identificar los avances en las aplicaciones basadas en algoritmos de aprendizaje automático y aprendizaje profundo para el análisis del cambio de cobertura y uso del suelo con fines prospectivos, sus covariables y las denominaciones...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/23646
- Acceso en línea:
- https://doi.org/10.17151/luaz.2025.60.5
- Palabra clave:
- Cobertura vegetal
Usos del suelo
Medio ambiente
Tierras
SIG
Land cover
Land use
Environment
Lands
GIS
- Rights
- openAccess
- License
- Luna Azul - 2025
| id |
REPOUCALDA_4100aefe0c0b0f4079cea153e60ca4ed |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/23646 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo Literature review on land cover change and land use |
| title |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| spellingShingle |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo Cobertura vegetal Usos del suelo Medio ambiente Tierras SIG Land cover Land use Environment Lands GIS |
| title_short |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| title_full |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| title_fullStr |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| title_full_unstemmed |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| title_sort |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del suelo |
| dc.subject.none.fl_str_mv |
Cobertura vegetal Usos del suelo Medio ambiente Tierras SIG Land cover Land use Environment Lands GIS |
| topic |
Cobertura vegetal Usos del suelo Medio ambiente Tierras SIG Land cover Land use Environment Lands GIS |
| description |
Objetivo. Se realizó una revisión sistemática de la literatura para identificar los avances en las aplicaciones basadas en algoritmos de aprendizaje automático y aprendizaje profundo para el análisis del cambio de cobertura y uso del suelo con fines prospectivos, sus covariables y las denominaciones de las clasificaciones de cobertura y uso del suelo. Metodología. Se llevo a cabo una recuperación bibliográfica, consultando diferentes bibliotecas digitales, a partir de una ecuación de búsqueda delimitada al periodo de estudio entre los años 2000 a 2024. Posteriormente, se aplicó una lectura por niveles para extraer la información relevante al estudio, la cual consistió en la revisión de las secciones de introducción, métodos, figuras, tablas, resultados y conclusiones, para generar las anotaciones pertinentes con la investigación. Resultados. Se obtuvo un total de 55 estudios, entre artículos, libros y trabajos de tesis, de los cuales se les resumió y extrajo la información pertinente a la investigación, para luego relacionarla con la discriminación por tipos de cobertura y uso del suelo, factores impulsores del cambio, y las técnicas de aprendizaje automático frecuentemente utilizadas. Adicionalmente, se realizó una citación de los conceptos claves de la modelación del cambio de cobertura y uso del suelo con autómatas celulares. Conclusiones. Cuando el análisis del cambio de cobertura y uso del suelo apunta hacia objetivos prospectivos, el uso de autómatas celulares es destacable, por la posibilidad de generar simulaciones de posibles líneas futuras, posibilitando el análisis de escenarios, así como deducir y recrear las reglas de transición entre diferentes tipos de cobertura o usos del suelo, de forma automatizada y estadísticamente evaluable. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09-11T00:00:00Z 2025-09-11T00:00:00Z 2025-09-11 |
| dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 Text info:eu-repo/semantics/article Journal article info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
0122-5391 10.17151/luaz.2025.60.5 1909-2474 https://doi.org/10.17151/luaz.2025.60.5 |
| identifier_str_mv |
0122-5391 10.17151/luaz.2025.60.5 1909-2474 |
| url |
https://doi.org/10.17151/luaz.2025.60.5 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
