Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/21917
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/21917
https://repositorio.ucaldas.edu.co
Palabra clave:
Hotspot
Diversidad funcional
Macroinvertebrados acuáticos
bromelias
microecosistema,
Áreas protegidas
Biología
Rights
License
http://purl.org/coar/access_right/c_f1cf
id REPOUCALDA_3a499e337de5c7a6400f33cd1d53d4d6
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/21917
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
title Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
spellingShingle Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
Hotspot
Diversidad funcional
Macroinvertebrados acuáticos
bromelias
microecosistema,
Áreas protegidas
Biología
title_short Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
title_full Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
title_fullStr Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
title_full_unstemmed Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
title_sort Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianos
dc.contributor.none.fl_str_mv Ospina-Bautista, fabiola
Estevez Varon, Jaime Vicente
Grupo de Investigación en Ecosistemas Tropicales (Categoría A)
dc.subject.none.fl_str_mv Hotspot
Diversidad funcional
Macroinvertebrados acuáticos
bromelias
microecosistema,
Áreas protegidas
Biología
topic Hotspot
Diversidad funcional
Macroinvertebrados acuáticos
bromelias
microecosistema,
Áreas protegidas
Biología
description Ilustraciones, gráficas
publishDate 2025
dc.date.none.fl_str_mv 2025-02-03T19:39:54Z
2025-02-03T19:39:54Z
2035-01-01
2035-01-01
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/21917
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/21917
https://repositorio.ucaldas.edu.co
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Araújo, V. A., Melo, S. K., Araújo, A. P., Gomes, M. L., & Carneiro, M. A. (2007). Relationship between invertebrate fauna and bromeliad size. Brazilian Journal of Biology, 67(4), 611–617. https://doi.org/10.1590/S1519-6984200700040000
Areiza, A., Corzo, G., Castillo, L. S., Matallana, C., & Correa Ayram, C. A. (2018). Áreas protegidas regionales y reservas privadas: Las protagonistas de las últimas décadas. Instituto Humboldt. https://reporte.humboldt.org.co/biodiversidad/2018/cap3/303/#seccion11
Atehortua Trujillo, B., Hernández Atilo, E., & Agudelo Echavarría, D. M. (2022). Análisis de algunos rasgos funcionales de macroinvertebrados acuáticos y su tolerancia, en respuesta a variables ambientales en ríos andinos de Antioquia-Colombia (Tesis de maestría). Universidad de Antioquia, Medellín, Colombia.
Barinas, M. (2008). Caracterización de las comunidades de macroinvertebrados acuáticos de la microcuenca El Carrizal, Parque Nacional La Tigra, Honduras (Tesis de Ingeniería en Desarrollo Socioeconómico y Ambiente). Escuela Agrícola Panamericana, Zamorano, Honduras.
Beaumont, L. J., Esperon-Rodriguez, M., Nipperess, D. A., Wauchope-Drumm, M., & Baumgartner, J. B. (2019). Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biological Conservation, 237, 230–237.
Benavides-Gordillo, S., Farjalla, V. F., González, A. L., & Romero, G. Q. (2019). Changes in rainfall level and litter stoichiometry affect aquatic community and ecosystem processes in bromeliad phytotelmata. Freshwater Biology, 64, 1357–1368. https://doi.org/10.1111/fwb.13310
Benzing, D. H. (1990). Vascular epiphytes: General biology and related biota. Cambridge University Press.
Bernabé, T. N., de Omena, P. M., Santos, V. P. D., de Siqueira, V. M., de Oliveira, V. M., & Romero, G. Q. (2018). Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Global Change Biology, 24, 3170–3186. https://doi.org/10.1111/gcb.14109
Brouard, O., Cereghino, R., Corbara, B., Leroy, C., Pelozuelo, L., Dejean, A., et al. (2012). Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology, 57, 815–823.
Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2009). Manual of Central American Diptera: Volume 1. NRC Research Press.
Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2010). Manual of Central American Diptera: Volume 2. NRC Research Press.
Brusca, R. C., & Brusca, G. J. (2005). Invertebrados (2ª ed.). McGraw-Hill.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.
Carvajal Ocampo, V. de los Á., Ospina Bautista, F., Estévez Varón, J. V., & Llano Arias, C. Á. (2022). Invertebrados asociados a bromelias: Una diversidad escondida. Editorial Universidad de Caldas.
Casanoves, F., Di Rienzo, J. A., & Pla, L. (2008). User Manual FDiversity: Statistical software for the analysis of functional diversity (1ª ed.). Argentina. http://www.fdiversity.nucleodiversus.org
CBD. (2021). First draft of the Post-2020 Global Biodiversity Framework. Secretariat of the Convention on Biological Diversity, Montreal, Canada.
