Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama

Ilustaciones

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/17174
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/17174
https://repositorio.ucaldas.edu.co
Palabra clave:
Cáncer de mama
Línea celular MCF-7
Modelamiento matemático
Ecuaciones diferenciales ordinarias
Sistema inmunitario
Estrógeno
Inmunovigilancia.
Breast cancer
MCF-7 cell line
Mathematical modeling
Ordinary doifferential equations
Immune system
Estrogen
Immunosurveillance.
Cáncer
Biología celular
Rights
License
http://purl.org/coar/access_right/c_14cb
id REPOUCALDA_3d309cf2d84b183daadd84666fb31f52
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/17174
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
title Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
spellingShingle Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
Cáncer de mama
Línea celular MCF-7
Modelamiento matemático
Ecuaciones diferenciales ordinarias
Sistema inmunitario
Estrógeno
Inmunovigilancia.
Breast cancer
MCF-7 cell line
Mathematical modeling
Ordinary doifferential equations
Immune system
Estrogen
Immunosurveillance.
Cáncer
Biología celular
title_short Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
title_full Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
title_fullStr Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
title_full_unstemmed Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
title_sort Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mama
dc.contributor.none.fl_str_mv RUIZ VILLA, CARLOS ALBERTO
dc.subject.none.fl_str_mv Cáncer de mama
Línea celular MCF-7
Modelamiento matemático
Ecuaciones diferenciales ordinarias
Sistema inmunitario
Estrógeno
Inmunovigilancia.
Breast cancer
MCF-7 cell line
Mathematical modeling
Ordinary doifferential equations
Immune system
Estrogen
Immunosurveillance.
Cáncer
Biología celular
topic Cáncer de mama
Línea celular MCF-7
Modelamiento matemático
Ecuaciones diferenciales ordinarias
Sistema inmunitario
Estrógeno
Inmunovigilancia.
Breast cancer
MCF-7 cell line
Mathematical modeling
Ordinary doifferential equations
Immune system
Estrogen
Immunosurveillance.
Cáncer
Biología celular
description Ilustaciones
publishDate 2021
dc.date.none.fl_str_mv 2021-10-21T20:36:39Z
2021-10-21T20:36:39Z
2021-10-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/17174
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/17174
https://repositorio.ucaldas.edu.co
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Abbott, M., & Ustoyev, Y. (2019). Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35(5), 150923. https://doi.org/10.1016/j.soncn.2019.08.002
Advanced, U., Cancer, M., Cancer, M. A., Metastases, B., Metastases, B., Metastases, L., Metastases, L., & Cancer, M. (2016). Advanced and Metastatic Cancer Understanding Advanced and Metastatic Cancer. 1–26
Alarcón, T., Byrne, H. M., & Maini, P. K. (2005). A multiple scale model for tumor growth. Multiscale Modeling and Simulation, 3(2), 440–475. https://doi.org/10.1137/040603760
Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell. 4th edition. New York: Garland Science. Chapter 24, The Adaptive Immune System. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21070/
Abbott, M., & Ustoyev, Y. (2019). Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35(5), 150923. https://doi.org/10.1016/j.soncn.2019.08.002
Advanced, U., Cancer, M., Cancer, M. A., Metastases, B., Metastases, B., Metastases, L., Metastases, L., & Cancer, M. (2016). Advanced and Metastatic Cancer Understanding Advanced and Metastatic Cancer. 1–26.