60 Luna Azul Agudelo-Hz, W. J., Castillo-Barrera, N. C., y Uriel, M. G. (2023). Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-29243-2 Alkaraki, K. F., Hazaymeh, K., Al-Tarawneh, O. M. y Jawarneh, R. N. (2024). Deep learning-based modeling of land use/land cover changes impact on land surface temperature in Greater Amman Municipality, Jordan (1980–2030). GeoJournal, 89(4), 1–21. https://doi.org/10.1007/S10708-024-11187-3/FIGURES/100 Anand, B., Rekha, R. S., Radhakrishnan, N. y Ramaswamy, K. (2023). Analysis of LULC change dynamics and its impact assessment using CA-ANN model in part of Coimbatore region, India. GeoJournal, 88(6), 5825–5845. https://doi.org/10.1007/S10708-023-10944-0/METRICS Aniah, P., Bawakyillenuo, S., Codjoe, S. N. A., y Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10. https://doi.org/10.1016/J.ENVC.2022.100664 Arango, D., y Ordóñez, M. (2020). Protocolo de monitoreo de cambios de coberturas de la tierra. The Nature Conservancy, Amazon Conservation Team. https://www.nature.org/content/dam/tnc/nature/en/documents/AFC_Protocolo_Monitoreo_Coberturas_Baja.pdf Atef, I., Ahmed, W. y Abdel-Maguid, R. H. (2024). Future land use land cover changes in El-Fayoum governorate: a simulation study using satellite data and CA-Markov model. Stochastic Environmental Research and Risk Assessment, 38(2), 651–664. https://doi.org/10.1007/S00477-023-02592-0/TABLES/12 Batty, M. (1997). Cellular Automata and Urban Form: A Primer. Journal of the American Planning Association, 63(2), 266–274. https://doi.org/10.1080/01944369708975918 Batty, M., Couclelis, H., y Eichen, M. (1997). Urban systems as cellular automata. Environment and Planning B: Urban Analytics and City Science, 24(2), 159–305. https://doi.org/10.1068/B240159/ASSET/B240159.FP.PNG_V03 Berlekamp, E. R., Conway, J. H., y Guy, R. K. (1982). Winning Ways for Your Mathematical Plays. Academic Press. Chambers, F., Cruz, C., y Serugendo, G. D. M. (2023). Agent-based modelling of urban expansion and land cover change: a prototype for the analysis of commuting patterns in Geneva, Switzerland. HAL science ouverte. https://hal.science/hal-04146986 Charif, O., Omrani, H. y Maria, B. (2012). Cellular automata based on artificial neural network for simulating land use changes. Simulation Series, 44. https://doi.org/10.1016/j.apgeog.2014.06.016 Chisanga, C. B., Phiri, D. y Mubanga, K. H. (2024). Multi-decade land cover/land use dynamics and future predictions for Zambia: 2000–2030. Discover Environment , 2(1), 1–15. https://doi.org/10.1007/S44274-024-00066-W Christiansen, P. y Loftsgarden, T. (2011). Drivers behind urban sprawl in Europe. https://www.researchgate.net/publication/265350927_Drivers_behind_urban_sprawl_in_Europe Clarke, K. C., Hoppen, S. y Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261. https://doi.org/10.1068/B240247 Delipetrev, Blagoj., Tsinaraki, Chrisa., Kostić, U. y European Commission. Joint Research Centre. (2020). Historical Evolution of Artificial Intelligence. 1–36. https://doi.org/10.2760/8015800 Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., Ordóñez Díaz, M. de J., Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., y Ordóñez Díaz, M. de J. (2018). Cambio en la cobertura vegetal y uso del suelo del 2000 al 2009 en Morelos, México. Revista Mexicana de Ciencias Forestales, 9(46), 27–53. https://doi.org/10.29298/RMCF.V9I46.135 Falah, N., Karimi, A., y Harandi, A. T. (2020). Urban growth modeling using cellular automata model and AHP (case study: Qazvin city). Modeling Earth Systems and Environment, 6(1), 235–248. https://doi.org/10.1007/S40808-019-00674-Z/FIGURES/8 Feng, R. y Wang, K. (2021). Spatiotemporal effects of administrative division adjustment on urban expansion in China. Land Use Policy, 101. https://doi.org/10.1016/J.LANDUSEPOL.2020.1051433 Fetene, D. T., Lohani, T. K. y Mohammed, A. K. (2023). LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia. Environmental Monitoring and Assessment, 195(11), 1–17. https://doi.org/10.1007/S10661-023-11968-2/METRICS Frey, S. (2017). The Craft of Research (4a edition). Reference Reviews, 31(8), 1–2. Gasirabo, A., Xi, C., Hamad, B. R., y Edovia, U. D. (2023). A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda. Land, 12(9). https://doi.org/10.3390/land12091788 Gašparović, M. (2020). Urban growth pattern detection and analysis. Urban Ecology: Emerging Patterns and Social-Ecological. Systems, 35–48. https://doi.org/10.1016/B978-0-12-820730-7.00003-3 Ghalehteimouri, K. J., Nasr, T. y Bakhtiari, L. (2022). WITHDRAWN: A scenario-based approach for sustainable urban regeneration analysis in radial-concentric ring cities: A case in Hamedan, Iran. City and Environment Interactions. https://doi.org/10.1016/J.CACINT.2022.100089 González-González, A., Clerici, N., y Quesada, B. (2022). A 30 m-resolution land use-land cover product for the Colombian Andes and Amazon using cloud-computing. International Journal of Applied Earth Observation and Geoinformation, 107 https://doi.org/10.1016/J.JAG.2022.102688 Hewitt, R., Moya-Gómez, B. y Diaz-Pacheco, J. (2013). A Cellular Automata Land-Use Model For The R Software. Environment. https://doi.org/10.5446/15501 Irawan, I. A., Supriatna, S., Manessa, M. y