Céréghino, R., Pillar, V. D., Srivastava, D. S., De Omena, P. M., MacDonald, A. A. M., Barberis, I. M., Corbara, B., Guzman, L. M., Leroy, C., Bautista, F. O., Romero, G. Q., Trzcinski, M. K., Kratina, P., Debastiani, V. J., Gonçalves, A. Z., Marino, N. A. C., Farjalla, V. F., Richardson, B. A., Richardson, M. J., & Montero, G. (2018). Constraints on the functional trait space of aquatic invertebrates in bromeliads. Functional Ecology, 32(10), 2435-2447. https://doi.org/10.1111/1365-2435.13141
Chabrerie, O., Loinard, J., Perrin, S., Saguez, R., & Decocq, G. (2009). Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biological Invasions, 12(6), 1891-1907.
Chec. (2019). Informe de sostenibilidad 2019 – Parte 3
Chevenet, F., Dolédec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x
Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology, 87(6), 1465-1471.
Corpocaldas. (2010). Plan de manejo reserva forestal protectora de las cuencas hidrográficas de Río Blanco y Quebrada Olivares. Manizales, Colombia.
Critical Ecosystem Partnership Fund (CEPF). (2002). Corredor Chocó-Manabí: Ecorregión (Hotspots) de Biodiversidad del Chocó-Darién-Ecuador Occidental. Washington, DC.
Dawson, S. K., Carmona, C. P., González-Suárez, M., Jönsson, M., Chichorro, F., MallenCooper, M., Melero, Y., Moor, H., Simaika, J. P., & Duthie, A. B. (2021). The traits of “trait ecologists”: An analysis of the use of trait and functional trait terminology. Ecology and Evolution, 11, 16434–16445. https://doi.org/10.1002/ece3.8321
DeFries, R., Karanth, K. K., & Pareeth, S. (2010). Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biological Conservation, 143, 2870–2880.
Del-Claro, K., & Guillermo, R. (2019). Aquatic Insects Behavior and Ecology. Springer Nature Switzerland AG.
Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2018a). Tank bromeliads sustain high secondary production in neotropical forests. Aquatic Sciences, 80, 1–12. https://doi.org/10.1007/s00027-018-0566-3
Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2018b). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62(2), 229–242.
Dézerald, O., Talaga, S., Leroy, C., et al. (2014). Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia, 723, 77–86. https://doi.org/10.1007/s10750-013-1464-2
Díaz, S., Fargione, J., Chapin III, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4, e277.
Dolédec, S., Phillips, N., Scarsbrook, M., Riley, R. H., & Townsend, C. R. (2006). Comparison of structural and functional approaches to determining land-use effects on grassland stream invertebrate communities. Journal of the North American Benthological Society, 25, 44–60.
Domínguez, E., & Fernández, H. R. (2009). Macroinvertebrados bentónicos sudamericanos: Sistemática y biología. Fundación Miguel Lillo.
Dray, S., & Legendre, P. (2008). Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. http://www.jstor.org/stable/27650916
Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14-21.
Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2016). Supplement 1: A tutorial to perform fourth-corner and RLQ analyses in R.
Farjalla, V. F., González, A. L., Céréghino, R., Dézerald, O., Marino, N. A. C., Piccoli, G. C. O., Richardson, B. A., Richardson, M. J., Romero, G. Q., & Srivastava, D. S. (2016). Terrestrial support of aquatic food webs depends on light inputs: A geographically replicated test using tank bromeliads. Ecology, 97(8), 2147–2156. https://doi.org/10.1002/ecy.1432
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302- 4315.
Gentry, A. H. (1986). Species richness and floristic composition of Chocó region plant communities. Caldasia, 15, 71–91. https://doi.org/10.15446/caldasia
Gouda, E. J., Butcher, D., & Dijkgraaf, L. (actualización continua). Encyclopaedia of Bromeliads, Version 5. Utrecht University Botanic Gardens. http://bromeliad.nl/encyclopedia/ ISBN 9789039345092
Greeney, H. F. (2001). The insects of plant-held waters: a review and bibliography. Journal of Tropical Ecology, 17, 241–260.
Herrera, A., Ballesteros, H., Echeverry, J., & Rodríguez, C. (2018). Plan de manejo del Parque Nacional Natural Selva de Florencia. Parques Nacionales Naturales de Colombia.
Hill, M., & Smith, J. (1976). Principal component analysis of taxonomic data with multistate discrete characters. Taxon, 25, 249–255.
Holdridge, L. R. (1982). Ecología basada en zonas de vida. IICA.
Ishwaran, N., Persic, A., & Tri, N. H. (2008). Concept and practice: the case of UNESCO biosphere reserves. International Journal of Environment and Sustainable Development, 7, 118–131.
