Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia
Tablas, figuras, formatos
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/26134
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/26134
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Stock de Guarco
Sistema pórfido
Alteración hidrotermal
Inclusiones fluidas
Mineralización
Petrografía
Metalografía
Litogeoquímica
Microtermometría
Cinturón Metalogénico del Cauca Medio
Buriticá
Antioquia
Fases intrusivas
Geología
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_343a7e81ae7ce618de095e652ec8a681 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/26134 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| title |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| spellingShingle |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Stock de Guarco Sistema pórfido Alteración hidrotermal Inclusiones fluidas Mineralización Petrografía Metalografía Litogeoquímica Microtermometría Cinturón Metalogénico del Cauca Medio Buriticá Antioquia Fases intrusivas Geología |
| title_short |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| title_full |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| title_fullStr |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| title_full_unstemmed |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| title_sort |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia |
| dc.contributor.none.fl_str_mv |
Quiceno Colorado, July Astrid Hernández-González, Juan S. Alvarán, Mauricio |
| dc.subject.none.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Stock de Guarco Sistema pórfido Alteración hidrotermal Inclusiones fluidas Mineralización Petrografía Metalografía Litogeoquímica Microtermometría Cinturón Metalogénico del Cauca Medio Buriticá Antioquia Fases intrusivas Geología |
| topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Stock de Guarco Sistema pórfido Alteración hidrotermal Inclusiones fluidas Mineralización Petrografía Metalografía Litogeoquímica Microtermometría Cinturón Metalogénico del Cauca Medio Buriticá Antioquia Fases intrusivas Geología |
| description |
Tablas, figuras, formatos |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-10T22:28:58Z 2025-11-10T22:28:58Z 2025-11-10 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26134 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26134 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Adobe Inc. (2024). Adobe Illustrator (28.5). Álvarez, A. (1971). Informe preliminar sobre geoquímica de la Cordillera Occidental. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). Álvarez, E., & González, H. (1978). Geología y geoquímica del cuadrángulo I-7, Urrao /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). Arancibia, O. N., & Clark, A. H. (1996). Early magnetite-amphibole-plagioclase alterationmineralization in the Island copper porphyry copper-gold-molybdenum deposit, British Columbia. Economic Geology, 91(2), 402–438. https://doi.org/10.2113/GSECONGEO.91.2.402 Bakker, R. J. (1997). Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23(1), 1–18. https://doi.org/10.1016/S0098-3004(96)00073-8 Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1 Bakker, R. J. (2018). AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Computers & Geosciences, 115, 122–133. https://doi.org/10.1016/J.CAGEO.2018.03.003 Barbarin, B., & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1–2), 145–153. https://doi.org/10.1017/S0263593300007835 Best, M. G. (2003). Igneous and metamorphic petrology (Segunda). Blackwell Publishers. https://www.wiley.com/en-us/Igneous+and+Metamorphic+Petrology%2C+2nd+Edition-p- 9781405105880. Bodnar, R. (2017). Fluid Inclusions. 1–5. https://doi.org/10.1007/978-3-319-39193-9_225-1. Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. En Treatise on Geochemistry: Second Edition (Vol. 13, pp. 119–142). Elsevier Inc. https://doi.org/10.1016/B978-0-08-095975-7.01105-0 Bodnar, R. J., Reynolds, T. J., & Kuehn, C. A. (1985). Fluid-Inclusion Systematics in Epithermal Systems. Geology and Geochemistry of Epithermal Systems, 73–97. https://doi.org/10.5382/REV.02.05 Browne, P. R. L. (1978). Hydrothermal Alteration in Active Geothermal Fields. Annual Review of Earth and Planetary Sciences, 6(Volume 6, 1978), 229–250. https://doi.org/10.1146/ANNUREV.EA.06.050178.001305/CITE/REFWORKS Buchs, D. M., Kerr, A. C., Brims, J. C., Pablo Zapata-Villada, J., Correa-Restrepo, T., & Rodríguez, G. (2018). Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth and Planetary Science Letters, 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020 Camprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. En Boletín de la Sociedad Geológica Mexicana (1a ed., Vol. 62, Número 1). Castro-Dorado, A. (2015). Petrografía de rocas ígneas y metamórficas. Paraninfo Castroviejo, R. (2023). A Practical Guide to Ore Microscopy—Volume 2. En A Practical Guide to Ore Microscopy—Volume 2 (Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-031-18954-8 Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. AAPG Memoir, 79, 149–152. https://doi.org/10.1306/M79877C37 Cetina, L. M., Cuéllar-Cárdenas, M. A., Osorio-Naranjo, J. A., & Quiroz-Prada, C. A. (2022). Evolución de la deformación Cretácico-Paleoceno en el borde occidental de Colombia (sector norte). Boletín de Geología, 44(2), 15–50. https://doi.org/10.18273/REVBOL.V44N2-2022001 Cetina, L. M., Tassinari, C. C., Rodríguez, G., & Correa-Restrepo, T. (2019). Origin of premesozoic xenocrystic zircons in cretaceous sub-volcanic rocks of the northern Andes (Colombia): paleogeographic implications for the region. https://doi.org/10.1016/j.jsames.2019.102363 Chen, H., & Wu, C. (2020). Metallogenesis and major challenges of porphyry copper systems above subduction zones. Science China Earth Sciences 2020 63:7, 63(7), 899–918. https://doi.org/10.1007/S11430-019-9595-8 Chiaradia, M., Ulianov, A., Kouzmanov, K., & Beate, B. (2012). Why large porphyry Cu deposits like high Sr/Y magmas? Scientific Reports, 2(1), 1–7. https://doi.org/10.1038/SREP00685;SUBJMETA Cline, J. S., & Bodnar, R. J. (1991). Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research: Solid Earth, 96(B5), 8113–8126. https://doi.org/10.1029/91JB00053 Condie, K. C. (2021). Earth as an Evolving Planetary System (4a ed.). Academic Press Cooke, D. R., Hollings, P., Wilkinson, J. J., & Tosdal, R. M. (2014). Geochemistry of Porphyry Deposits. Treatise on Geochemistry: Second Edition, 13, 357–381. https://doi.org/10.1016/B978-0-08-095975-7.01116-5 Corbett, G. J. (2017). Epithermal Au-Ag and porphyry Cu-Au exploration – short course manual. www.corbettgeology.com Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists. https://doi.org/10.5382/SP.06 Córdoba, L. (2023). Caracterización petrográfica y litogeoquímica de las Formaciones Barroso, San José de Urama y Complejo Intrusivo Buriticá entre los municipios de Buriticá y Giraldo, departamento de Antioquia. Universidad de Caldas Correa, T., Ortiz Párraga, F. H., Obando, M. G., Rincón, Á. V., Zapata Villada, J. P., & Rodríguez García, G. (2020). Catálogo de Unidades Litoestratigráficas de Colombia: Andesita de Guarco. Servicio Geológico Colombiano (SGC). Correa, Tomás., Obando, M. G., Zapata, J. P., Rincón, Á. V., Ortiz, F. H., Rodríguez, G., & Cetina, L. María. (2018). Geología del borde Occidental de la plancha 130 Santa Fe de Antioquia escala 1:50.000: memoria explicativa. Servicio Geológico Colombiano (SGC). Deditius, A. P., Reich, M., Kesler, S. E., Utsunomiya, S., Chryssoulis, S. L., Walshe, J., & Ewing, R. C. (2014). The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670. https://doi.org/10.1016/J.GCA.2014.05.045 Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662A0;KWRD Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic Geology, 90(6), 1841–1856. https://doi.org/10.2113/GSECONGEO.90.6.1841 Dowling, K., & Morrison, G. (1989). Application