Ristya, Y. (2019). Prediction Model of Land Cover Changes using the Cellular Automata – Markov Chain Affected by the BOCIMI Toll Road in Sukabumi Regency. KnE Engineering. https://doi.org/10.18502/KEG.V4I3.5860 Isinkaralar, O. (2024). A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye. Applied Spatial Analysis and Policy, 17(4), 1485–1495. https://doi.org/10.1007/S12061-024-09592-9/FIGURES/6 Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F. y Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6. https://doi.org/10.1016/J.ENVC.2021.100399 Kang, J., Fang, L., Li, S. y Wang, X. (2019). Parallel Cellular Automata Markov Model for Land Use Change Prediction over MapReduce Framework. ISPRS International. Journal of Geo-Information, 8. https://doi.org/10.3390/IJGI8100454 Kayitesi, N. M., Guzha, A. C., Tonini, M., y Mariethoz, G. (2024). Land use land cover change in the African Great Lakes Region: a spatial–temporal analysis and future predictions. Environmental Monitoring and Assessment, 196(9), 1–23. https://doi.org/10.1007/S10661-024-12986-4/TABLES/5 Kim, B., Lim, C. G., Lee, S. H., y Jung, Y. J. (2022). A Framework of Large-Scale Virtual City Simulation with Land-Use Model. International Conference on Advanced Communication Technology, ICACT, , 58–61. https://doi.org/10.23919/ICACT53585.2022.9728864 Kulithalai Shiyam Sundar, P., y Deka, P. C. (2022). Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Environmental Science and Pollution Research, 29(57), 86220–86236. https://doi.org/10.1007/S11356-021-17257-0/METRICS Kumar, M., Mahato, L. L., Suryavanshi, S., Singh, S. K., Kundu, A., Dutta, D., y Lal, D. (2024). Future prediction of water balance using the SWAT and CA-Markov model using INMCM5 climate projections: a case study of the Silwani watershed (Jharkhand), India. Environmental Science and Pollution Research, 31(41), 54311–54324. https://doi.org/10.1007/S11356-023-27547-4/METRICS Lahti, J. (2008). Modelling Urban Growth Using Cellular Automata: A case study of Sydney. https://api.semanticscholar.org/CorpusID:17843132 Li, D., Li, X., Liu, X. P., Chen, Y. M., Li, S. Y., Liu, K., Qiao, J. G., Zheng, Y. Z., Zhang, Y. H., y Lao, C. H. (2012). GPU-CA model for large-scale land-use change simulation. Chinese Science Bulletin, 57(19), 2442–2452. https://doi.org/10.1007/S11434-012-5085-3/METRICS Li, G., Sun, S., y Fang, C. (2018). The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape and Urban Planning, 174, 63–77. https://doi.org/10.1016/J.LANDURBPLAN.2018.03.004 Luo, M., Fa, L., Hao, D., Zhu, Q., Dashti, H., y Chen, M. (2023). Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America. Earth’s Future, 11. https://doi.org/10.1029/2023EF003648 Memarian, H., Balasundram, S., Talib, J., Teh, C., Sood, A., y Mikayilov, F. (2012). Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia. Journal of Geographic Information System, 44, 542–554. https://doi.org/10.4236/jgis.2012.46059 Mitsova, D., Shuster, W., y Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153. https://doi.org/10.1016/J.LANDURBPLAN.2010.10.001 Moreira, R. M., Lana, M., Sieber, S., y Malheiros, T. F. (2024). A landscape ecology approach: Modeling forest fragmentation with artificial neural networks and cellular-automata Markov-chain for improved environmental policy in the southwestern Brazilian Amazon. Land Degradation and Development, 35(2), 687–704. https://doi.org/10.1002/LDR.4945 Omrani, H., Charif, O., Gerber, P., Bódis, K., Basse, R. M., Omrani, H., Charif, O., Gerber, P., Bódis, K., y Basse, R. M. (2012). Simulation of land use changes using cellular automata and artificial neural network. https://EconPapers.repec.org/RePEc:irs:cepswp:2012-01 Ouma, Y. O., Nkwae, B., Odirile, P., Moalafhi, D. B., Anderson, G., Parida, B., y Qi, J. (2024). Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus. Sustainability, 16(4). https://doi.org/10.3390/SU16041699 Pawe, C. K., y Saikia, A. (2024). Simulating urban land use change trajectories in Guwahati city, India. International Journal of Environmental Science and Technology, 21(4), 4385–4404. https://doi.org/10.1007/S13762-023-05305-W/METRICS Pontius, Robert y Millones, Marco. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32, 4407-4429. https://www.tandfonline.com/doi/full/10.1080/01431161.2011.552923 Qiang, Y., y Lam, N. S. N. (2015). Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environmental Monitoring and Assessment, 187(3), 1–16. https://doi.org/10.1007/S10661-015-4298-8/METRICS Raza, D., Khushi, M., SHU, H., Aslam, H., Saleem, M. S., Ahmad, A., Mirza, S., Saeed, U., y Khan, S. U. (2024). CA-ANN based LULC prediction and influence assessment on LST-NDVI using multi-temporal satellite images. Environmental Earth Sciences, 83(5), 1–20. https://doi.org/10.1007/S12665-024-11467-8/METRICS Rienow, A., y Goetzke, R. (2015). Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66–81. https://doi.org/10.1016/J.COMPENVURBSYS.2014.05.001 Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., y Zhang, P. (2018). Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS International Journal of Geo-Information, 7. https://doi.org/10.3390/IJGI7040154 Rodríguez Eraso, N., Armenteras-Pascual, D., y Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228 Rodríguez, J., Murcia, U. G., Castillo, N., Arias, J., Agudelo, W., Hernández, L., Romero, H., y Chavez, J. (2019). Análisis de los cambios de coberturas de la tierra en el periodo 2018 al 2020 en la Amazonía colombiana. Instituto SINCHI. https://sinchi.org.co/como-se-han-transformado-las-coberturas-de-la-tierra-en-la-amazonia-colombiana-entre-2018-2020 Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., y Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12. https://doi.org/10.3390/AGRONOMY12112772 Shivappa Masalvad, S., Patil, C., Pravalika, A., Katageri, B., Bekal, P., Patil, P., Hegde, N., Sahoo, U. K., y Sakare, P. K. (2023). Application of geospatial technology for the land use/land cover change assessment and future change predictions using CA Markov chain model. Environment, Development and Sustainability, 26(10), 24817–24842. https://doi.org/10.1007/S10668-023-03657-4/METRICS Silva, E. A. y Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552. https://doi.org/10.1016/S0198-9715(01)00014-X Thanekar, G. (2020). Land Use Land Cover Prediction Analysis. https://doi.org/10.13140/RG.2.2.13983.48802 Torres, L., Viana, C. M., y Rocha, J. (2023). Hybrid modeling of deforestation impacts from infrastructure projects using cellular automata and multi-agent systems. Applied Geography, 151, 102871. https://doi.org/10.1016/j.apgeog.2023.102871 Trunfio, G. A. (2005). Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/11550822_54 UN Committee of Experts - GGIM. (2017). GGIM | United Nations Committee of Experts on Global Geospatial Information Management. https://ggim.un.org/ggim_20171012/ggim_committee.html Veldkamp, A. y Lambin, E. F. (2001). Predicting land-use change. Ecosystems y Environment, 85(1–3), 1–6. https://doi.org/10.1016/S0167-8809(01)00199-2 Wang, S., Liu, Y., Feng, Y., y Lei, Z. (2021). To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 14(9), 1213–1235. https://doi.org/10.1080/17538947.2021.1946178 White, R. y Engelen, G. (1997). Cellular Automata as the Basis of Integrated Dynamic Regional Modelling. Sage journals, 24(2), 235–246. https://doi.org/10.1068/B240235 Wu, X., Liu, X., Zhang, D., Zhang, J., He, J. y Xu, X. (2022). Simulating mixed land-use change under multi-label concept by integrating a convolutional neural network and cellular automata: a case study of Huizhou, China. GIScience y Remote Sensing, 59(1), 609–632. https://doi.org/10.1080/15481603.2022.2049493 Yang, J., Chen, F., Xi, J., Xie, P. y Li, C. (2014a). A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application. Abstract and Applied Analysis. https://doi.org/10.1155/2014/375389 Yang, X., Zheng, X.-Q. y Chen, R. (2014b). A local weights-based cellular automata approach to simulate urban land use changes. International Journal of Geographical Information Science, 28(11), 2344-2362. https://doi.org/10.1080/13658816.2014.922686 Yang, J., Su, J., Chen, F., Xie, P. y Ge, Q. (2016). A Local Land Use Competition Cellular Automata Model and Its Application. ISPRS International Journal of Geo-Information, 5. https://doi.org/10.3390/IJGI5070106 Yao, Y., Liu, X., Li, X., Liu, P., Hong, Y., Zhang, Y., y Mai, K. (2017). Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science, 31(12), 2452–2479. https://doi.org/10.1080/13658816.2017.1360494 Yesserie, A. G. (2009). Spatio-temporal land use/land cover changes analysis and monitoring in the Valencia Municipality, Spain. Núm. 60 , Año 2025 : Enero-Junio https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/10806/7995 https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/10806/7996 |
| dc.rights.none.fl_str_mv |
Luna Azul - 2025 https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Luna Azul - 2025 https://creativecommons.org/licenses/by/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas |
| publisher.none.fl_str_mv |
Universidad de Caldas |