Kitching, R. L. (2000). Food webs and container habitats: The natural history and ecology of phytotelmata. Cambridge University Press
Kitching, R. L. (2004). The phytotelm environment: The container milieu. In R. L. Kitching (Ed.), Food webs and container habitats: The natural history and ecology of phytotelmata (pp. 57–90). Cambridge University Press.
Kratina, P., Petermann, J. S., Marino, N. A. C., MacDonald, A. A. M., & Srivastava, D. S. (2017). Environmental control of the microfaunal community structure in tropical bromeliads. Ecology and Evolution, 7(5), 1627–1634.
Ladino, G., Ospina-Bautista, F., Estévez Varón, J., Jerabkova, L., & Kratina, P. (2019). Ecosystem services provided by bromeliad plants: A systematic review. Ecology and Evolution, 9(12), 7360–7372. https://doi.org/10.1002/ece3.5296
Laessle, A. M. (1961). A micro-limnological study of Jamaican bromeliads. Ecology, 42(3), 499–517.
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. https://doi.org/10.1890/08- 2244.1
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
Lawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S., Withey, J. C., Helmers, D. P., Martinuzzi, S., Pennington, D., & Radeloff, V. C. (2014). Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences, 111, 7492–7497.
Leroy, C., Carrias, J.-F., Céréghino, R., & Corbara, B. (2016). The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology, 9(3), 241–255. https://doi.org/10.1093/jpe/rtv052
Leroy, C., Corbara, B., Dejean, A., & Céréghino, R. (2009). Ants mediate foliar structure and nitrogen acquisition in a tank bromeliad. New Phytologist, 183, 1124–1133.
Linares-Palomino, R., Oliveira-Filho, A. T., & Pennington, R. T. (2011). Neotropical seasonally dry forests: Diversity, endemism, and biogeography of woody plants. In Seasonally dry tropical forests (pp. 3–21). Springer. https://doi.org/10.5822/978-1- 61091-021-7_1
MacArthur, R., & Wilson, E. (1967). The theory of island biogeography (p. 221). Princeton University Press.
Marino, N. A. C., Guariento, R. D., Dib, V., Azevedo, F. D., & Farjalla, V. F. (2011). Habitat size determines algae biomass in tank-bromeliads. Hydrobiologia, 678(1), 191– 199.
Marino, N. A. C., Srivastava, D. S., & Farjalla, V. F. (2013). Aquatic macroinvertebrate community composition in tank‐bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity, 6, 372–380. https://doi.org/10.1111/j.1752‐4598.2012.00224.x
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178-185. https://doi.org/10.1016/j.tree.2006.02.002
Merritt, R. W., Cummins, K. W., & Berg, M. (Eds.). (2008). An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots: Distribution and protection of conservation priority areas (pp. 3–22). Springer. https://doi.org/10.1007/978-3-642-20992-5_1
Monge, J., & Morales, C. (2013). Centenario de la publicación de “Las bromeliáceas epífitas consideradas como medio biológico” (1913) Clodomiro Picado Twight, pionero de la ecología de las bromeliáceas. Revista de Biología Tropical, 61(4), 1537-1542.
Mosquera-Murillo, Z., Gómez, M. Á., & González, M. B. (2016). Diversidad de macroinvertebrados acuáticos asociados con Bromeliaceae en una zona de bosque pluvial tropical, Chocó, Colombia. Revista Biodiversidad Neotropical, 6(2), 147-153.
Mouillot, D., Mason, W. H., Dumay, O., & Wilson, J. B. (2005). Functional regularity: A neglected aspect of functional diversity. Oecologia, 142, 353-359.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853.
Ngai, J. T., Kirby, K. R., Gilbert, B., Starzomski, B. M., Pelletier, A. J. D., & Conner, J. C. R. (2008). The impact of land-use change on larval insect communities– Testing the role of habitat elements in conservation. Ecoscience, 15, 160–168.
Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113, 10759–10768.
Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional traits. In Encyclopedia of Life Sciences (pp. 1–8). Wiley. https://doi.org/10.1002/9780470015902.a0026282
Ospina-Bautista, F., Estévez, V., Betancur, J., & Realpe, E. (2004). Invertebrados acuáticos asociados a Tillandsia turneri Baker (Bromeliaceae) en un bosque altoandino (Cundinamarca, Colombia). Acta Zoológica Mexicana, 20(1), 153-166.
Ospina-Bautista, F., Estévez-Varón, J. V., Realpe, E., & Gast, F. (2008). Diversidad de invertebrados acuáticos asociados a Bromeliaceae en un bosque de montaña. Revista Colombiana de Entomología, 34(2), 224-229.
