Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/19679
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/19679
https://repositorio.ucaldas.edu.co/
Palabra clave:
Tomate
Campo magnético estático no homogéneo
Crecimiento
Fenología
Ciencias de la tierra
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUCALDA_2620475bb27c507af6a09985050fd783
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/19679
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
title Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
spellingShingle Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
Tomate
Campo magnético estático no homogéneo
Crecimiento
Fenología
Ciencias de la tierra
title_short Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
title_full Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
title_fullStr Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
title_full_unstemmed Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
title_sort Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.
dc.contributor.none.fl_str_mv Torres Osorio, Javier Ignacio
Zamorano-Montañez, Carolina
Campos Electromagnéticos, Medio Ambiente y Salud Pública (Categoría C)
dc.subject.none.fl_str_mv Tomate
Campo magnético estático no homogéneo
Crecimiento
Fenología
Ciencias de la tierra
topic Tomate
Campo magnético estático no homogéneo
Crecimiento
Fenología
Ciencias de la tierra
description Ilustraciones, gráficas
publishDate 2023
dc.date.none.fl_str_mv 2023-11-11T14:51:13Z
2023-11-11T14:51:13Z
2023-11-11
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/19679
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co/
url https://repositorio.ucaldas.edu.co/handle/ucaldas/19679
https://repositorio.ucaldas.edu.co/
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Abdel Latef, A. A. H., Dawood, M. F., Hassanpour, H., Rezayian, M., & Younes, N. A. (2020). Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology, 9(7), 172. https://doi.org/10.3390/biology9070172
Agustrina, R., Nurcahyani, E., Pramono, E., Listiana, I., & Nastiti, E. (2016). The influence of magnetic field on the growth of tomato (Lycopersicum esculentum) infected with Fusarium oxysporum. INSIST, 1(1). https://doi.org/10.23960/ins.v1i1.16.
Agustrina, R., Nurcahyani, E., Irawan, B., Pramono, E., Listiani, I., Nastiti, E., & Hadi, S. (2020). The resistance of tomato plants from seed treated with a magnetic field of 0.2 m T against Fusarium sp. Ecology, Environment and Conservation Journal Papers, 26(3), 1036-1042.
Aladjadjiyan A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays.
Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 8(3), 369-380. https://www.researchgate.net/publication/27203889_The_use_of_physical_methods_fo r_plant_growing_stimulation_in_Bulgaria
Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys, 24(3), 321-324
Aladjadjiyan, A. & Zahariev, A. (2002). Influence of stationary magnetic field on the absorption spectra of the photosynthetic apparatus of some ornamental perennial species. Bulg. J. Phys, 29(3-4), 179-183.
Allen, F., T. Center y E. Mattison. 2012. In situ estimates of water hyacinth leaf tissue nitrogen using a SPAD502 chlorophyll meter. Aquat. Bot. 100, 72-75. https://doi.org/10.1016/j.aquabot.2012.03.005
Anand, A., Nagarajan, S., Verma, A. P. S., Joshi, D. K., Pathak, P. C., & Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). http://nopr.niscpr.res.in/handle/123456789/13593
Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magneto primed tomato seeds. Scientific reports. https://doi.org/10.1038/s41598-019-45102-5
Azcón-Bieto, J. & Talón, M. (2008). Fundamentos de Fisiología Vegetal. InteramericanaMcGraw-Hill, Madrid.
Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37(7), 455-470. https://doi.org/10.1002/bem.21988
Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718-730. https://doi.org/10.1007/s11099-017-0722-3
Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1). https://doi.org/10.5586/aa.1757
Belyavskaya, N. A. (2004). Biological effects due to weak magnetic fields on plants. Advances in space Research, 34(7), 1566-1574
Castañeda, C. S., Almanza-Merchán, P. J., Pinzón, E. H., CELY-REYES, G. E., & SERRANOCELY, P. A. (2018). Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker. Revista Colombiana de Ciencias Hortícolas, 12(2), 329-337. http://repositorio.uptc.edu.co/handle/001/2929
Coste, S., Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A. D., ... & Hérault, B. (2010). Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana.Annals of Forest Science, 67, 607-607. https://doi.org/10.1051/forest/2010020
Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity? Annual Research & Review in Biology, 886-896. https://www.researchgate.net/profile/FatenDhawi/publication/305933673_Why_Magnetic_Fields_are_Used_to_Enhance_a_Plant %27s_Growth_and_Productivity/links/5805893008ae98cb6f2a78b0/Why-MagneticFields-are-Used-to-Enhance-a-Plants-Growth-and-Productivity.pdf
De Souza, A., Garcí, D., Sueiro, L., Gilart, F., Porras, E., & Licea, L. (2006). Pre‐sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 27(4), 247-257. https://doi.org/10.1002/bem.20206
De Souza-Torres, A., Sueiro-Pelegrín, L., Zambrano-Reyes, M., Macías-Socarras, I., GonzálezPosada, M., & García-Fernández, D. (2020). Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. International Journal of Radiation Biology, 96(7), 951-957. https://doi.org/10.1080/09553002.2020.1748912
Díaz Marín, C. (2014). Evaluación del dispositivo portátil SPAD-502 como indicador de la concentración de nitrógeno en plantas de café "Coffea arabica".