| dc.source.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/10806 |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532553371385856 |
| spelling |
Revisión de literatura sobre técnicas prospectivas del cambio de cobertura y uso del sueloLiterature review on land cover change and land useCobertura vegetalUsos del sueloMedio ambienteTierrasSIGLand coverLand useEnvironmentLandsGISObjetivo. Se realizó una revisión sistemática de la literatura para identificar los avances en las aplicaciones basadas en algoritmos de aprendizaje automático y aprendizaje profundo para el análisis del cambio de cobertura y uso del suelo con fines prospectivos, sus covariables y las denominaciones de las clasificaciones de cobertura y uso del suelo. Metodología. Se llevo a cabo una recuperación bibliográfica, consultando diferentes bibliotecas digitales, a partir de una ecuación de búsqueda delimitada al periodo de estudio entre los años 2000 a 2024. Posteriormente, se aplicó una lectura por niveles para extraer la información relevante al estudio, la cual consistió en la revisión de las secciones de introducción, métodos, figuras, tablas, resultados y conclusiones, para generar las anotaciones pertinentes con la investigación. Resultados. Se obtuvo un total de 55 estudios, entre artículos, libros y trabajos de tesis, de los cuales se les resumió y extrajo la información pertinente a la investigación, para luego relacionarla con la discriminación por tipos de cobertura y uso del suelo, factores impulsores del cambio, y las técnicas de aprendizaje automático frecuentemente utilizadas. Adicionalmente, se realizó una citación de los conceptos claves de la modelación del cambio de cobertura y uso del suelo con autómatas celulares. Conclusiones. Cuando el análisis del cambio de cobertura y uso del suelo apunta hacia objetivos prospectivos, el uso de autómatas celulares es destacable, por la posibilidad de generar simulaciones de posibles líneas futuras, posibilitando el análisis de escenarios, así como deducir y recrear las reglas de transición entre diferentes tipos de cobertura o usos del suelo, de forma automatizada y estadísticamente evaluable.Objetive. A systematic literature review was conducted to identify advances in applications based on Machine Learning and Deep Learning algorithms for the analysis of land cover change and land use for prospective purposes, their covariates and the names of land cover and land use classifications. Methodology. A bibliographic retrieval was carried out consulting different digital libraries based on a search equation limited to the study period from 2000 to 2024. Subsequently, a layered reading was applied to extract information relevant to the study, which consisted in reviewing the introduction, methods, figures, tables, results and conclusions, in order to generate annotations relevant to the research. Results. A total of 55 studies were obtained, including articles, books and thesis, from which the information pertinent to the research was summarized and extracted, then related to discrimination by land coverage and land use types, drivers of change, and frequently used machine learning techniques. Additionally, a citation of the key concepts of land cover and land use with cellular automata was provided. Conclusions. When analyzing land cover and land use change toward prospective objectives, the use of cellular automata is remarkable, for the possibility of generating simulations of possible future lines, enabling scenario analysis, as well as deducing and recreating the transition rules between different land cover types or land uses, in an automated and statistically evaluable way.Universidad de Caldas2025-09-11T00:00:00Z2025-09-11T00:00:00Z2025-09-11Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdftext/html0122-539110.17151/luaz.2025.60.51909-2474https://doi.org/10.17151/luaz.2025.60.5https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/10806spa60Luna AzulAgudelo-Hz, W. J., Castillo-Barrera, N. C., y Uriel, M. G. (2023). Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-29243-2Alkaraki, K. F., Hazaymeh, K., Al-Tarawneh, O. M. y Jawarneh, R. N. (2024). Deep learning-based modeling of land use/land cover changes impact on land surface temperature in Greater Amman Municipality, Jordan (1980–2030). GeoJournal, 89(4), 1–21. https://doi.org/10.1007/S10708-024-11187-3/FIGURES/100Anand, B., Rekha, R. S., Radhakrishnan, N. y Ramaswamy, K. (2023). Analysis of LULC change dynamics and its impact assessment using CA-ANN model in part of Coimbatore region, India. GeoJournal, 88(6), 5825–5845. https://doi.org/10.1007/S10708-023-10944-0/METRICSAniah, P., Bawakyillenuo, S., Codjoe, S. N. A., y Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10. https://doi.org/10.1016/J.ENVC.2022.100664Arango, D., y Ordóñez, M. (2020). Protocolo de monitoreo de cambios de coberturas de la tierra. The Nature Conservancy, Amazon Conservation Team. https://www.nature.org/content/dam/tnc/nature/en/documents/AFC_Protocolo_Monitoreo_Coberturas_Baja.pdfAtef, I., Ahmed, W. y Abdel-Maguid, R. H. (2024). Future land use land cover changes in El-Fayoum governorate: a simulation study using satellite data and CA-Markov model. Stochastic Environmental Research and Risk Assessment, 38(2), 651–664. https://doi.org/10.1007/S00477-023-02592-0/TABLES/12Batty, M. (1997). Cellular Automata and Urban Form: A Primer. Journal of the American Planning Association, 63(2), 266–274. https://doi.org/10.1080/01944369708975918Batty, M., Couclelis, H., y Eichen, M. (1997). Urban systems as cellular automata. Environment and Planning B: Urban Analytics and City Science, 24(2), 159–305. https://doi.org/10.1068/B240159/ASSET/B240159.FP.PNG_V03Berlekamp, E. R., Conway, J. H., y Guy, R. K. (1982). Winning Ways for Your Mathematical Plays. Academic Press.Chambers, F., Cruz, C., y Serugendo, G. D. M. (2023). Agent-based modelling of urban expansion and land cover change: a prototype for the analysis of commuting patterns in Geneva, Switzerland. HAL science ouverte. https://hal.science/hal-04146986Charif, O., Omrani, H. y Maria, B. (2012). Cellular automata based on artificial neural network for simulating land use changes. Simulation Series, 44. https://doi.org/10.1016/j.apgeog.2014.06.016Chisanga, C. B., Phiri, D. y Mubanga, K. H. (2024). Multi-decade land cover/land use dynamics and future predictions for Zambia: 2000–2030. Discover Environment , 2(1), 1–15. https://doi.org/10.1007/S44274-024-00066-WChristiansen, P. y Loftsgarden, T. (2011). Drivers behind urban sprawl in Europe. https://www.researchgate.net/publication/265350927_Drivers_behind_urban_sprawl_in_EuropeClarke, K. C., Hoppen, S. y Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261. https://doi.org/10.1068/B240247Delipetrev, Blagoj., Tsinaraki, Chrisa., Kostić, U. y European Commission. Joint Research Centre. (2020). Historical Evolution of Artificial Intelligence. 1–36. https://doi.org/10.2760/8015800Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., Ordóñez Díaz, M. de J., Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., y Ordóñez Díaz, M. de J. (2018). Cambio en la cobertura vegetal y uso del suelo del 2000 al 2009 en Morelos, México. Revista Mexicana de Ciencias Forestales, 9(46), 27–53. https://doi.org/10.29298/RMCF.V9I46.135Falah, N., Karimi, A., y Harandi, A. T. (2020). Urban growth modeling using cellular automata model and AHP (case study: Qazvin city). Modeling Earth Systems and Environment, 6(1), 235–248. https://doi.org/10.1007/S40808-019-00674-Z/FIGURES/8Feng, R. y Wang, K. (2021). Spatiotemporal effects of administrative division adjustment on urban expansion in China. Land Use Policy, 101. https://doi.org/10.1016/J.LANDUSEPOL.2020.1051433Fetene, D. T., Lohani, T. K. y Mohammed, A. K. (2023). LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia. Environmental Monitoring and Assessment, 195(11), 1–17. https://doi.org/10.1007/S10661-023-11968-2/METRICSFrey, S. (2017). The Craft of Research (4a edition). Reference Reviews, 31(8), 1–2. Gasirabo, A., Xi, C., Hamad, B. R., y Edovia, U. D. (2023). A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda. Land, 12(9). https://doi.org/10.3390/land12091788Gašparović, M. (2020). Urban growth pattern detection and analysis. Urban Ecology: Emerging Patterns and Social-Ecological. Systems, 35–48. https://doi.org/10.1016/B978-0-12-820730-7.00003-3Ghalehteimouri, K. J., Nasr, T. y Bakhtiari, L. (2022). WITHDRAWN: A scenario-based approach for sustainable urban regeneration analysis in radial-concentric ring cities: A case in Hamedan, Iran. City and Environment Interactions. https://doi.org/10.1016/J.CACINT.2022.100089González-González, A., Clerici, N., y Quesada, B. (2022). A 30 m-resolution land use-land cover product for the Colombian Andes and Amazon using cloud-computing. International Journal of Applied Earth Observation and Geoinformation, 107 https://doi.org/10.1016/J.JAG.2022.102688Hewitt, R., Moya-Gómez, B. y Diaz-Pacheco, J. (2013). A Cellular Automata Land-Use Model For The R Software. Environment. https://doi.org/10.5446/15501Irawan, I. A., Supriatna, S., Manessa, M. y