Parques Nacionales Naturales de Colombia. (2025). Cifras de áreas protegidas en Colombia. Recuperado de https://runap.parquesnacionales.gov.co/cifras
Pérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, Y., Bogarín, D., Boschman, L. M., Pennington, R.T., Antonelli, A., & Chomicki, G. (2022). The Andes through time: Evolution and distribution of Andean floras. Trends in Plant Science, 27, 364–378. https://doi.org/10.1016/j.tplants.2021.09.010
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758. https://doi.org/10.1111/j.1461- 0248.2006.00924.x
Petermann, J. S., Farjalla, V. F., Jocqué, M., Kratina, P., MacDonald, A. A. M., Marino, N. A. C., … Srivastava, D. S. (2015). Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology, 96, 428–439. https://doi.org/10.1890/14-0304.1
Ramos, G. J. P., & Moura, C. W. D. N. (2019). Algae and cyanobacteria in phytotelmata: Diversity, ecological aspects, and conservation. Biodiversity and Conservation, 28(7), 1667–1697.
Richardson, B. A. (1999). The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, 31, 321–336.
Richardson, B. A., Richardson, M. J., Scatena, F. N., & McDowell, W. H. (2000a). Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Tropical Ecology, 16, 167–188.
Richardson, B. A., Rogers, C., & Richardson, M. J. (2000b). Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecological Entomology, 25, 348–356.
Rivas, C. A., Guerrero-Casado, J., & Navarro-Cerillo, R. M. (2021). Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: Impact on conservation. Forest Ecosystems, 8, 46. https://doi.org/10.1186/s40663-021- 00329-5
Rojas Lenis, Y. (2014). La historia de las áreas protegidas en Colombia, sus firmas de gobierno y las alternativas para la gobernanza. Sociedad y Economía, 27, 155- 175. Recuperado de https://www.redalyc.org/articulo.oa?id=99631890007
Schmitz, O. J., et al. (2015). Functional traits and trait-mediated interactions: Connecting community-level interactions with ecosystem functioning. In S. Pawar, et al. (Eds.), Trait-based ecology – from structure to function. Advances in ecological research (pp. 319–343). Academic Press.
Sim, L. L., Davis, J. A., Strehlow, K., McGuire, M., Trayler, K. M., Wild, S., et al. (2013). The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands. Freshwater Science, 32, 327–342.
Srivastava, D. S. (2006). Habitat structure, trophic structure and ecosystem function: Interactive effects in a bromeliad–insect community. Oecologia, 149(3), 493–504.
Srivastava, D. S., Trzcinski, M. K., Richardson, B. A., & Gilbert, B. (2008). Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. The American Naturalist, 172(6), 761–771.
Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30, 768–783.
Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M., & Preece, R. C. (2002). Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science, 297, 2044–2047.
Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290–2301. https://doi.org/10.1890/07-1206.1
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111, 13690–13696. https://doi.org/10.1073/pnas.1415442111
Zachos, F. E., & Habel, J. C. (2011). Biodiversity hotspots: Distribution and protection of conservation priority areas (p. 546). Springer. https://doi.org/10.1007/978-3-642- 20992-5
Zotz, G., & Thomas, V. (1999). How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany, 83, 183–192.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://purl.org/coar/access_right/c_f1cf
dc.format.none.fl_str_mv 30 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145095648215040
spelling Macroinvertebrados acuáticos asociados a bromelias: diversidad en las áreas protegidas de los hotspot colombianosHotspotDiversidad funcionalMacroinvertebrados acuáticosbromeliasmicroecosistema,Áreas protegidasBiologíaIlustraciones, gráficasLas áreas protegidas se establecen con el objetivo de mitigar la pérdida de biodiversidad a nivel mundial. En Colombia, un alto porcentaje de áreas protegidas se ubican en los hotspot de biodiversidad Tumbes-Chocó-Magdalena y Andes tropicales. Dentro de estos hotspot se encuentran bromelias tanque que son reservorios de diversidad, en particular para macroinvertebrados acuáticos. Este estudio determinó la diversidad taxonómica y funcional de macroinvertebrados acuáticos asociados a 120 bromelias de las áreas protegidas inmersas en los hotspot colombianos y relaciona las características de las bromelias con la comunidad de macroinvertebrados. Se encontraron 3404 macroinvertebrados acuáticos, representados por 47 morfoespecies, 26 familias, 7 órdenes, 3 clases y 2 phylum. La ubicación del área protegida influyó en las características del microecosistema bromelia; las bromelias de las áreas protegidas de los Andes tropicales tuvieron un mayor tamaño y capacidad para captar y retener el recurso tanto