Alarcón, T., Byrne, H. M., & Maini, P. K. (2005). A multiple scale model for tumor growth. Multiscale Modeling and Simulation, 3(2), 440–475. https://doi.org/10.1137/040603760
Ataollahi, M. R., Sharifi, J., Paknahad, M. R., & Paknahad, A. (2015). Breast cancer and associated factors: a review. Journal of Medicine and Life, 8(4), 6–11. http://www.ncbi.nlm.nih.gov/pubmed/28316699%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC5319297
Bachanova, V., & Miller, J. S. (2014). NK cells in therapy of cancer. Critical Reviews in Oncogenesis, 19(1–2), 133–141. https://doi.org/10.1615/CritRevOncog.2014011091
Bravo, L. E., & Muñoz, N. (2018). Epidemiology of cancer in Colombia. Colombia Médica, 49(1), 09–12. https://doi.org/10.25100/cm.v49i1.3877
Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates. (2000). The Development and Causes of Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9963/
Comşa, Ş., Cîmpean, A. M., & Raica, M. (2015). The story of MCF-7 breast cancer cell line: 40 Years of experience in research. Anticancer Research, 35(6), 3147–3154.
Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001
Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes and Development, 32(19–20), 1267–1284. https://doi.org/10.1101/GAD.314617.118
de Moraes-Pinto, M. I., Suano-Souza, F., & Aranda, C. S. (2020). Immune system: Development and acquisition of immunological competence. Jornal de Pediatria, xx. https://doi.org/10.1016/j.jped.2020.10.006
I. Gruber, N. Landenberger, A. Staebler, et al. (2013). Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer, Anticancer Res., 33, 2233–2238.
Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001
Hu, W., Wang, G., Huang, D., Sui, M., & Xu, Y. (2019). Cancer immunotherapy based on natural killer cells: Current progress and new opportunities. Frontiers in Immunology, 10(MAY), 1–16. https://doi.org/10.3389/fimmu.2019.01205
Idrees, M., & Sohail, A. (2021). Bio-algorithms for the modeling and simulation of cancer cells and the immune response. Bio-Algorithms and Med-Systems, 17(1), 55–63. https://doi.org/10.1515/bams-2020-0054
InformedHealth.org [Internet]. Colonia, Alemania: Instituto de Calidad y Eficiencia en la Atención de la Salud (IQWiG); 2006. El sistema inmunológico innato y adaptativo. [Actualizado el 30 de julio de 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK279396/
Jacobo, P. M., Huerta, J. G., & Cravioto, P. (2017). Interacciones entre el cáncer y el sistema inmunológico. Alergia, Asma e Inmunología Pediátricas, 26, 56–63.
Kaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885
Katz, S. G., & Rabinovich, P. M. (2020). T Cell Reprogramming Against Cancer. Methods in molecular biology (Clifton, N.J.), 2097, 3–44. https://doi.org/10.1007/978-1-0716- 0203-4_1
Key TJ, Verkasalo PK, Banks E. (2001). Epidemiology of breast cancer. Lancet Oncol. 2(3):133-40. doi: 10.1016/S1470-2045(00)00254-0. PMID: 11902563.
Kumar, B. V, Connors, T., & Farber, D. L. (2019). life. 48(2), 202–213. https://doi.org/10.1016/j.immuni.2018.01.007.Human
Kurd, N., Robey, E. A., & Biology, C. (2017). perspective. 271(1), 114–126. https://doi.org/10.1111/imr.12398.T
Mahasa, K. J., Ouifki, R., Eladdadi, A., & Pillis, L. de. (2016). Mathematical model of tumor–immune surveillance. Journal of Theoretical Biology, 404(January 2018), 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012
Makaryan, S. Z., Cess, C. G., & Finley, S. D. (2020). Modeling immune cell behavior across scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(4), 1–16. https://doi.org/10.1002/wsbm.1484
Manavathi, B., Dey, O., Gajulapalli, V. N., Bhatia, R. S., Bugide, S., & Kumar, R. (2013). Derailed estrogen signaling and breast cancer: an authentic couple. Endocrine reviews, 34(1), 1–32. https://doi.org/10.1210/er.2011-1057