Ristya, Y. (2019). Prediction Model of Land Cover Changes using the Cellular Automata – Markov Chain Affected by the BOCIMI Toll Road in Sukabumi Regency. KnE Engineering. https://doi.org/10.18502/KEG.V4I3.5860Isinkaralar, O. (2024). A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye. Applied Spatial Analysis and Policy, 17(4), 1485–1495. https://doi.org/10.1007/S12061-024-09592-9/FIGURES/6Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F. y Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6. https://doi.org/10.1016/J.ENVC.2021.100399Kang, J., Fang, L., Li, S. y Wang, X. (2019). Parallel Cellular Automata Markov Model for Land Use Change Prediction over MapReduce Framework. ISPRS International. Journal of Geo-Information, 8. https://doi.org/10.3390/IJGI8100454Kayitesi, N. M., Guzha, A. C., Tonini, M., y Mariethoz, G. (2024). Land use land cover change in the African Great Lakes Region: a spatial–temporal analysis and future predictions. Environmental Monitoring and Assessment, 196(9), 1–23. https://doi.org/10.1007/S10661-024-12986-4/TABLES/5Kim, B., Lim, C. G., Lee, S. H., y Jung, Y. J. (2022). A Framework of Large-Scale Virtual City Simulation with Land-Use Model. International Conference on Advanced Communication Technology, ICACT, , 58–61. https://doi.org/10.23919/ICACT53585.2022.9728864Kulithalai Shiyam Sundar, P., y Deka, P. C. (2022). Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Environmental Science and Pollution Research, 29(57), 86220–86236. https://doi.org/10.1007/S11356-021-17257-0/METRICSKumar, M., Mahato, L. L., Suryavanshi, S., Singh, S. K., Kundu, A., Dutta, D., y Lal, D. (2024). Future prediction of water balance using the SWAT and CA-Markov model using INMCM5 climate projections: a case study of the Silwani watershed (Jharkhand), India. Environmental Science and Pollution Research, 31(41), 54311–54324. https://doi.org/10.1007/S11356-023-27547-4/METRICSLahti, J. (2008). Modelling Urban Growth Using Cellular Automata: A case study of Sydney. https://api.semanticscholar.org/CorpusID:17843132Li, D., Li, X., Liu, X. P., Chen, Y. M., Li, S. Y., Liu, K., Qiao, J. G., Zheng, Y. Z., Zhang, Y. H., y Lao, C. H. (2012). GPU-CA model for large-scale land-use change simulation. Chinese Science Bulletin, 57(19), 2442–2452. https://doi.org/10.1007/S11434-012-5085-3/METRICSLi, G., Sun, S., y Fang, C. (2018). The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape and Urban Planning, 174, 63–77. https://doi.org/10.1016/J.LANDURBPLAN.2018.03.004Luo, M., Fa, L., Hao, D., Zhu, Q., Dashti, H., y Chen, M. (2023). Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America. Earth’s Future, 11. https://doi.org/10.1029/2023EF003648Memarian, H., Balasundram, S., Talib, J., Teh, C., Sood, A., y Mikayilov, F. (2012). Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia. Journal of Geographic Information System, 44, 542–554. https://doi.org/10.4236/jgis.2012.46059Mitsova, D., Shuster, W., y Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153. https://doi.org/10.1016/J.LANDURBPLAN.2010.10.001Moreira, R. M., Lana, M., Sieber, S., y Malheiros, T. F. (2024). A landscape ecology approach: Modeling forest fragmentation with artificial neural networks and cellular-automata Markov-chain for improved environmental policy in the southwestern Brazilian Amazon. Land Degradation and Development, 35(2), 687–704. https://doi.org/10.1002/LDR.4945Omrani, H., Charif, O., Gerber, P., Bódis, K., Basse, R. M., Omrani, H., Charif, O., Gerber, P., Bódis, K., y Basse, R. M. (2012). Simulation of land use changes using cellular automata and artificial neural network. https://EconPapers.repec.org/RePEc:irs:cepswp:2012-01Ouma, Y. O., Nkwae, B., Odirile, P., Moalafhi, D. B., Anderson, G., Parida, B., y Qi, J. (2024). Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus. Sustainability, 16(4). https://doi.org/10.3390/SU16041699Pawe, C. K., y Saikia, A. (2024). Simulating urban land use change trajectories in Guwahati city, India. International Journal of Environmental Science and Technology, 21(4), 4385–4404. https://doi.org/10.1007/S13762-023-05305-W/METRICSPontius, Robert y Millones, Marco. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32, 4407-4429. https://www.tandfonline.com/doi/full/10.1080/01431161.2011.552923Qiang, Y., y Lam, N. S. N. (2015). Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environmental Monitoring and Assessment, 187(3), 1–16. https://doi.org/10.1007/S10661-015-4298-8/METRICSRaza, D., Khushi, M., SHU, H., Aslam, H., Saleem, M. S., Ahmad, A., Mirza, S., Saeed, U., y Khan, S. U. (2024). CA-ANN based LULC prediction and influence assessment on LST-NDVI using multi-temporal satellite images. Environmental Earth Sciences, 83(5), 1–20. https://doi.org/10.1007/S12665-024-11467-8/METRICSRienow, A., y Goetzke, R. (2015). Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66–81. https://doi.org/10.1016/J.COMPENVURBSYS.2014.05.001Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., y Zhang, P. (2018). Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS International Journal of Geo-Information, 7. https://doi.org/10.3390/IJGI7040154Rodríguez Eraso, N., Armenteras-Pascual, D., y Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228Rodríguez, J., Murcia, U. G., Castillo, N., Arias, J., Agudelo, W., Hernández, L., Romero, H., y Chavez, J. (2019). Análisis de los cambios de coberturas de la tierra en el periodo 2018 al 2020 en la Amazonía colombiana. Instituto SINCHI. https://sinchi.org.co/como-se-han-transformado-las-coberturas-de-la-tierra-en-la-amazonia-colombiana-entre-2018-2020Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., y Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12. https://doi.org/10.3390/AGRONOMY12112772Shivappa Masalvad, S., Patil, C., Pravalika, A., Katageri, B., Bekal, P., Patil, P., Hegde, N., Sahoo, U. K., y Sakare, P. K. (2023). Application of geospatial technology for the land use/land cover change assessment and future change predictions using CA Markov chain model. Environment, Development and Sustainability, 26(10), 24817–24842. https://doi.org/10.1007/S10668-023-03657-4/METRICSSilva, E. A. y Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552. https://doi.org/10.1016/S0198-9715(01)00014-XThanekar, G. (2020). Land Use Land Cover Prediction Analysis. https://doi.org/10.13140/RG.2.2.13983.48802Torres, L., Viana, C. M., y Rocha, J. (2023). Hybrid modeling of deforestation impacts from infrastructure projects using cellular automata and multi-agent systems. Applied Geography, 151, 102871. https://doi.org/10.1016/j.apgeog.2023.102871Trunfio, G. A. (2005). Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/11550822_54UN Committee of Experts - GGIM. (2017). GGIM | United Nations Committee of Experts on Global Geospatial Information Management. https://ggim.un.org/ggim_20171012/ggim_committee.htmlVeldkamp, A. y Lambin, E. F. (2001). Predicting land-use change. Ecosystems y Environment, 85(1–3), 1–6. https://doi.org/10.1016/S0167-8809(01)00199-2Wang, S., Liu, Y., Feng, Y., y Lei, Z. (2021). To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 14(9), 1213–1235. https://doi.org/10.1080/17538947.2021.1946178White, R. y Engelen, G. (1997). Cellular Automata as the Basis of Integrated Dynamic Regional Modelling. Sage journals, 24(2), 235–246. https://doi.org/10.1068/B240235Wu, X., Liu, X., Zhang, D., Zhang, J., He, J. y Xu, X. (2022). Simulating mixed land-use change under multi-label concept by integrating a convolutional neural network and cellular automata: a case study of Huizhou, China. GIScience y Remote Sensing, 59(1), 609–632. https://doi.org/10.1080/15481603.2022.2049493Yang, J., Chen, F., Xi, J., Xie, P. y Li, C. (2014a). A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application. Abstract and Applied Analysis. https://doi.org/10.1155/2014/375389Yang, X., Zheng, X.-Q. y Chen, R. (2014b). A local weights-based cellular automata approach to simulate urban land use changes. International Journal of Geographical Information Science, 28(11), 2344-2362. https://doi.org/10.1080/13658816.2014.922686Yang, J., Su, J., Chen, F., Xie, P. y Ge, Q. (2016). A Local Land Use Competition Cellular Automata Model and Its Application. ISPRS International Journal of Geo-Information, 5. https://doi.org/10.3390/IJGI5070106Yao, Y., Liu, X., Li, X., Liu, P., Hong, Y., Zhang, Y., y Mai, K. (2017). Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science, 31(12), 2452–2479. https://doi.org/10.1080/13658816.2017.1360494Yesserie, A. G. (2009). Spatio-temporal land use/land cover changes analysis and monitoring in the Valencia Municipality, Spain.Núm. 60 , Año 2025 : Enero-Juniohttps://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/10806/7995https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/10806/7996Luna Azul - 2025https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución 4.0.http://purl.org/coar/access_right/c_abf2Garzón Martínez, Sonia ConstanzaMontero Leguizamón, AníbalCamacho Ochoa, Victoria Danielaoai:repositorio.ucaldas.edu.co:ucaldas/236462026-01-14T06:30:16Z |