hídrico como alimenticio, así como unas temperaturas más bajas, mayor porcentaje de oxígeno y sólidos disueltos totales en el agua. Esas diferencias llevaron a variaciones en la riqueza, abundancia taxonómica y en la riqueza funcional de macroinvertebrados acuáticos entre las áreas protegidas, siendo mayor la riqueza y abundancia para las bromelias de las áreas protegidas de los Andes tropicales. La composición de especies de macroinvertebrados acuáticos también difirió entre las áreas protegidas como producto de su ubicación, sin embargo, en este caso, no fue mediado por el hotspot de diversidad. Las características de las bromelias fueron un filtro ambiental para los rasgos respuesta de los macroinvertebrados acuáticos. En conclusión, a escala del paisaje, las características ambientales pueden influir en estas características de las bromelias y por ende en la disponibilidad de este hábitat acuático, por lo que la ubicación de la bromelia tanque influencia indirectamente a la comunidad acuática.Protected areas are established with the aim of mitigating biodiversity loss on a global scale. In Colombia, a high percentage of protected areas are located within the biodiversity hotspots of Tumbes-Chocó-Magdalena and the Tropical Andes. These hotspots harbor tank bromeliads, which serve as reservoirs of biodiversity, particularly for aquatic macroinvertebrates. This study assessed the taxonomic and functional diversity of aquatic macroinvertebrates associated with 120 bromeliads in protected areas within Colombian biodiversity hotspots and examined the relationship between bromeliad characteristics and macroinvertebrate communities. A total of 3,404 aquatic macroinvertebrates were found, representing 47 morphospecies, 26 families, 7 orders, 3 classes, and 2 phyla. The location of the protected area influenced the microecosystem characteristics of the bromeliads; bromeliads from protected areas in the Tropical Andes exhibited larger sizes, greater capacity to capture and retain both water and nutritional resources, lower temperatures, and higher levels of dissolved oxygen and total dissolved solids in the water. These environmental differences led to variations in taxonomic richness, abundance, and functional diversity of aquatic macroinvertebrates among protected areas, with greater richness and abundance observed in bromeliads from the Tropical Andes protected areas. The species composition of aquatic macroinvertebrates also differed between protected areas as a function of their geographic location; however, in this case, differences were not mediated by the biodiversity hotspot designation. The characteristics of bromeliads acted as an environmental filter for the response traits of aquatic macroinvertebrates. In conclusion, at the landscape scale, environmental factors can influence the characteristics of bromeliads and, consequently, the availability of this aquatic habitat. Thus, the location of tank bromeliads indirectly affects the structure of aquatic macroinvertebrate communitiesINTRODUCCIÓN / MATERIALES Y MÉTODOS / Zonas de estudio / Muestreo / Análisis estadísticos / RESULTADOS / Diversidad de macroinvertebrados / Características del microecosistema bromelia entre las áreas protegidas / Patrones de diversidad entre las áreas protegidas / Diversidad funcional entre las áreas protegidas / DISCUSIÓN / AGRADECIMIENTOS / REFERENCIASPregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaOspina-Bautista, fabiolaEstevez Varon, Jaime VicenteGrupo de Investigación en Ecosistemas Tropicales (Categoría A)John Jaime Rojas-Correa2025-02-03T19:39:54Z2035-01-012025-02-03T19:39:54Z2035-01-01Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a8530 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/21917Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.cospaAraújo, V. A., Melo, S. K., Araújo, A. P., Gomes, M. L., & Carneiro, M. A. (2007). Relationship between invertebrate fauna and bromeliad size. Brazilian Journal of Biology, 67(4), 611–617. https://doi.org/10.1590/S1519-6984200700040000Areiza, A., Corzo, G., Castillo, L. S., Matallana, C., & Correa Ayram, C. A. (2018). Áreas protegidas regionales y reservas privadas: Las protagonistas de las últimas décadas. Instituto Humboldt. https://reporte.humboldt.org.co/biodiversidad/2018/cap3/303/#seccion11Atehortua Trujillo, B., Hernández Atilo, E., & Agudelo Echavarría, D. M. (2022). Análisis de algunos rasgos funcionales de macroinvertebrados acuáticos y su tolerancia, en respuesta a variables ambientales en ríos andinos de Antioquia-Colombia (Tesis de maestría). Universidad de Antioquia, Medellín, Colombia.Barinas, M. (2008). Caracterización de las comunidades de macroinvertebrados acuáticos de la microcuenca El Carrizal, Parque Nacional La Tigra, Honduras (Tesis de Ingeniería en Desarrollo Socioeconómico y Ambiente). Escuela Agrícola Panamericana, Zamorano, Honduras.Beaumont, L. J., Esperon-Rodriguez, M., Nipperess, D. A., Wauchope-Drumm, M., & Baumgartner, J. B. (2019). Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biological Conservation, 237, 230–237.Benavides-Gordillo, S., Farjalla, V. F., González, A. L., & Romero, G. Q. (2019). Changes in rainfall level and litter stoichiometry affect aquatic community and ecosystem processes in bromeliad phytotelmata. Freshwater Biology, 64, 1357–1368. https://doi.org/10.1111/fwb.13310Benzing, D. H. (1990). Vascular epiphytes: General biology and related biota. Cambridge University Press.Bernabé, T. N., de Omena, P. M., Santos, V. P. D., de Siqueira, V. M., de Oliveira, V. M., & Romero, G. Q. (2018). Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Global Change Biology, 24, 3170–3186. https://doi.org/10.1111/gcb.14109Brouard, O., Cereghino, R., Corbara, B., Leroy, C., Pelozuelo, L., Dejean, A., et al. (2012). Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology, 57, 815–823.Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2009). Manual of Central American Diptera: Volume 1. NRC Research Press.Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2010). Manual of Central American Diptera: Volume 2. NRC Research Press.Brusca, R. C., & Brusca, G. J. (2005). Invertebrados (2ª ed.). McGraw-Hill.Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.Carvajal Ocampo, V. de los Á., Ospina Bautista, F., Estévez Varón, J. V., & Llano Arias, C. Á. (2022). Invertebrados asociados a bromelias: Una diversidad escondida. Editorial Universidad de Caldas.Casanoves, F., Di Rienzo, J. A., & Pla, L. (2008). User Manual FDiversity: Statistical software for the analysis of functional diversity (1ª ed.). Argentina. http://www.fdiversity.nucleodiversus.orgCBD. (2021). First draft of the Post-2020 Global Biodiversity Framework. Secretariat of the Convention on Biological Diversity, Montreal, Canada.Céréghino, R., Pillar, V. D., Srivastava, D. S., De Omena, P. M., MacDonald, A. A. M., Barberis, I. M., Corbara, B., Guzman, L. M., Leroy, C., Bautista, F. O., Romero, G. Q., Trzcinski, M. K., Kratina, P., Debastiani, V. J., Gonçalves, A. Z., Marino, N. A. C., Farjalla, V. F., Richardson, B. A., Richardson, M. J., & Montero, G. (2018). Constraints on the functional trait space of aquatic invertebrates in bromeliads. Functional Ecology, 32(10), 2435-2447. https://doi.org/10.1111/1365-2435.13141Chabrerie, O., Loinard, J., Perrin, S., Saguez, R., & Decocq, G. (2009). Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biological Invasions, 12(6), 1891-1907.Chec. (2019). Informe de sostenibilidad 2019 – Parte 3Chevenet, F., Dolédec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.xCornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology, 87(6), 1465-1471.Corpocaldas. (2010). Plan de manejo reserva forestal protectora de las cuencas hidrográficas de Río Blanco y Quebrada Olivares. Manizales, Colombia.Critical Ecosystem Partnership Fund (CEPF). (2002). Corredor Chocó-Manabí: Ecorregión (Hotspots) de Biodiversidad del Chocó-Darién-Ecuador Occidental. Washington, DC.Dawson, S. K., Carmona, C. P., González-Suárez, M., Jönsson, M., Chichorro, F., MallenCooper, M., Melero, Y., Moor, H., Simaika, J. P., & Duthie, A. B. (2021). The traits of “trait ecologists”: An analysis of the use of trait and functional trait terminology. Ecology and Evolution, 11, 16434–16445. https://doi.org/10.1002/ece3.8321DeFries, R., Karanth, K. K., & Pareeth, S. (2010). Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biological Conservation, 143, 2870–2880.Del-Claro, K., & Guillermo, R. (2019). Aquatic Insects Behavior and Ecology. Springer Nature Switzerland AG.Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2018a). Tank bromeliads sustain high secondary production in neotropical forests. Aquatic Sciences, 80, 1–12. https://doi.org/10.1007/s00027-018-0566-3Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2018b). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62(2), 229–242.Dézerald, O., Talaga, S., Leroy, C., et al. (2014). Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia, 723, 77–86. https://doi.org/10.1007/s10750-013-1464-2Díaz, S., Fargione, J., Chapin III, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4, e277.Dolédec, S., Phillips, N., Scarsbrook, M., Riley, R. H., & Townsend, C. R. (2006). Comparison of structural and functional approaches to determining land-use effects on grassland stream invertebrate communities. Journal of the North American Benthological Society, 25, 44–60.Domínguez, E., & Fernández, H. R. (2009). Macroinvertebrados bentónicos sudamericanos: Sistemática y biología. Fundación Miguel Lillo.Dray, S., & Legendre, P. (2008). Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. http://www.jstor.org/stable/27650916Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14-21.Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2016). Supplement 1: A tutorial to perform fourth-corner and RLQ analyses in R.Farjalla, V. F., González, A. L., Céréghino, R., Dézerald, O., Marino, N. A. C., Piccoli, G. C. O., Richardson, B. A., Richardson, M. J., Romero, G. Q., & Srivastava, D. S. (2016). Terrestrial support of aquatic food webs depends on light inputs: A geographically replicated test using tank bromeliads. Ecology, 97(8), 2147–2156. https://doi.org/10.1002/ecy.1432Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302- 4315.Gentry, A. H. (1986). Species richness and floristic composition of Chocó region plant communities. Caldasia, 15, 71–91. https://doi.org/10.15446/caldasiaGouda, E. J., Butcher, D., & Dijkgraaf, L. (actualización continua). Encyclopaedia of Bromeliads, Version 5. Utrecht University Botanic Gardens. http://bromeliad.nl/encyclopedia/ ISBN 9789039345092Greeney, H. F. (2001). The insects of plant-held waters: a review and bibliography. Journal of Tropical Ecology, 17, 241–260.Herrera, A., Ballesteros, H., Echeverry, J., & Rodríguez, C. (2018). Plan de manejo del Parque Nacional Natural Selva de Florencia. Parques Nacionales Naturales de Colombia.Hill, M., & Smith, J. (1976). Principal component analysis of taxonomic data with multistate discrete characters. Taxon, 25, 249–255.Holdridge, L. R. (1982). Ecología basada en zonas de vida. IICA.Ishwaran, N., Persic, A., & Tri, N. H. (2008). Concept and practice: the case of UNESCO biosphere reserves. International Journal of Environment and Sustainable Development, 7, 118–131.Kitching, R. L. (2000). Food webs and container habitats: The natural history and ecology of phytotelmata. Cambridge University PressKitching, R. L. (2004). The phytotelm environment: The container milieu. In R. L. Kitching (Ed.), Food webs and container habitats: The natural history and ecology of phytotelmata (pp. 57–90). Cambridge University Press.Kratina, P., Petermann, J. S., Marino, N. A. C., MacDonald, A. A. M., & Srivastava, D. S. (2017). Environmental control of the microfaunal community structure in tropical bromeliads. Ecology and Evolution, 7(5), 1627–1634.Ladino, G., Ospina-Bautista, F., Estévez Varón, J., Jerabkova, L., & Kratina, P. (2019). Ecosystem services provided by bromeliad plants: A systematic review. Ecology and Evolution, 9(12), 7360–7372. https://doi.org/10.1002/ece3.5296Laessle, A. M. (1961). A micro-limnological study of Jamaican bromeliads. Ecology, 42(3), 499–517.Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. https://doi.org/10.1890/08- 2244.1Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.xLawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S., Withey, J. C., Helmers, D. P., Martinuzzi, S., Pennington, D., & Radeloff, V. C. (2014). Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences, 111, 7492–7497.Leroy, C., Carrias, J.-F., Céréghino, R., & Corbara, B. (2016). The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology, 9(3), 241–255. https://doi.org/10.1093/jpe/rtv052Leroy, C., Corbara, B., Dejean, A., & Céréghino, R. (2009). Ants mediate foliar structure and nitrogen acquisition in a tank bromeliad. New Phytologist, 183, 1124–1133.Linares-Palomino, R., Oliveira-Filho, A. T., & Pennington, R. T. (2011). Neotropical seasonally dry forests: Diversity, endemism, and biogeography of woody plants. In Seasonally dry tropical forests (pp. 3–21). Springer. https://doi.org/10.5822/978-1- 61091-021-7_1MacArthur, R., & Wilson, E. (1967). The theory of island biogeography (p. 221). Princeton University Press.Marino, N. A. C., Guariento, R. D., Dib, V., Azevedo, F. D., & Farjalla, V. F. (2011). Habitat size determines algae biomass in tank-bromeliads. Hydrobiologia, 678(1), 191– 199.Marino, N. A. C., Srivastava, D. S., & Farjalla, V. F. (2013). Aquatic macroinvertebrate community composition in tank‐bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity, 6, 372–380. https://doi.org/10.1111/j.1752‐4598.2012.00224.xMcGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178-185. https://doi.org/10.1016/j.tree.2006.02.002Merritt, R. W., Cummins, K. W., & Berg, M. (Eds.). (2008). An introduction to the aquatic insects of North America. Kendall/Hunt Publishing CompanyMittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots: Distribution and protection of conservation priority areas (pp. 3–22). Springer. https://doi.org/10.1007/978-3-642-20992-5_1Monge, J., & Morales, C. (2013). Centenario de la publicación de “Las bromeliáceas epífitas consideradas como medio biológico” (1913) Clodomiro Picado Twight, pionero de la ecología de las bromeliáceas. Revista de Biología Tropical, 61(4), 1537-1542.Mosquera-Murillo, Z., Gómez, M. Á., & González, M. B. (2016). Diversidad de macroinvertebrados acuáticos asociados con Bromeliaceae en una zona de bosque pluvial tropical, Chocó, Colombia. Revista Biodiversidad Neotropical, 6(2), 147-153.Mouillot, D., Mason, W. H., Dumay, O., & Wilson, J. B. (2005). Functional regularity: A neglected aspect of functional diversity. Oecologia, 142, 353-359.