Manuscript, A. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2), S345. https://doi.org/10.1016/j.jaci.2010.01.002
Mayer, H., Zaenker, K. S., & An Der Heiden, U. (1995). A basic mathematical model of the immune response. Chaos, 5(1), 155–161. https://doi.org/10.1063/1.166098
Minetto, P., Guolo, F., Pesce, S., Greppi, M., Obino, V., Ferretti, E., Sivori, S., Genova, C., Lemoli, R. M., & Marcenaro, E. (2019). Harnessing NK Cells for Cancer Treatment. Frontiers in Immunology, 10, 1–10. https://doi.org/10.3389/fimmu.2019.02836
Mufudza, C., Sorofa, W., & Chiyaka, E. T. (2012). Assessing the effects of estrogen on the dynamics of breast cancer. Computational and Mathematical Methods in Medicine, 2012(Idc). https://doi.org/10.1155/2012/473572
Narod, S. A. (2012). Disappearing breast cancers. Current Oncology, 19(2), 59–60. https://doi.org/10.3747/co.19.1037
Pardo, C., & Cendales, R. (2018). Cancer incidence estimates and mortality for the top five cancer in Colombia, 2007-2011. Colombia Médica, 49(1), 16-22. https://doi.org/10.25100/cm.v49i1.3596
Parsa, Y., Mirmalek, S. A., Kani, F. E., Aidun, A., Salimi-Tabatabaee, S. A., YadollahDamavandi, S., Jangholi, E., Parsa, T., & Shahverdi, E. (2016). A Review of the Clinical Implications of Breast Cancer Biology. Electronic physician, 8(5), 2416–2424. https://doi.org/10.19082/2416
L. G. de Pillis, W. Gu and A. E. Radunskaya. (2006). Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238, 841–862.
L. de Pillis, T. Caldwell, E. Sarapata, et al. (2013). Mathematical modeling of the regulatory T cell effects on renal cell carcinoma treatment, Discrete Continuous Dyn. Syst. Ser. B, 18, 915–943.
Reed BG, Carr BR. (2018). The Normal Menstrual Cycle and the Control of Ovulation. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279054/
Rizwan Romee. (2019). How the immune system's first wave of defense may play a newfound role in cancer care / Interview by Robert Levy. British Journal of Tuberculosis, 5(2), 157–160. https://doi.org/10.1016/S0366-0850(11)80029-3
Robertson-tessi, M., El-kareh, A., & Goriely, A. (2012). A mathematical model of tumor – immune interactions. Journal of Theoretical Biology, 294, 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027
Rozeboom, B., Dey, N., & De, P. (2019). ER+ metastatic breast cancer: past, present, and a prescription for an apoptosis-targeted future. American Journal of Cancer Research, 9(12), 2821–2831 http://www.ncbi.nlm.nih.gov/pubmed/31911865%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC6943351
Segovia-Mendoza, M., & Morales-Montor, J. (2019). Immune tumor microenvironment in breast cancer and the participation of estrogens and its receptors into cancer physiopathology. Frontiers in Immunology, 10, 1–16. https://doi.org/10.3389/fimmu.2019.00348
Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109–126.
Schwartz, Robert S. y Conley, C. Lockard. "sangre". Enciclopedia Británica, 24 de octubre de 2020, https://www.britannica.com/science/blood-biochemistry. Consultado el 7 de septiembre de 2021.
Shortman, K. (n.d.). T-cell development in the thymus. Nature, 309(5969), 583–584. http://www.ncbi.nlm.nih.gov/pubmed/6610130
Sociedad Americana contra el Cáncer. (2020). Recomendaciones de la Sociedad Americana Contra El Cáncer para la detección temprana del cáncer de seno. 1–77. https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-detecciontemprana-del-cancer-de-seno/guias-de-la-sociedad-americana-contra-el-cancer-para-la-deteccion-temprana-del-cancer-de-seno.html
Stony Brook Cancer Center. (2020). Different Kinds of Breast Lumps. stony Brook University Cancer Center Remains OPEN, 631, 722-2623.