of Quartz Textures to the Classification of Gold Deposits Using North Queensland Examples. The Geology of Gold Deposits, 342– 355. https://doi.org/10.5382/MONO.06.26 Driesner, T. (2007). The system H2O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4902–4919. https://doi.org/10.1016/J.GCA.2007.05.026 Driesner, T., & Heinrich, C. A. (2007). The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4880–4901. https://doi.org/10.1016/J.GCA.2006.01.033 Drummond, S. E., & Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1), 126–147. https://doi.org/10.2113/GSECONGEO.80.1.126 Duan, Z., MØller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-X Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20. https://doi.org/10.1016/J.GEXPLO.2011.09.009 Geoestudios. (2005). Complementación geológica, geoquímica y geofísica de la parte occidental de las planchas 130 Santa Fé de Antioquia y 146 Medellín occidental. Escala: 1:100.000. Instituto Colombiano de Geología y Minería (INGEOMINAS). Gillespie, M., & Styles, M. (1999). BGS Rock Classification Scheme, Volume 1. Classification of igneous rocks. British Geological Survey Göbel, V. W., & Stibane, F. R. (1980). Edades K/Ar en hornblendas de plutones tonalíticos Cordillera Occidental, Colombia, S.A. Boletín de Ciencias de la Tierra, 5–6, 83–84. https://revistas.unal.edu.co/index.php/rbct/article/view/94437 Goldstein, R. (2003). Petrographic analysis of fluid inclusions. En I. Samson, A. Anderson, & D. Marshall (Eds.), Fluid Inclusions: Analysis and Interpretation (Short Course 32, Vol. 32, pp. 9–53). Mineralogical Association of Canada Goldstein, R. H., & Reynolds, T. J. (1994). Systematics of Fluid Inclusions in Diagenetic Minerals. En Systematics of Fluid Inclusions in Diagenetic Minerals (Vol. 31). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/SCN.94.31 González, H. (1996). Mapa geológico del departamento de Antioquia - geología, recursos minerales y amenazas potenciales escala 1:400.000: memoria explicativa /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). González, H., & Londoño, A. (2002). Catálogo de las unidades litoestratigráficas de Colombia: cretácico superior Tonalita de Buriticá (Stock de Buriticá) (K2tb) Cordillera Occidental, departamento de Antioquia. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). González, H., & Londoño, A. C. (1998). Edades K/Ar en Algunos Cuerpos Plutónicos del Graben Cauca-Patía y Norte de la Cordillera Occidental. Geología Colombiana, 23(0), 117– 131. https://revistas.unal.edu.co/index.php/geocol/article/view/31476 González, H., Restrepo, J. J., Toussaint, J. F., & Linares, E. (1980). Edad radiométrica K/Ar del batolito de Sabanalarga. Boletín de Ciencias de la Tierra, 5–6, 23–27. https://revistas.unal.edu.co/index.php/rbct/article/view/94375 González, P. (2015). Texturas de los cuerpos ígneos. Geología de los cuerpos ígneos. Edición Especial 70° Aniversario de la Asociación Geológica Argentina, Serie B, Didáctica y Complementaria N° 31, 167–195. http://rid.unrn.edu.ar/handle/20.500.12049/5620 Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27. https://doi.org/10.1016/S0169-1368(97)00012-7 Groves, D. I., & Santosh, M. (2023). Mineral Systems, Earth Evolution, and Global Metallogeny. Mineral Systems, Earth Evolution, and Global Metallogeny, 1–251. https://doi.org/10.1016/C2022-0-02818-X Gustafson, L. B., & Hunt, J. P. (1975). The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5), 857–912. https://doi.org/10.2113/GSECONGEO.70.5.857 Gustafson, L. B., & Quiroga G., J. (1995). Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Economic Geology, 90(1), 2–16. https://doi.org/10.2113/GSECONGEO.90.1.2 Hall, R. B., ALVAREZ, A. J., & RICO, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Subzona II-A). [s.n.]. Halley, S. (2020). Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722 Halley, S. (2021). Porphyry Copper Workshop; Part 2 Alteration Geochemistry: Workshop presented to CODES masters course, 2021. 28. https://www.scotthalley.com.au/tutorials Heinrich, C. A. (2005). The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39(8), 864–889. https://doi.org/10.1007/S00126-004-0461-9/FIGURES/6 Heinrich, C. A. (2007). Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65(1), 363–387. https://doi.org/10.2138/RMG.2007.65.11 Heinrich, C. A., & Candela, P. A. (2014). Fluids and Ore Formation in the Earth’s Crust. Treatise on Geochemistry: Second Edition, 13, 1–28. https://doi.org/10.1016/B978-0-08-095975- 7.01101-3 Henley, R. W., King, P. L., Wykes, J. L., Renggli, C. J., Brink, F. J., Clark, D. A., & Troitzsch, U. (2015). Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nature Geoscience, 8(3), 210–215. https://doi.org/10.1038/NGEO2367;TECHMETA Hermosilla-Bravo, J. M. (2015). Caracterización geológica y cronología de los eventos de intrusión / brechización y alteración / mineralización del yacimiento Río Blanco, Región de Valparaíso, Chile. https://repositorio.ucn.cl/handle/123456789/8857 Justyna, D. S., & Bogusław, B. (2019). Magma mingling textures in granitic rocks of the eastern part of the strzegom-sobótka massif (Polish Sudetes). Acta Geologica Polonica, 69(1), 143– 160. https://doi.org/10.24425/agp.2019.126437 Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., & Saunders, A. D. (1997). The Caribbean- Colombian Cretaceous Igneous Province: The Internal Anatomy of an Oceanic Plateau. Geophysical Monograph Series, 100, 123–144. https://doi.org/10.1029/GM100P0123 Klemm, L. M., Pettke, T., & Heinrich, C. A. (2008). Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5), 533–552. https://doi.org/10.1007/S00126-008-0181-7/FIGURES/8 Large, R. R. (2025). Simple graphical tools to understand the relationship between porphyry composition, hydrothermal alteration, mineralogy and copper-gold grades in porphyry copper deposits. Ore Geology Reviews, 182, 106581. https://doi.org/10.1016/J.OREGEOREV.2025.106581 Large, R. R., Gemmell, J. B., & Paulick, H. (2001). The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology, 96(5), 957–971. https://doi.org/10.2113/GSECONGEO.96.5.957 Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581 Leal Mejía, H. (2011). Phanerozoic gold metallogeny in the colombian andes: a tectonomagmatic approach [Universitat de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=253720&info=resumen&idioma=SPA Leal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. Frontiers in Earth Sciences, 253–410. https://doi.org/10.1007/978-3-319-76132- 9_5/FIGURES/37 León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., & Pardo-Trujillo, A. (2018). Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca- South America Interactions. Tectonics, 37(1), 119–139. https://doi.org/10.1002/2017TC004785 Lesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, Geochemistry, and Fluid Characterization of the Late Miocene Buriticá Gold Deposit, Antioquia Department, Colombia. Economic Geology, 108(5), 1067–1097. https://doi.org/10.2113/ECONGEO.108.5.1067 Liebscher, A., & Heinrich, C. A. (2007). Fluid–Fluid Interactions in the Earth’s Lithosphere. Reviews in Mineralogy and Geochemistry, 65(1), 1–13. https://doi.org/10.2138/RMG.2007.65.1 Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1), 5–16. https://doi.org/10.1080/08120099.2013.865676 Ma, W., Deng, T., Xu, D., Chi, G., Li, Z., Zhou, Y., Dong, G., Wang, Z., Zou, S., Qian, Q., & Guo, S. (2021). Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization. Ore Geology Reviews, 139, 104479. https://doi.org/10.1016/J.OREGEOREV.2021.104479 Marín-Kasprzyk, A. (2023). Caracterización petrográfica y litogeoquímica del Stock de Buriticá (Tonalita de Buriticá) e intrusivos asociados. Universidad de Caldas Maya, M., & González, H. (1995). Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3), 44–57. https://doi.org/10.32685/0120-1425/BOLGEOL35.2- 3.1995.316 Mejía, M. (1984). Geología y geoquímica de las planchas 130, Santa Fé de Antioquia y 146, Medellín occidental /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). Mejía, M., Álvarez, E., & Grosse, E. (1983). Plancha 130—Santa Fe de Antioquia, Escala 1: 100.000. En Ingeominas. Ingeominas Mejia, M., & Salazar, G. (1989). Geología de la plancha 114 Dabeiba y parte W de la 115 Toledo /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS). Moreno-Sanchez, M., & Pardo-Trujillo, A. (2003). Stratigraphical and Sedimentological Constraints on Western Colombia: Implications on the Evolution of the Caribbean Plate. The Circum-Gulf of Mexico and the Caribbean<subtitle>Hydrocarbon Habitats, Basin Formation and Plate Tectonics. https://doi.org/10.1306/M79877C40 Nance, R. D., Murphy, J. B., & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25(1), 4–29. https://doi.org/10.1016/J.GR.2012.12.026 Naranjo, A., Horner, J., Jahoda, R., Diamond, L. W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejia, C., & Weil, J. (2018). La Colosa Au Porphyry Deposit, Colombia: Mineralization Styles, Structural Controls, and Age Constraints. Economic Geology, 113(3), 553–578. https://doi.org/10.5382/ECONGEO.2018.4562 Nash, J. T., & Theodore, T. G. (1971). Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada. Economic Geology, 66(3), 385–399. https://doi.org/10.2113/GSECONGEO.66.3.385 Nédélec, A., Bouchez, J.-L., & Bowden, P. (2015). Granites: Petrology, Structure, Geological Setting, and Metallogeny. https://doi.org/10.1093/ACPROF:OSO/9780198705611.001.0001 Nivia, A. (1996). The Bolivar mafic-ultramafic complex, SW Colombia: the base of an obducted oceanic plateau. Journal of South American Earth Sciences, 9(1–2), 59–68. https://doi.org/10.1016/0895-9811(96)00027-2 Nivia, Á., & Gómez, J. (2005). El Gabro Santa Fe de Antioquia y la Cuarzodiorita Sabanalarga, una propuesta de nomenclatura litoestratigráfica para dos cuerpos plutónicos diferentes agrupados previamente como Batolito de Sabanalarga en el departamento de Antioquia, Colombia. X Congreso Colombiano de Geología. Norman, D. I., & Musgrave, J. A. (1994). N2-Ar-He compositions in fluid inclusions: Indicators of fluid source. Geochimica et Cosmochimica Acta, 58(3), 1119–1131. https://doi.org/10.1016/0016-7037(94)90576-2 Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous-Paleocene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. https://doi.org/10.1016/j.sedgeo.2020.105627 Pirajno, F. (1992). Hydrothermal Alteration. Hydrothermal Mineral Deposits, 101–155. https://doi.org/10.1007/978-3-642-75671-9_5 Pirajno, F. (2009). Hydrothermal Systems and the Biosphere. Hydrothermal Processes and Mineral Systems, 1–1250. https://doi.org/10.1007/978-1-4020-8613-7_10 Pirajno, F. (2016). A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins. Gondwana Research, 33, 44– 62. https://doi.org/10.1016/J.GR.2015.08.013 Pracejus, B. (2015). The Ore Minerals Under the Microscope (2a ed., Vol. 3). Elsevier. https://doi.org/10.1016/C2012-0-01360-9 Ramdohr, P. (1969). The Ore Minerals and Their Intergrowths (Pergamon Press, Ed.; 3a ed.). Randive, K. R., Hari, K. R., Dora, M. L., Malpe, D. B., & Bhondwe, A. A. (2014). Study of Fluid Inclusions: Methods, Techniques and Applications. Gondwana Geol Mag., 29, 19–28. https://www.researchgate.net/publication/275337661_Study_of_Fluid_Inclusions_Methods _Techniques_and_Applications REFLEX. (2025). ioGASTM - Geochemistry software (8.2). IMDEX limited. https://www.imdex.com/software/iogas Reich, M., Kesler, S. E., Utsunomiya, S., Palenik, C. S., Chryssoulis, S. L., & Ewing, R. C. (2005). Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11), 2781–2796. https://doi.org/10.1016/J.GCA.2005.01.011 Restrepo, J. J., & Toussaint, J. F. (1988). Terranes and Continental Accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3), 189–193. https://doi.org/10.18814/EPIIUGS/1988/V11I3/006 Richards, J. P. (2011). HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu ± Mo ± Au DEPOSITS: JUST ADD WATER. Economic Geology, 106(7), 1075–1081. https://doi.org/10.2113/ECONGEO.106.7.1075 Richards, J. P., & Kerrich, R. (2007). Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4), 537–576. https://doi.org/10.2113/GSECONGEO.102.4.537 Richards, J. P., Spell, T., Rameh, E., Razique, A., & Fletcher, T. (2012). High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2), 295–332. https://doi.org/10.2113/ECONGEO.107.2.295 Ridley, J. (2013). Ore Deposit Geology. En Ore Deposit Geology. Cambridge University Press. https://doi.org/10.1017/CBO9781139135528 Robb, L. (2005). Introduction to ore-forming processes. En Mineralium Deposita 2006 41:7 (Vol. 1, Número 7). Blackwell Publishing. https://www.wiley.com/enus/ Introduction+to+Ore-Forming+Processes-p-9780632063789 Rodríguez-García, G., & Arango, M. I. (2013). Formación Barroso: arco volcanico toleitico y diabasas de San José de Urama: un prisma acrecionario T-MORB en el segmento norte de la Cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 0(33), 17–38. https://revistas.unal.edu.co/index.php/rbct/article/view/38687 Rodríguez-García, G., Arango, M. I., & Bermúdez, J. G. (2012). Batolito de Sabanalarga, Plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín de Ciencias de la Tierra, 0(32), 81–98. https://revistas.unal.edu.co/index.php/rbct/article/view/35879 Rodríguez-García, G., Correa-Restrepo, T., Ortiz-Párraga, F. H., Tobón-Mazo, M. J., Obando- Quintero, M. G., & Peláez-Gaviria, J. R. (2023). Nuevas edades, correlación y ciclo magmático de plutones de arco insular en el norte de la Cordillera Occidental de Colombia. Boletín de Geología, 45(2), 15–33. https://doi.org/10.18273/REVBOL.V45N2-2023001 Rodríguez-García, G., & Zapata, G. (2012). Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente colombiano. Boletín de Ciencias de la Tierra, 0(31), 5–22. https://revistas.unal.edu.co/index.php/rbct/article/view/31250 Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 644. https://doi.org/10.1515/9781501508271/PDF Roedder, E., & Bodnar, R. (1997). Fluid inclusion studies of hydrothermal ore deposits. Geochemistry of hydrothermal ore deposits, 8, 657–697. Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual review of earth and planetary sciences: volume 8, 8(Volume 8, 1980), 263– 301. https://doi.org/10.1146/ANNUREV.EA.08.050180.001403/CITE/REFWORKS Schiffries, C. M. (1990). Liquid-absent aqueous fluid inclusions and phase equilibria in the system CaCl2NaClH2O. Geochimica et Cosmochimica Acta, 54(3), 611–619. https://doi.org/10.1016/0016-7037(90)90357-Q Sepúlveda, O. J., Leal-Mejía, H., Salgado, G. D., Celada, A. C. M., Murillo, B. H., Gómez, C. M., Prieto, G. D., Hernández, G. J. S., Ramírez, C. C. A., Narváez, G. D. F., & Anaya, A. C. (2022). Mapa metalogénico de Colombia –versión 2022 Seward, T. M., Williams-Jones, A. E., & Migdisov, A. A. (2014). The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. Treatise on Geochemistry: Second Edition, 13, 29–57. https://doi.org/10.1016/B978-0-08-095975-7.01102-5 Sillitoe, R. H. (2000). Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. Gold in 2000, 315–345. https://doi.org/10.5382/REV.13.09 Sillitoe, R. H. (2008). Special Paper: Major Gold Deposits and Belts of the North and South American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic Considerations. Economic Geology, 103(4), 663–687. https://doi.org/10.2113/GSECONGEO.103.4.663 Sillitoe, R. H. (2010). Porphyry Copper Systems. Economic Geology, 105(1), 3–41. https://doi.org/10.2113/GSECONGEO.105.1.3 Spikings, R., Cochrane, R., Villagomez, D., Van Der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2014). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). https://doi.org/10.1016/j.gr.2014.06.004 Stephens, W. E. (1997). Igneous Petrology, 2nd edn, by Anthony Hall. Addison Wesley, Longman, 1996. Journal of Petrology, 38(1), 169–169. https://doi.org/10.1093/PETROJ/38.1.169 Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. Geologische Rundschau, 63(2), 773–786. https://doi.org/10.1007/BF01820841/METRICS Sun, W., Huang, R. fang, Li, H., Hu, Y. bin, Zhang, C. chan, Sun, S. jun, Zhang, L. peng, Ding, X., Li, C. ying, Zartman, R. E., & Ling, M. xing. (2015). Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(P1), 97–131. https://doi.org/10.1016/J.OREGEOREV.2014.09.004 Tapias, J. G., Ramírez, N. E. M., Meléndez, M. F. A., Gutiérrez, F. A. A., Montoya, C. A. M., & Diederix, H. (2017). Geological Map of Colombia 2015. Episodes Journal of International Geoscience, 40(3), 201–212. https://doi.org/10.18814/EPIIUGS/2017/V40I3/017023 Thompson, J. F. Hugh., Thompson, A. J. B., & Allen, R. L. (1996). Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Mineral Deposits Division. Touret, J. L. R. (1987). Fluid Inclusions and Pressure-Temperature Estimates in Deep-Seated Rocks. Chemical Transport in Metasomatic Processes, 91–121. https://doi.org/10.1007/978- 94-009-4013-0_4 Toussaint, J. F., & Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Andes, 61–100. https://doi.org/10.1007/978-3-322-85472-8_2 Toussaint, J. F., & Restrepo, J. J. (2020). Tectonostratigraphic terranes in Colombia: An up-date. Second part: Oceanic terranes. Mesozoic. Servicio Geológico Colombiano, 2, 237–260. https://doi.org/10.32685/pub.esp.36.2019.07 Trujillo, M. A. (2023). Structural architecture of Buriticá gold deposit, Colombia-insights from hydrothermal alteration geochemistry and implications for regional exploration. Universidad de Caldas. Urai, J. L., Means, W. D., & Lister, G. S. (2011). Dynamic Recrystallization of Minerals. 161– 199. https://doi.org/10.1029/GM036P0161 Vallejo, C., Spikings, R. A., Luzieux, L., Winkler, W., Chew, D., & Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4), 264–269. https://doi.org/10.1111/J.1365-3121.2006.00688.X Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas.XXIII Curso Latinoamericano de Metalogénia, Mendoza, Argentina Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. https://doi.org/10.1016/j.lithos.2011.05.003 Vinasco, C. (2019). The Romeral Shear Zone. Frontiers in Earth Sciences, 833–876. https://doi.org/10.1007/978-3-319-76132-9_12 Weber, M., Gómez Tapias, J., Duarte, E., Cardona, A., & Vinasco, C. J. (2011). Geochemistry of the Santa Fe Batholith in NW Colombia–Remnant of an accreted Cretaceous arc. XIV Congreso Latinoamericano de Geología y XIII Congreso Colombiano de Geología Weber, M., Gomez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. https://doi.org/10.1016/j.jsames.2015.04.002 Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347–371. https://doi.org/https://doi.org/10.1111/gfl.12080 Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/AM.2010.3371 Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5 Williams-Jones, A. E., & Vasyukova, O. V. (2018). The Economic Geology of Scandium, the Runt of the Rare Earth Element Litter. Economic Geology, 113(4), 973–988. https://doi.org/10.5382/ECONGEO.2018.4579 Winter, J. D. (2001). An Introduction to Igneous and Metamorphic Petrology. Prentice Hall Winter, J. D. (2014). Principles of igneous and metamorphic petrology (2a ed.). Pearson Education. Zapata, G., & Rodríguez, G. (2011). Basalto de El Botón, arco volcánico mioceno de afinidad shoshonítica al norte de la cordillera occidental de Colombia. Boletín de Ciencias de la Tierra, 0(30), 77–92. https://revistas.unal.edu.co/index.php/rbct/article/view/29297 Zapata-García, G., & Rodríguez-García, G. (2020). New Contributions to Knowledge about the Chocó–Panamá Arc in Colombia, Including a New Segment South of Colombia. Paleogene-Neogene. Servicio Geológico Colombiano, 3, 417–450. https://doi.org/10.32685/pub.esp.37.2019.14 Zapata-Villada, J. P., Giraldo, W., Rodríguez, G., Geraldes, M. C., & Obando, M. (2021). Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia - Geochemistry and U-Pb geochronology of the Sabanalarga quartz-diorite and Santa Fe gabbro, Colombia on JSTOR. Boletín de la Sociedad Geológica Mexicana, Vol.73, No 1, 1–38. https://www.jstor.org/stable/27221741 Zarasvandi, A., Rezaei, M., Raith, J. G., Asadi, S., & Lentz, D. (2019). Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews, 105, 183–200. https://doi.org/10.1016/J.OREGEOREV.2018.12.027 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
253 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Geología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Geología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532581673500672 |
| spelling |
Caracterización petrográfica, metalográfica, litogeoquímica y microtermométrica del Stock de Guarco, municipio de Buriticá, Antioquia, Colombia550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología1. Ciencias NaturalesStock de GuarcoSistema pórfidoAlteración hidrotermalInclusiones fluidasMineralizaciónPetrografíaMetalografíaLitogeoquímicaMicrotermometríaCinturón Metalogénico del Cauca MedioBuriticáAntioquiaFases intrusivasGeologíaTablas, figuras, formatosEl Stock de Guarco se localiza en la sección nororiental de la Cordillera Occidental de Colombia, al occidente del municipio de Buriticá (Antioquia). Se encuentra intruyendo a la Formación Barroso y está emplazado entre las fallas Mistrató-Guasabara y Tonusco, al occidente del sistema de fallas Cauca-Romeral. El análisis de núcleos de perforación, complementado con análisis petrográficos y metalográficos, permitió reconocer cuatro fases intrusivas acompañadas de distintos eventos de brechamiento: 1) fase temprana de microcuarzodiorita de anfibol con piroxeno, con variaciones a microdiorita, 2) fase intermineral 1 de gabro, 3) fase intermineral 2 de microtonalita de anfíbol, con variaciones a microgranodiorita, y 4) fase tardía de cuarzodiorita de clinopiroxeno. La mineralización del Stock de Guarco se presenta en forma de vetillas, stockwork, brechas hidrotermales, agregados y diseminaciones, definiendo una secuencia paragenética que incluye cuatro etapas de mineralización vinculadas a las fases intrusivas. La etapa temprana se caracterizó por vetillas típicas de alta temperatura (tipos A1, EB, EB-A, M, A2), asociadas con alteración potásica rica en biotita. Las etapas interminerales mostraron vetillas de temperaturas altas a intermedias, y evidencian la sobreimposición de alteración propilítica en el sistema. Finalmente, la etapa tardía correspondió a un evento de alteración sericítica y clorita-sericita que afectó y sobreimprimió las anteriores etapas, asociado con vetillas típicas de temperatura relativamente baja (tipos B, D, E1, E2). El análisis microtermométrico de inclusiones fluidas, complementado con espectroscopía Raman, sugiere la evolución de un fluido de composición H₂O-NaCl-CaCl₂ ± N₂, con una amplia variación en salinidad (>22.17-67.01 wt. % NaCleq) y temperaturas de homogenización (>243.4- 550 °C) durante la etapa temprana de mineralización, atribuida a procesos de exsolución, inmiscibilidad, ebullición, enfriamiento, mezcla de fluidos. Posteriormente, se registró un evento de mineralización tardío asociado a un fluido de menor temperatura (126.9-183.2 °C) y salinidad (4.87-31.18 wt. % NaCleq), relacionado con la mezcla con aguas meteóricas. Con base en la mineralogía, se interpretó que los fluidos tempranos provinieron de magmas oxidados e hidratados, donde el transporte metálico estuvo dominado por complejos clorurados, mientras que, en la etapa tardía, bajo condiciones más reducidas, fue controlado por complejos sulfurados. En conjunto, el estudio del Stock de Guarco permitió proponer un modelo genético que lo ubica dentro de los sistemas pórfido, revelando una evolución magmática e hidrotermal comparable con la observada en depósitos del cinturón metalogénico del Cauca Medio (p. ej., Andesita de Buriticá, Pórfido La Colosa). Este trabajo proporciona bases para futuras investigaciones, y elementos de