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853.Ngai, J. T., Kirby, K. R., Gilbert, B., Starzomski, B. M., Pelletier, A. J. D., & Conner, J. C. R. (2008). The impact of land-use change on larval insect communities– Testing the role of habitat elements in conservation. Ecoscience, 15, 160–168.Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113, 10759–10768.Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional traits. In Encyclopedia of Life Sciences (pp. 1–8). Wiley. https://doi.org/10.1002/9780470015902.a0026282Ospina-Bautista, F., Estévez, V., Betancur, J., & Realpe, E. (2004). Invertebrados acuáticos asociados a Tillandsia turneri Baker (Bromeliaceae) en un bosque altoandino (Cundinamarca, Colombia). Acta Zoológica Mexicana, 20(1), 153-166.Ospina-Bautista, F., Estévez-Varón, J. V., Realpe, E., & Gast, F. (2008). Diversidad de invertebrados acuáticos asociados a Bromeliaceae en un bosque de montaña. Revista Colombiana de Entomología, 34(2), 224-229.Parques Nacionales Naturales de Colombia. (2025). Cifras de áreas protegidas en Colombia. Recuperado de https://runap.parquesnacionales.gov.co/cifrasPérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, Y., Bogarín, D., Boschman, L. M., Pennington, R.T., Antonelli, A., & Chomicki, G. (2022). The Andes through time: Evolution and distribution of Andean floras. Trends in Plant Science, 27, 364–378. https://doi.org/10.1016/j.tplants.2021.09.010Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758. https://doi.org/10.1111/j.1461- 0248.2006.00924.xPetermann, J. S., Farjalla, V. F., Jocqué, M., Kratina, P., MacDonald, A. A. M., Marino, N. A. C., … Srivastava, D. S. (2015). Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology, 96, 428–439. https://doi.org/10.1890/14-0304.1Ramos, G. J. P., & Moura, C. W. D. N. (2019). Algae and cyanobacteria in phytotelmata: Diversity, ecological aspects, and conservation. Biodiversity and Conservation, 28(7), 1667–1697.Richardson, B. A. (1999). The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, 31, 321–336.Richardson, B. A., Richardson, M. J., Scatena, F. N., & McDowell, W. H. (2000a). Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Tropical Ecology, 16, 167–188.Richardson, B. A., Rogers, C., & Richardson, M. J. (2000b). Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecological Entomology, 25, 348–356.Rivas, C. A., Guerrero-Casado, J., & Navarro-Cerillo, R. M. (2021). Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: Impact on conservation. Forest Ecosystems, 8, 46. https://doi.org/10.1186/s40663-021- 00329-5Rojas Lenis, Y. (2014). La historia de las áreas protegidas en Colombia, sus firmas de gobierno y las alternativas para la gobernanza. Sociedad y Economía, 27, 155- 175. Recuperado de https://www.redalyc.org/articulo.oa?id=99631890007Schmitz, O. J., et al. (2015). Functional traits and trait-mediated interactions: Connecting community-level interactions with ecosystem functioning. In S. Pawar, et al. (Eds.), Trait-based ecology – from structure to function. Advances in ecological research (pp. 319–343). Academic Press.Sim, L. L., Davis, J. A., Strehlow, K., McGuire, M., Trayler, K. M., Wild, S., et al. (2013). The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands. Freshwater Science, 32, 327–342.Srivastava, D. S. (2006). Habitat structure, trophic structure and ecosystem function: Interactive effects in a bromeliad–insect community. Oecologia, 149(3), 493–504.Srivastava, D. S., Trzcinski, M. K., Richardson, B. A., & Gilbert, B. (2008). Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. The American Naturalist, 172(6), 761–771.Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30, 768–783.Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M., & Preece, R. C. (2002). Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science, 297, 2044–2047.Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290–2301. https://doi.org/10.1890/07-1206.1Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.xViolle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111, 13690–13696. https://doi.org/10.1073/pnas.1415442111Zachos, F. E., & Habel, J. C. (2011). Biodiversity hotspots: Distribution and protection of conservation priority areas (p. 546). Springer. https://doi.org/10.1007/978-3-642- 20992-5Zotz, G., & Thomas, V. (1999). How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany, 83, 183–192.http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/219172025-02-04T08:01:26Z