Teng, M. W. L., Kershaw, M. H., & Smyth, M. J. (2013). Cancer Immunoediting: From Surveillance to Escape. In Cancer Immunotherapy: Immune Suppression and Tumor Growth: Second Edition (Second Edi). Elsevier. https://doi.org/10.1016/B978-0-12- 394296-8.00007-5
Topham, N. J., & Hewitt, E. W. (2009). Natural killer cell cytotoxicity: How do they pull the trigger? Immunology, 128(1), 7–15. https://doi.org/10.1111/j.1365-2567.2009.03123.x
Weerasinghe, H. N., Burrage, P. M., Burrage, K., & Nicolau, D. V. (2019). Mathematical Models of Cancer Cell Plasticity. Journal of Oncology, https://doi.org/10.1155/2019/2403483
Wei, H. C. (2019). Mathematical modeling of tumor growth: The MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 16(6), 6512–6535. https://doi.org/10.3934/mbe.2019325
Wu, S. Y., Fu, T., Jiang, Y. Z., & Shao, Z. M. (2020). Natural killer cells in cancer biology and therapy. Molecular Cancer, 19(1), 1–26. https://doi.org/10.1186/s12943-020-01238-x
Y. Zhang, D. L. Wallace, C. M. De Lara, et al. (2007). In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection, Immunotherapy, 121, 258–265.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145084726247424
spelling Estudio computacional de la respuesta del sistema inmunitario en la línea celular de Adenocarcinoma humano de mamaCáncer de mamaLínea celular MCF-7Modelamiento matemáticoEcuaciones diferenciales ordinariasSistema inmunitarioEstrógenoInmunovigilancia.Breast cancerMCF-7 cell lineMathematical modelingOrdinary doifferential equationsImmune systemEstrogenImmunosurveillance.CáncerBiología celularIlustacionesspa:En la actualidad, la problemática que ha generado el cáncer de mama a nivel sanitario y social continúa posicionado a nivel mundial, afectando aspectos tanto físicos como en su vida cotidiana. El cáncer de mama hace referencia al tipo de cáncer que se produce en el tejido mamario, el cual se manifiesta como una proliferación descontrolada de células cancerosas, teniendo al estrógeno como un posible desencadenante de esta enfermedad. Durante los últimos años los avances clínicos, experimentales y teóricos, así como el modelamiento matemático, han sido de gran ayuda para representar la dinámica de las células tumorales e inmunes. A través del tiempo estos modelos han venido evolucionando de ser simples y generalistas a llegar a un nivel de complejidad multiescala donde se analizan mayor cantidad de interacciones. Este trabajo emplea un modelo matemático por medio de ecuaciones diferenciales ordinaria (EDO), en el que se representa las interacciones del sistema inmune (células naturales asesinas, linfocitos T citotóxicos y glóbulos blancos) con las células tumorales y el estrógeno, aplicado en la línea celular MCF-7, que es ampliamente utilizada en diferentes estudios biológicos. En los resultados se puede observar tres puntos de equilibrio expresando la estabilidad alcanzada por las poblaciones de células; la respuesta de la conjunción de las células del sistema inmune frente a las células tumorales respalda la importancia de la inmunovigilancia como método de análisis de la inmunogenicidad.eng:At present, the problem that breast cancer has generated at a health and social level continues to be positioned worldwide, affecting both physical aspects and their daily life. Breast cancer refers to the type of cancer that occurs in the breast tissue, which manifests itself as an uncontrolled proliferation of cancer cells, with estrogen as a possible trigger for this disease. In recent years, clinical, experimental and theoretical advances, as well as mathematical model, have been of great help to represent the dynamics of tumor and immune cells. Over time, these models have evolved from being simple and general to