interpretación sobre la metalogenia regional.The Guarco Stock is located in the northeastern section of the Western Cordillera of Colombia, west of the municipality of Buriticá (Antioquia). It intrudes the Barroso Formation and is emplaced between the Mistrató–Guasabara and Tonusco faults, west of the Cauca–Romeral fault system. Analysis of drill cores, complemented by petrographic and metallographic studies, allowed the identification of four intrusive phases accompanied by different brecciation events: (1) an early amphibole–pyroxene microquartz diorite phase, grading to microdiorite; (2) an intermineral phase 1 of gabbro; (3) an intermineral phase 2 of amphibole microtonalite, grading to microgranodiorite; and (4) a late clinopyroxene quartz diorite phase. Mineralization in the Guarco Stock occurs as veinlets, stockwork, hydrothermal breccias, aggregates, and disseminations, defining a paragenetic sequence that includes four mineralization stages related to the intrusive phases. The early stage is characterized by typical high-temperature veinlets (types A1, EB, EB-A, M, A2) associated with biotite-rich potassic alteration. The intermineral stages display veinlets of high to intermediate temperatures and show evidence of superimposed propylitic alteration in the system. Finally, the late stage corresponds to a sericitic and chlorite–sericite alteration event that affected and overprinted the previous stages, associated with relatively low-temperature veinlets (types B, D, E1, E2). Microthermometric analysis of fluid inclusions, complemented by Raman spectroscopy, suggests the evolution of an H₂O–NaCl–CaCl₂ ± N₂ fluid, with a wide range of salinities (>22.17– 67.01 wt.% NaCl eq.) and homogenization temperatures (>243.4–550 °C) during the early mineralization stage. These variations are attributed to processes of exsolution, immiscibility, boiling, cooling, and fluid mixing. Subsequently, a late mineralization event was recorded, associated with a lower-temperature (126.9–183.2 °C) and lower-salinity (4.87–31.18 wt.% NaCl eq.) fluid, related to mixing with meteoric waters. Based on the mineralogy, early fluids are interpreted to have derived from oxidized and hydrated magmas, where metal transport was dominated by chloride complexes, whereas in the late stage, under more reduced conditions, transport was controlled by sulfide complexes. Overall, the study of the Guarco Stock supports a genetic model that classifies it within porphyry-type systems, revealing magmatic and hydrothermal evolution comparable to that observed in deposits of the Middle Cauca metallogenic belt (e.g., Buriticá Andesite, La Colosa Porphyry). This work provides a foundation for future research and contributes to the understanding of the regional metallogeny. Keywords: Guarco Stock, porphyry system, hydrothermal alteration, fluid inclusions, mineralization, intrusive phases, petrography, metallography, lithogeochemistry, microthermometry, Cauca Middle Metallogenic Belt, Buriticá, Antioquia.Introducción -- Objetivos -- Objetivo general -- Objetivos específicos -- Marco Geológico -- Marco Teórico -- Depósitos Magmáticos Hidrotermales -- Orógenos por Subducción -- Sistemas de Pórfido, Epitermales y Skarn -- Mecanismos de Emplazamiento -- Diapiros -- Intrusiones Laminares (Diques) -- Alteraciones Hidrotermales -- Controles en la Mineralización y Alteración Hidrotermal -- Estilos de Alteración -- Tipos de Alteración Hidrotermal -- Litogeoquímica -- Inclusiones Fluidas -- Clasificación de Inclusiones Fluidas -- Métodos para el Estudio de Inclusiones Fluidas -- Información proporcionada a partir de las inclusiones fluidas -- Metodología -- Fase Preliminar -- Fase de Campo -- Análisis Petrográfico y Metalográfico -- Caracterización de Vetillas y Texturas del Cuarzo -- Litogeoquímica de la Alteración Hidrotermal -- Análisis de Inclusiones Fluidas -- Petrografía de Inclusiones Fluidas -- Espectroscopía Raman de Inclusiones Fluidas -- Microtermometría de Inclusiones Fluidas -- Resultados -- Descripción Litológica mediante Fotografías de Núcleos de Perforación -- Descripción Macroscópica de Núcleos de Perforación -- Basalto -- Andesita -- Lodolita -- Microdiorita 1 (temprana) -- Microdiorita 2 (intermineral 1) -- Microdiorita 3 (intermineral 2) -- Microdiorita 4 (tardía) -- Brecha intrusiva -- Brecha hidrotermal -- Análisis Petrográfico -- Stock de Guarco etapa temprana -- Stock de Guarco etapa intermineral 1 -- Stock de Guarco etapa intermineral 2 -- Stock de Guarco etapa tardía -- Veta -- Análisis Metalográfico -- Clasificación descriptiva y genética -- Alteración Hidrotermal -- Petrografía -- Litogeoquímica de la alteración hidrotermal -- Caracterización de Vetillas -- Vetillas Tempranas -- Vetillas Transicionales -- Vetillas Tardías -- Texturas del Cuarzo -- Texturas Primarias -- Texturas Secundarias -- Secuencia Paragenética -- Análisis de Inclusiones Fluidas -- Petrografía de Inclusiones Fluidas -- Microtermometría en Inclusiones Fluidas -- Discusión e Interpretación de Resultados -- Implicaciones Petrográficas -- Condiciones Fisicoquímicas y Distribución de la Alteración Hidrotermal -- Naturaleza y Evolución del Fluido Hidrotermal -- Fertilidad del Magma y Modelo Genético -- Conclusiones -- Recomendaciones -- Referencias -- AnexosPregradoCon el fin de cumplir los objetivos propuestos y dar respuesta a la pregunta de investigación, se desarrolló la siguiente metodología subdividida en 6 fases o etapas, correspondientes a una fase preliminar, fase de campo, análisis petrográfico y metalográfico, análisis litogeoquímico y análisis de inclusiones fluidas.Proyecto código No. 2024-073Geólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, CaldasGeologíaQuiceno Colorado, July AstridHernández-González, Juan S.Alvarán, MauricioMartínez Córdoba, William Santiago2025-11-10T22:28:58Z2025-11-10T22:28:58Z2025-11-10Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis253 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26134Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAdobe Inc. (2024). Adobe Illustrator (28.5).Álvarez, A. (1971). Informe preliminar sobre geoquímica de la Cordillera Occidental. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).Álvarez, E., & González, H. (1978). Geología y geoquímica del cuadrángulo I-7, Urrao /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).Arancibia, O. N., & Clark, A. H. (1996). Early magnetite-amphibole-plagioclase alterationmineralization in the Island copper porphyry copper-gold-molybdenum deposit, British Columbia. Economic Geology, 91(2), 402–438. https://doi.org/10.2113/GSECONGEO.91.2.402Bakker, R. J. (1997). Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23(1), 1–18. https://doi.org/10.1016/S0098-3004(96)00073-8Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1Bakker, R. J. (2018). AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Computers & Geosciences, 115, 122–133. https://doi.org/10.1016/J.CAGEO.2018.03.003Barbarin, B., & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1–2), 145–153. https://doi.org/10.1017/S0263593300007835Best, M. G. (2003). Igneous and metamorphic petrology (Segunda). Blackwell Publishers. https://www.wiley.com/en-us/Igneous+and+Metamorphic+Petrology%2C+2nd+Edition-p- 9781405105880.Bodnar, R. (2017). Fluid Inclusions. 1–5. https://doi.org/10.1007/978-3-319-39193-9_225-1.Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. En Treatise on Geochemistry: Second Edition (Vol. 13, pp. 119–142). Elsevier Inc. https://doi.org/10.1016/B978-0-08-095975-7.01105-0Bodnar, R. J., Reynolds, T. J., & Kuehn, C. A. (1985). Fluid-Inclusion Systematics in Epithermal Systems. Geology and Geochemistry of Epithermal Systems, 73–97. https://doi.org/10.5382/REV.02.05Browne, P. R. L. (1978). Hydrothermal Alteration in Active Geothermal Fields. Annual Review of Earth and Planetary Sciences, 6(Volume 6, 1978), 229–250. https://doi.org/10.1146/ANNUREV.EA.06.050178.001305/CITE/REFWORKSBuchs, D. M., Kerr, A. C., Brims, J. C., Pablo Zapata-Villada, J., Correa-Restrepo, T., & Rodríguez, G. (2018). Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth and Planetary Science Letters, 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020Camprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. En Boletín de la Sociedad Geológica Mexicana (1a ed., Vol. 62, Número 1).Castro-Dorado, A. (2015). Petrografía de rocas ígneas y metamórficas. ParaninfoCastroviejo, R. (2023). A Practical Guide to Ore Microscopy—Volume 2. En A Practical Guide to Ore Microscopy—Volume 2 (Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-031-18954-8Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. AAPG Memoir, 79, 149–152. https://doi.org/10.1306/M79877C37Cetina, L. M., Cuéllar-Cárdenas, M. A., Osorio-Naranjo, J. A., & Quiroz-Prada, C. A. (2022). Evolución de la deformación Cretácico-Paleoceno en el borde occidental de Colombia (sector norte). Boletín de Geología, 44(2), 15–50. https://doi.org/10.18273/REVBOL.V44N2-2022001Cetina, L. M., Tassinari, C. C., Rodríguez, G., & Correa-Restrepo, T. (2019). Origin of premesozoic xenocrystic zircons in cretaceous sub-volcanic rocks of the northern Andes (Colombia): paleogeographic implications for the region. https://doi.org/10.1016/j.jsames.2019.102363Chen, H., & Wu, C. (2020). Metallogenesis and major challenges of porphyry copper systems above subduction zones. Science China Earth Sciences 2020 63:7, 63(7), 899–918. https://doi.org/10.1007/S11430-019-9595-8Chiaradia, M., Ulianov, A., Kouzmanov, K., & Beate, B. (2012). Why large porphyry Cu deposits like high Sr/Y magmas? Scientific Reports, 2(1), 1–7. https://doi.org/10.1038/SREP00685;SUBJMETACline, J. S., & Bodnar, R. J. (1991). Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research: Solid Earth, 96(B5), 8113–8126. https://doi.org/10.1029/91JB00053Condie, K. C. (2021). Earth as an Evolving Planetary System (4a ed.). Academic PressCooke, D. R., Hollings, P., Wilkinson, J. J., & Tosdal, R. M. (2014). Geochemistry of Porphyry Deposits. Treatise on Geochemistry: Second Edition, 13, 357–381. https://doi.org/10.1016/B978-0-08-095975-7.01116-5Corbett, G. J. (2017). Epithermal Au-Ag and porphyry Cu-Au exploration – short course manual. www.corbettgeology.comCorbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists. https://doi.org/10.5382/SP.06Córdoba, L. (2023). Caracterización petrográfica y litogeoquímica de las Formaciones Barroso, San José de Urama y Complejo Intrusivo Buriticá entre los municipios de Buriticá y Giraldo, departamento de Antioquia. Universidad de CaldasCorrea, T., Ortiz Párraga, F. H., Obando, M. G., Rincón, Á. V., Zapata Villada, J. P., & Rodríguez García, G. (2020). Catálogo de Unidades Litoestratigráficas de Colombia: Andesita de Guarco. Servicio Geológico Colombiano (SGC).Correa, Tomás., Obando, M. G., Zapata, J. P., Rincón, Á. V., Ortiz, F. H., Rodríguez, G., & Cetina, L. María. (2018). Geología del borde Occidental de la plancha 130 Santa Fe de Antioquia escala 1:50.000: memoria explicativa. Servicio Geológico Colombiano (SGC).Deditius, A. P., Reich, M., Kesler, S. E., Utsunomiya, S., Chryssoulis, S. L., Walshe, J., & Ewing, R. C. (2014). The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670. https://doi.org/10.1016/J.GCA.2014.05.045Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662A0;KWRDDong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic Geology, 90(6), 1841–1856. https://doi.org/10.2113/GSECONGEO.90.6.1841Dowling, K., & Morrison, G. (1989). Application of Quartz Textures to the Classification of Gold Deposits Using North Queensland Examples. The Geology of Gold Deposits, 342– 355. https://doi.org/10.5382/MONO.06.26Driesner, T. (2007). The system H2O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4902–4919. https://doi.org/10.1016/J.GCA.2007.05.026Driesner, T., & Heinrich, C. A. (2007). The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4880–4901. https://doi.org/10.1016/J.GCA.2006.01.033Drummond, S. E., & Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1), 126–147. https://doi.org/10.2113/GSECONGEO.80.1.126Duan, Z., MØller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-XFrezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20. https://doi.org/10.1016/J.GEXPLO.2011.09.009Geoestudios. (2005). Complementación geológica, geoquímica y geofísica de la parte occidental de las planchas 130 Santa Fé de Antioquia y 146 Medellín occidental. Escala: 1:100.000. Instituto Colombiano de Geología y Minería (INGEOMINAS).Gillespie, M., & Styles, M. (1999). BGS Rock Classification Scheme, Volume 1. Classification of igneous rocks. British Geological SurveyGöbel, V. W., & Stibane, F. R. (1980). Edades K/Ar en hornblendas de plutones tonalíticos Cordillera Occidental, Colombia, S.A. Boletín de Ciencias de la Tierra, 5–6, 83–84. https://revistas.unal.edu.co/index.php/rbct/article/view/94437Goldstein, R. (2003). Petrographic analysis of fluid inclusions. En I. Samson, A. Anderson, & D. Marshall (Eds.), Fluid Inclusions: Analysis and Interpretation (Short Course 32, Vol. 32, pp. 9–53). Mineralogical Association of CanadaGoldstein, R. H., & Reynolds, T. J. (1994). Systematics of Fluid Inclusions in Diagenetic Minerals. En Systematics of Fluid Inclusions in Diagenetic Minerals (Vol. 31). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/SCN.94.31González, H. (1996). Mapa geológico del departamento de Antioquia - geología, recursos minerales y amenazas potenciales escala 1:400.000: memoria explicativa /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).González, H., & Londoño, A. (2002). Catálogo de las unidades litoestratigráficas de Colombia: cretácico superior Tonalita de Buriticá (Stock de Buriticá) (K2tb) Cordillera Occidental, departamento de Antioquia. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).González, H., & Londoño, A. C. (1998). Edades K/Ar en Algunos Cuerpos Plutónicos del Graben Cauca-Patía y Norte de la Cordillera Occidental. Geología Colombiana, 23(0), 117– 131. https://revistas.unal.edu.co/index.php/geocol/article/view/31476González, H., Restrepo, J. J., Toussaint, J. F., & Linares, E. (1980). Edad radiométrica K/Ar del batolito de Sabanalarga. Boletín de Ciencias de la Tierra, 5–6, 23–27. https://revistas.unal.edu.co/index.php/rbct/article/view/94375González, P. (2015). Texturas de los cuerpos ígneos. Geología de los cuerpos ígneos. Edición Especial 70° Aniversario de la Asociación Geológica Argentina, Serie B, Didáctica y Complementaria N° 31, 167–195. http://rid.unrn.edu.ar/handle/20.500.12049/5620Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27. https://doi.org/10.1016/S0169-1368(97)00012-7Groves, D. I., & Santosh, M. (2023). Mineral Systems, Earth Evolution, and Global Metallogeny. Mineral Systems, Earth Evolution, and Global Metallogeny, 1–251. https://doi.org/10.1016/C2022-0-02818-XGustafson, L. B., & Hunt, J. P. (1975). The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5), 857–912. https://doi.org/10.2113/GSECONGEO.70.5.857Gustafson, L. B., & Quiroga G., J. (1995). Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Economic Geology, 90(1), 2–16. https://doi.org/10.2113/GSECONGEO.90.1.2Hall, R. B., ALVAREZ, A. J., & RICO, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Subzona II-A). [s.n.].Halley, S. (2020). Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722Halley, S. (2021). Porphyry Copper Workshop; Part 2 Alteration Geochemistry: Workshop presented to CODES masters course, 2021. 28. https://www.scotthalley.com.au/tutorialsHeinrich, C. A. (2005). The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39(8), 864–889. https://doi.org/10.1007/S00126-004-0461-9/FIGURES/6Heinrich, C. A. (2007). Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65(1), 363–387. https://doi.org/10.2138/RMG.2007.65.11Heinrich, C. A., & Candela, P. A. (2014). Fluids and Ore Formation in the Earth’s Crust. Treatise on Geochemistry: Second Edition, 13, 1–28. https://doi.org/10.1016/B978-0-08-095975- 7.01101-3Henley, R. W., King, P. L., Wykes, J. L., Renggli, C. J., Brink, F. J., Clark, D. A., & Troitzsch, U. (2015). Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nature Geoscience, 8(3), 210–215. https://doi.org/10.1038/NGEO2367;TECHMETAHermosilla-Bravo, J. M. (2015). Caracterización geológica y cronología de los eventos de intrusión / brechización y alteración / mineralización del yacimiento Río Blanco, Región de Valparaíso, Chile. https://repositorio.ucn.cl/handle/123456789/8857Justyna, D. S., & Bogusław, B. (2019). Magma mingling textures in granitic rocks of the eastern part of the strzegom-sobótka massif (Polish Sudetes). Acta Geologica Polonica, 69(1), 143– 160. https://doi.org/10.24425/agp.2019.126437Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., & Saunders, A. D. (1997). The Caribbean- Colombian Cretaceous Igneous Province: The Internal Anatomy of an Oceanic Plateau. Geophysical Monograph Series, 100, 123–144. https://doi.org/10.1029/GM100P0123Klemm, L. M., Pettke, T., & Heinrich, C. A. (2008). Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5), 533–552. https://doi.org/10.1007/S00126-008-0181-7/FIGURES/8Large, R. R. (2025). Simple graphical tools to understand the relationship between porphyry composition, hydrothermal alteration, mineralogy and copper-gold grades in porphyry copper deposits. Ore Geology Reviews, 182, 106581. https://doi.org/10.1016/J.OREGEOREV.2025.106581Large, R. R., Gemmell, J. B., & Paulick, H. (2001). The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology, 96(5), 957–971. https://doi.org/10.2113/GSECONGEO.96.5.957Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581Leal Mejía, H. (2011). Phanerozoic gold metallogeny in the colombian andes: a tectonomagmatic approach [Universitat de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=253720&info=resumen&idioma=SPALeal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. Frontiers in Earth Sciences, 253–410. https://doi.org/10.1007/978-3-319-76132- 9_5/FIGURES/37León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., & Pardo-Trujillo, A. (2018). Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca- South America Interactions. Tectonics, 37(1), 119–139. https://doi.org/10.1002/2017TC004785Lesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, Geochemistry, and Fluid Characterization of the Late Miocene Buriticá Gold Deposit, Antioquia Department, Colombia. Economic Geology, 108(5), 1067–1097. https://doi.org/10.2113/ECONGEO.108.5.1067Liebscher, A., & Heinrich, C. A. (2007). Fluid–Fluid Interactions in the Earth’s Lithosphere. Reviews in Mineralogy and Geochemistry, 65(1), 1–13. https://doi.org/10.2138/RMG.2007.65.1Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1), 5–16. https://doi.org/10.1080/08120099.2013.865676Ma, W., Deng, T., Xu, D., Chi, G., Li, Z., Zhou, Y., Dong, G., Wang, Z., Zou, S., Qian, Q., & Guo, S. (2021). Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization. Ore Geology Reviews, 139, 104479. https://doi.org/10.1016/J.OREGEOREV.2021.104479Marín-Kasprzyk, A. (2023). Caracterización petrográfica y litogeoquímica del Stock de Buriticá (Tonalita de Buriticá) e intrusivos asociados. Universidad de CaldasMaya, M., & González, H. (1995). Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3), 44–57. https://doi.org/10.32685/0120-1425/BOLGEOL35.2- 3.1995.316Mejía, M. (1984). Geología y geoquímica de las planchas 130, Santa Fé de Antioquia y 146, Medellín occidental /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).Mejía, M., Álvarez, E., & Grosse, E. (1983). Plancha 130—Santa Fe de Antioquia, Escala 1: 100.000. En Ingeominas. IngeominasMejia, M., & Salazar, G. (1989). Geología de la plancha 114 Dabeiba y parte W de la 115 Toledo /. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).Moreno-Sanchez, M., & Pardo-Trujillo, A. (2003). Stratigraphical and Sedimentological Constraints on Western Colombia: Implications on the Evolution of the Caribbean Plate. The Circum-Gulf of Mexico and the Caribbean<subtitle>Hydrocarbon Habitats, Basin Formation and Plate Tectonics. https://doi.org/10.1306/M79877C40Nance, R. D., Murphy, J. B., & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25(1), 4–29. https://doi.org/10.1016/J.GR.2012.12.026Naranjo, A., Horner, J., Jahoda, R., Diamond, L. W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejia, C., & Weil, J. (2018). La Colosa Au Porphyry Deposit, Colombia: Mineralization Styles, Structural Controls, and Age Constraints. Economic Geology, 113(3), 553–578. https://doi.org/10.5382/ECONGEO.2018.4562Nash, J. T., & Theodore, T. G. (1971). Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada. Economic Geology, 66(3), 385–399. https://doi.org/10.2113/GSECONGEO.66.3.385Nédélec, A., Bouchez, J.-L., & Bowden, P. (2015). Granites: Petrology, Structure, Geological Setting, and Metallogeny. https://doi.org/10.1093/ACPROF:OSO/9780198705611.001.0001Nivia, A. (1996). The Bolivar mafic-ultramafic complex, SW Colombia: the base of an obducted oceanic plateau. Journal of South American Earth Sciences, 9(1–2), 59–68. https://doi.org/10.1016/0895-9811(96)00027-2Nivia, Á., & Gómez, J. (2005). El Gabro Santa Fe de Antioquia y la Cuarzodiorita Sabanalarga, una propuesta de nomenclatura litoestratigráfica para dos cuerpos plutónicos diferentes agrupados previamente como Batolito de Sabanalarga en el departamento de Antioquia, Colombia. X Congreso Colombiano de Geología.Norman, D. I., & Musgrave, J. A. (1994). N2-Ar-He compositions in fluid inclusions: Indicators of fluid source. Geochimica et Cosmochimica Acta, 58(3), 1119–1131. https://doi.org/10.1016/0016-7037(94)90576-2Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous-Paleocene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. https://doi.org/10.1016/j.sedgeo.2020.105627Pirajno, F. (1992). Hydrothermal Alteration. Hydrothermal Mineral Deposits, 101–155. https://doi.org/10.1007/978-3-642-75671-9_5Pirajno, F. (2009). Hydrothermal Systems and the Biosphere. Hydrothermal Processes and Mineral Systems, 1–1250. https://doi.org/10.1007/978-1-4020-8613-7_10Pirajno, F. (2016). A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins. Gondwana Research, 33, 44– 62. https://doi.org/10.1016/J.GR.2015.08.013Pracejus, B. (2015). The Ore Minerals Under the Microscope (2a ed., Vol. 3). Elsevier. https://doi.org/10.1016/C2012-0-01360-9Ramdohr, P. (1969). The Ore Minerals and Their Intergrowths (Pergamon Press, Ed.; 3a ed.).Randive, K. R., Hari, K. R., Dora, M. L., Malpe, D. B., & Bhondwe, A. A. (2014). Study of Fluid Inclusions: Methods, Techniques and Applications. Gondwana Geol Mag., 29, 19–28. https://www.researchgate.net/publication/275337661_Study_of_Fluid_Inclusions_Methods _Techniques_and_ApplicationsREFLEX. (2025). ioGASTM - Geochemistry software (8.2). IMDEX limited. https://www.imdex.com/software/iogasReich, M., Kesler, S. E., Utsunomiya, S., Palenik, C. S., Chryssoulis, S. L., & Ewing, R. C. (2005). Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11), 2781–2796. https://doi.org/10.1016/J.GCA.2005.01.011Restrepo, J. J., & Toussaint, J. F. (1988). Terranes and Continental Accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3), 189–193. https://doi.org/10.18814/EPIIUGS/1988/V11I3/006Richards, J. P. (2011). HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu ± Mo ± Au DEPOSITS: JUST ADD WATER. Economic Geology, 106(7), 1075–1081. https://doi.org/10.2113/ECONGEO.106.7.1075Richards, J. P., & Kerrich, R. (2007). Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4), 537–576. https://doi.org/10.2113/GSECONGEO.102.4.537Richards, J. P., Spell, T., Rameh, E., Razique, A., & Fletcher, T. (2012). High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2), 295–332. https://doi.org/10.2113/ECONGEO.107.2.295Ridley, J. (2013). Ore Deposit Geology. En Ore Deposit Geology. Cambridge University Press. https://doi.org/10.1017/CBO9781139135528Robb, L. (2005). Introduction to ore-forming processes. En Mineralium Deposita 2006 41:7 (Vol. 1, Número 7). Blackwell Publishing. https://www.wiley.com/enus/ Introduction+to+Ore-Forming+Processes-p-9780632063789Rodríguez-García, G., & Arango, M. I. (2013). Formación Barroso: arco volcanico toleitico y diabasas de San José de Urama: un prisma acrecionario T-MORB en el segmento norte de la Cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 0(33), 17–38. https://revistas.unal.edu.co/index.php/rbct/article/view/38687Rodríguez-García, G., Arango, M. I., & Bermúdez, J. G. (2012). Batolito de Sabanalarga, Plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín de Ciencias de la Tierra, 0(32), 81–98. https://revistas.unal.edu.co/index.php/rbct/article/view/35879Rodríguez-García, G., Correa-Restrepo, T., Ortiz-Párraga, F. H., Tobón-Mazo, M. J., Obando- Quintero, M. G., & Peláez-Gaviria, J. R. (2023). Nuevas edades, correlación y ciclo magmático de plutones de arco insular en el norte de la Cordillera Occidental de Colombia. Boletín de Geología, 45(2), 15–33. https://doi.org/10.18273/REVBOL.V45N2-2023001Rodríguez-García, G., & Zapata, G. (2012). Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente colombiano. Boletín de Ciencias de la Tierra, 0(31), 5–22. https://revistas.unal.edu.co/index.php/rbct/article/view/31250Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 644. https://doi.org/10.1515/9781501508271/PDFRoedder, E., & Bodnar, R. (1997). Fluid inclusion studies of hydrothermal ore deposits. Geochemistry of hydrothermal ore deposits, 8, 657–697.Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual review of earth and planetary sciences: volume 8, 8(Volume 8, 1980), 263– 301. https://doi.org/10.1146/ANNUREV.EA.08.050180.001403/CITE/REFWORKSSchiffries, C. M. (1990). Liquid-absent aqueous fluid inclusions and phase equilibria in the system CaCl2NaClH2O. Geochimica et Cosmochimica Acta, 54(3), 611–619. https://doi.org/10.1016/0016-7037(90)90357-QSepúlveda, O. J., Leal-Mejía, H., Salgado, G. D., Celada, A. C. M., Murillo, B. H., Gómez, C. M., Prieto, G. D., Hernández, G. J. S., Ramírez, C. C. A., Narváez, G. D. F., & Anaya, A. C. (2022). Mapa metalogénico de Colombia –versión 2022Seward, T. M., Williams-Jones, A. E., & Migdisov, A. A. (2014). The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. Treatise on Geochemistry: Second Edition, 13, 29–57. https://doi.org/10.1016/B978-0-08-095975-7.01102-5Sillitoe, R. H. (2000). Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. Gold in 2000, 315–345. https://doi.org/10.5382/REV.13.09Sillitoe, R. H. (2008). Special Paper: Major Gold Deposits and Belts of the North and South American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic Considerations. Economic Geology, 103(4), 663–687. https://doi.org/10.2113/GSECONGEO.103.4.663Sillitoe, R. H. (2010). Porphyry Copper Systems. Economic Geology, 105(1), 3–41. https://doi.org/10.2113/GSECONGEO.105.1.3Spikings, R., Cochrane, R., Villagomez, D., Van Der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2014). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). https://doi.org/10.1016/j.gr.2014.06.004Stephens, W. E. (1997). Igneous Petrology, 2nd edn, by Anthony Hall. Addison Wesley, Longman, 1996. Journal of Petrology, 38(1), 169–169. https://doi.org/10.1093/PETROJ/38.1.169Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. Geologische Rundschau, 63(2), 773–786. https://doi.org/10.1007/BF01820841/METRICSSun, W., Huang, R. fang, Li, H., Hu, Y. bin, Zhang, C. chan, Sun, S. jun, Zhang, L. peng, Ding, X., Li, C. ying, Zartman, R. E., & Ling, M. xing. (2015). Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(P1), 97–131. https://doi.org/10.1016/J.OREGEOREV.2014.09.004Tapias, J. G., Ramírez, N. E. M., Meléndez, M. F. A., Gutiérrez, F. A. A., Montoya, C. A. M., & Diederix, H. (2017). Geological Map of Colombia 2015. Episodes Journal of International Geoscience, 40(3), 201–212. https://doi.org/10.18814/EPIIUGS/2017/V40I3/017023Thompson, J. F. Hugh., Thompson, A. J. B., & Allen, R. L. (1996). Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Mineral Deposits Division.Touret, J. L. R. (1987). Fluid Inclusions and Pressure-Temperature Estimates in Deep-Seated Rocks. Chemical Transport in Metasomatic Processes, 91–121. https://doi.org/10.1007/978- 94-009-4013-0_4Toussaint, J. F., & Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Andes, 61–100. https://doi.org/10.1007/978-3-322-85472-8_2Toussaint, J. F., & Restrepo, J. J. (2020). Tectonostratigraphic terranes in Colombia: An up-date. Second part: Oceanic terranes. Mesozoic. Servicio Geológico Colombiano, 2, 237–260. https://doi.org/10.32685/pub.esp.36.2019.07Trujillo, M. A. (2023). Structural architecture of Buriticá gold deposit, Colombia-insights from hydrothermal alteration geochemistry and implications for regional exploration. Universidad de Caldas.Urai, J. L., Means, W. D., & Lister, G. S. (2011). Dynamic Recrystallization of Minerals. 161– 199. https://doi.org/10.1029/GM036P0161Vallejo, C., Spikings, R. A., Luzieux, L., Winkler, W., Chew, D., & Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4), 264–269. https://doi.org/10.1111/J.1365-3121.2006.00688.XVelasco, F. (2004). Introducción al estudio de las inclusiones fluidas.XXIII Curso Latinoamericano de Metalogénia, Mendoza, ArgentinaVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. https://doi.org/10.1016/j.lithos.2011.05.003Vinasco, C. (2019). The Romeral Shear Zone. Frontiers in Earth Sciences, 833–876. https://doi.org/10.1007/978-3-319-76132-9_12Weber, M., Gómez Tapias, J., Duarte, E., Cardona, A., & Vinasco, C. J. (2011). Geochemistry of the Santa Fe Batholith in NW Colombia–Remnant of an accreted Cretaceous arc. XIV Congreso Latinoamericano de Geología y XIII Congreso Colombiano de GeologíaWeber, M., Gomez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. https://doi.org/10.1016/j.jsames.2015.04.002Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347–371. https://doi.org/https://doi.org/10.1111/gfl.12080Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/AM.2010.3371Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5Williams-Jones, A. E., & Vasyukova, O. V. (2018). The Economic Geology of Scandium, the Runt of the Rare Earth Element Litter. Economic Geology, 113(4), 973–988. https://doi.org/10.5382/ECONGEO.2018.4579Winter, J. D. (2001). An Introduction to Igneous and Metamorphic Petrology. Prentice HallWinter, J. D. (2014). Principles of igneous and metamorphic petrology (2a ed.). Pearson Education.Zapata, G., & Rodríguez, G. (2011). Basalto de El Botón, arco volcánico mioceno de afinidad shoshonítica al norte de la cordillera occidental de Colombia. Boletín de Ciencias de la Tierra, 0(30), 77–92. https://revistas.unal.edu.co/index.php/rbct/article/view/29297Zapata-García, G., & Rodríguez-García, G. (2020). New Contributions to Knowledge about the Chocó–Panamá Arc in Colombia, Including a New Segment South of Colombia. Paleogene-Neogene. Servicio Geológico Colombiano, 3, 417–450. https://doi.org/10.32685/pub.esp.37.2019.14Zapata-Villada, J. P., Giraldo, W., Rodríguez, G., Geraldes, M. C., & Obando, M. (2021). Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia - Geochemistry and U-Pb geochronology of the Sabanalarga quartz-diorite and Santa Fe gabbro, Colombia on JSTOR. Boletín de la Sociedad Geológica Mexicana, Vol.73, No 1, 1–38. https://www.jstor.org/stable/27221741Zarasvandi, A., Rezaei, M., Raith, J. G., Asadi, S., & Lentz, D. (2019). Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews, 105, 183–200. https://doi.org/10.1016/J.OREGEOREV.2018.12.027https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/261342025-11-11T22:43:18Z |