reaching a level of multiscale complexity where a greater number of interactions are analyzed. This work uses a mathematical model by means of ordinary differential equations (ODE), which represents the interactions of the immune system (natural killer cells, cytotoxic T lymphocytes and white blood cells) with tumor cells and estrogen, applied in the line MCF-7 cell, which is widely used in different biological studies. In the results, three equilibrium points can be observed expressing the stability reached by the cell populations; the conjunctive response of immune system cells to tumor cells supports the importance of immunosurveillance as a method of testing for immunogenicity.Justificación / Marco Teórico / Sistema Inmunológico / Glóbulos Blancos / Células Naturales Asesinas (NK) / Linfocitos T / Inmunovigilancia / Modelo Matemático / Evolución de los modelos matemáticos / Cuadro comparativo / Metodología / Modelo Matemático / Análisis de los datos / Modelo ODE y valores de parámetros / Simulaciones numéricas / Resultados / Simulaciones / Células tumorales / Células naturales asesinas (NK) / Células linfocitos t citotóxicos (CTLS) / Unificación de las simulaciones del modelo / Efecto de la concentración de estradiol / Discusión / Conclusión / BibliografíaUniversitarioBiólogo(a)BioinformaticaFacultad de Ciencias Exactas y NaturalesManizalesBiologíaRUIZ VILLA, CARLOS ALBERTOMonsalve Cárdenas, Manuela2021-10-21T20:36:39Z2021-10-21T20:36:39Z2021-10-15Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/17174Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.coengspaAbbott, M., & Ustoyev, Y. (2019). Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35(5), 150923. https://doi.org/10.1016/j.soncn.2019.08.002Advanced, U., Cancer, M., Cancer, M. A., Metastases, B., Metastases, B., Metastases, L., Metastases, L., & Cancer, M. (2016). Advanced and Metastatic Cancer Understanding Advanced and Metastatic Cancer. 1–26Alarcón, T., Byrne, H. M., & Maini, P. K. (2005). A multiple scale model for tumor growth. Multiscale Modeling and Simulation, 3(2), 440–475. https://doi.org/10.1137/040603760Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell. 4th edition. New York: Garland Science. Chapter 24, The Adaptive Immune System. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21070/Abbott, M., & Ustoyev, Y. (2019). Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35(5), 150923. https://doi.org/10.1016/j.soncn.2019.08.002Advanced, U., Cancer, M., Cancer, M. A., Metastases, B., Metastases, B., Metastases, L., Metastases, L., & Cancer, M. (2016). Advanced and Metastatic Cancer Understanding Advanced and Metastatic Cancer. 1–26.Alarcón, T., Byrne, H. M., & Maini, P. K. (2005). A multiple scale model for tumor growth. Multiscale Modeling and Simulation, 3(2), 440–475. https://doi.org/10.1137/040603760Ataollahi, M. R., Sharifi, J., Paknahad, M. R., & Paknahad, A. (2015). Breast cancer and associated factors: a review. Journal of Medicine and Life, 8(4), 6–11. http://www.ncbi.nlm.nih.gov/pubmed/28316699%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC5319297Bachanova, V., & Miller, J. S. (2014). NK cells in therapy of cancer. Critical Reviews in Oncogenesis, 19(1–2), 133–141. https://doi.org/10.1615/CritRevOncog.2014011091Bravo, L. E., & Muñoz, N. (2018). Epidemiology of cancer in Colombia. Colombia Médica, 49(1), 09–12. https://doi.org/10.25100/cm.v49i1.3877Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates. (2000). The Development and Causes of Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9963/Comşa, Ş., Cîmpean, A. M., & Raica, M. (2015). The story of MCF-7 breast cancer cell line: 40 Years of experience in research. Anticancer Research, 35(6), 3147–3154.Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes and Development, 32(19–20), 1267–1284. https://doi.org/10.1101/GAD.314617.118de Moraes-Pinto, M. I., Suano-Souza, F., & Aranda, C. S. (2020). Immune system: Development and acquisition of immunological competence. Jornal de Pediatria, xx. https://doi.org/10.1016/j.jped.2020.10.006I. Gruber, N. Landenberger, A. Staebler, et al. (2013). Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer, Anticancer Res., 33, 2233–2238.Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001Hu, W., Wang, G., Huang, D., Sui, M., & Xu, Y. (2019). Cancer immunotherapy based on natural killer cells: Current progress and new opportunities. Frontiers in Immunology, 10(MAY), 1–16. https://doi.org/10.3389/fimmu.2019.01205Idrees, M., & Sohail, A. (2021). Bio-algorithms for the modeling and simulation of cancer cells and the immune response. Bio-Algorithms and Med-Systems, 17(1), 55–63. https://doi.org/10.1515/bams-2020-0054InformedHealth.org [Internet]. Colonia, Alemania: Instituto de Calidad y Eficiencia en la Atención de la Salud (IQWiG); 2006. El sistema inmunológico innato y adaptativo. [Actualizado el 30 de julio de 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK279396/Jacobo, P. M., Huerta, J. G., & Cravioto, P. (2017). Interacciones entre el cáncer y el sistema inmunológico. Alergia, Asma e Inmunología Pediátricas, 26, 56–63.Kaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885Katz, S. G., & Rabinovich, P. M. (2020). T Cell Reprogramming Against Cancer. Methods in molecular biology (Clifton, N.J.), 2097, 3–44. https://doi.org/10.1007/978-1-0716- 0203-4_1Key TJ, Verkasalo PK, Banks E. (2001). Epidemiology of breast cancer. Lancet Oncol. 2(3):133-40. doi: 10.1016/S1470-2045(00)00254-0. PMID: 11902563.Kumar, B. V, Connors, T., & Farber, D. L. (2019). life. 48(2), 202–213. https://doi.org/10.1016/j.immuni.2018.01.007.HumanKurd, N., Robey, E. A., & Biology, C. (2017). perspective. 271(1), 114–126. https://doi.org/10.1111/imr.12398.TMahasa, K. J., Ouifki, R., Eladdadi, A., & Pillis, L. de. (2016). Mathematical model of tumor–immune surveillance. Journal of Theoretical Biology, 404(January 2018), 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012Makaryan, S. Z., Cess, C. G., & Finley, S. D. (2020). Modeling immune cell behavior across scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(4), 1–16. https://doi.org/10.1002/wsbm.1484Manavathi, B., Dey, O., Gajulapalli, V. N., Bhatia, R. S., Bugide, S., & Kumar, R. (2013). Derailed estrogen signaling and breast cancer: an authentic couple. Endocrine reviews, 34(1), 1–32. https://doi.org/10.1210/er.2011-1057Manuscript, A. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2), S345. https://doi.org/10.1016/j.jaci.2010.01.002Mayer, H., Zaenker, K. S., & An Der Heiden, U. (1995). A basic mathematical model of the immune response. Chaos, 5(1), 155–161. https://doi.org/10.1063/1.166098Minetto, P., Guolo, F., Pesce, S., Greppi, M., Obino, V., Ferretti, E., Sivori, S., Genova, C., Lemoli, R. M., & Marcenaro, E. (2019). Harnessing NK Cells for Cancer Treatment. Frontiers in Immunology, 10, 1–10. https://doi.org/10.3389/fimmu.2019.02836Mufudza, C., Sorofa, W., & Chiyaka, E. T. (2012). Assessing the effects of estrogen on the dynamics of breast cancer. Computational and Mathematical Methods in Medicine, 2012(Idc). https://doi.org/10.1155/2012/473572Narod, S. A. (2012). Disappearing breast cancers. Current Oncology, 19(2), 59–60. https://doi.org/10.3747/co.19.1037Pardo, C., & Cendales, R. (2018). Cancer incidence estimates and mortality for the top five cancer in Colombia, 2007-2011. Colombia Médica, 49(1), 16-22. https://doi.org/10.25100/cm.v49i1.3596Parsa, Y., Mirmalek, S. A., Kani, F. E., Aidun, A., Salimi-Tabatabaee, S. A., YadollahDamavandi, S., Jangholi, E., Parsa, T., & Shahverdi, E. (2016). A Review of the Clinical Implications of Breast Cancer Biology. Electronic physician, 8(5), 2416–2424. https://doi.org/10.19082/2416L. G. de Pillis, W. Gu and A. E. Radunskaya. (2006). Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238, 841–862.L. de Pillis, T. Caldwell, E. Sarapata, et al. (2013). Mathematical modeling of the regulatory T cell effects on renal cell carcinoma treatment, Discrete Continuous Dyn. Syst. Ser. B, 18, 915–943.Reed BG, Carr BR. (2018). The Normal Menstrual Cycle and the Control of Ovulation. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279054/Rizwan Romee. (2019). How the immune system's first wave of defense may play a newfound role in cancer care / Interview by Robert Levy. British Journal of Tuberculosis, 5(2), 157–160. https://doi.org/10.1016/S0366-0850(11)80029-3Robertson-tessi, M., El-kareh, A., & Goriely, A. (2012). A mathematical model of tumor – immune interactions. Journal of Theoretical Biology, 294, 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027Rozeboom, B., Dey, N., & De, P. (2019). ER+ metastatic breast cancer: past, present, and a prescription for an apoptosis-targeted future. American Journal of Cancer Research, 9(12), 2821–2831 http://www.ncbi.nlm.nih.gov/pubmed/31911865%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC6943351Segovia-Mendoza, M., & Morales-Montor, J. (2019). Immune tumor microenvironment in breast cancer and the participation of estrogens and its receptors into cancer physiopathology. Frontiers in Immunology, 10, 1–16. https://doi.org/10.3389/fimmu.2019.00348Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109–126.Schwartz, Robert S. y Conley, C. Lockard. "sangre". Enciclopedia Británica, 24 de octubre de 2020, https://www.britannica.com/science/blood-biochemistry. Consultado el 7 de septiembre de 2021.Shortman, K. (n.d.). T-cell development in the thymus. Nature, 309(5969), 583–584. http://www.ncbi.nlm.nih.gov/pubmed/6610130Sociedad Americana contra el Cáncer. (2020). Recomendaciones de la Sociedad Americana Contra El Cáncer para la detección temprana del cáncer de seno. 1–77. https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-detecciontemprana-del-cancer-de-seno/guias-de-la-sociedad-americana-contra-el-cancer-para-la-deteccion-temprana-del-cancer-de-seno.htmlStony Brook Cancer Center. (2020). Different Kinds of Breast Lumps. stony Brook University Cancer Center Remains OPEN, 631, 722-2623.Teng, M. W. L., Kershaw, M. H., & Smyth, M. J. (2013). Cancer Immunoediting: From Surveillance to Escape. In Cancer Immunotherapy: Immune Suppression and Tumor Growth: Second Edition (Second Edi). Elsevier. https://doi.org/10.1016/B978-0-12- 394296-8.00007-5Topham, N. J., & Hewitt, E. W. (2009). Natural killer cell cytotoxicity: How do they pull the trigger? Immunology, 128(1), 7–15. https://doi.org/10.1111/j.1365-2567.2009.03123.xWeerasinghe, H. N., Burrage, P. M., Burrage, K., & Nicolau, D. V. (2019). Mathematical Models of Cancer Cell Plasticity. Journal of Oncology, https://doi.org/10.1155/2019/2403483Wei, H. C. (2019). Mathematical modeling of tumor growth: The MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 16(6), 6512–6535. https://doi.org/10.3934/mbe.2019325Wu, S. Y., Fu, T., Jiang, Y. Z., & Shao, Z. M. (2020). Natural killer cells in cancer biology and therapy. Molecular Cancer, 19(1), 1–26. https://doi.org/10.1186/s12943-020-01238-xY. Zhang, D. L. Wallace, C. M. De Lara, et al. (2007). In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection, Immunotherapy, 121, 258–265.http://purl.org/coar/access_right/c_14cboai:repositorio.ucaldas.edu.co:ucaldas/171742024-07-16T21:49:01Z