Dziwulska-Hunek, A., Kornarzyńska-Gregorowicz, A., Niemczynowicz, A., & Matwijczuk, A. (2020). Influence of electromagnetic stimulation of seeds on the photosynthetic indicators in Medicago sativa L. leaves at various stages of development. Agronomy, 10(4), 594. https://doi.org/10.3390/agronomy10040594
Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1400033.
Ercan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., Alshamrani, R., ... Kayed, T. S. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36-48. https://doi.org/10.1016/j.plaphy.2021.11.033
Fatima, A., Kataria, S., Prajapati, R., Jain, M., Agrawal, A. K., Singh, B., ... & Gadre, R. (2021). Magnetopriming effects on arsenic stress‐induced morphological and physiological variations in soybean involving synchrotron imaging. Physiologia Plantarum, 173(1), 88- 99.
FAOSTAT. (2023). Food and Agricultural Organization of the United Nations. Naciones Unidas Para La Alimentación y La Agricultura. Disponible en: https://www.fao.org/faostat/es/#data/QCL. Con acceso el 07/07/2023.
Fischer, G., & Orduz-Rogríguez, J. O. (2012). Ecofisiología en frutales (No. Doc. 26022) COBAC, Bogotá).
Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., ... & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. https://doi.org/10.1073/pnas.1119992109
Golbaz, G., & Kaviani, B. (2019). Effect of Magnetic Field on Growth and Development Parameters of Rudbeckia hirta L. Seed in Dry and Humid Conditions. Journal of Ornamental Plants. http://jornamental.iaurasht.ac.ir/article_667497_2a6c219af03a733c1af09bf6fff9b2e0.pd f
Google Earth. (2023). https://earth.google.com/web/search/FINCA+MARTINICA,+Risaralda,+Caldas,+Rep% c3%bablica+de+Colombia/@5.14182399,- 75.74234232,1127.42883701a,559.03947823d,35y,- 38.16107179h,44.99686749t,0r/data=CqQBGnoSdAokMHg4ZTQ3OWQxMWU4ZTg1 MDRmOjB4YjA2YjQ3ODdhYWEwNDNmGbgSy3c6kRRAIfMaYIuC71LAKjpGSU5DQS BNQVJUSU5JQ0EsIFJpc2FyYWxkYSwgQ2FsZGFzLCBSZXDDumJsaWNhIGRlIENvb G9tYmlhGAIgASImCiQJEceDl5goFEAR_uDjJDQUFEAZEei8CsHaUsAhyNYzJdzcUsA
Hunt, E., & Daughtry, C. S. (2014). Chlorophyll meter calibrations for chlorophyll content using measured and simulated leaf transmittances. Agronomy Journal, 106(3), 931-939.
Hussain, M. S., Dastgeer, G., Afzal, A. M., Hussain, S., & Kanwar, R. R. (2020). Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental nanotechnology, monitoring & management, 14, 100299. https://doi.org/10.1016/j.enmm.2020.100299
nternational Seed Testing Association. (1985). International rules for seed testing. Rules 1985. Seed science and technology, 13(2), 299-513
Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology, 10, 83-90. https://doi.org/10.1016/j.bcab.2017.02.010
Kataria, S., Rastogi, A., Bele, A., & Jain, M. (2020). Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. Physiology and Molecular Biology of Plants, 26(5), 931-945. https://doi.org/10.1007/s12298-020-00802-5
Kutby, A. M., Al-Zahrani, H. S., & Hakeem, K. R. (2020). Role of magnetic field and brassinosteroids in mitigating salinity stress in tomato (Lycopersicon esculentum L.). Int. J. Eng. Res. Technol, 9, 306-319. https://www.academia.edu/download/63676670/role-of-magnetic-field-and-brassinosteroids-in-IJERTV9IS06018820200619-130446- 18yei6p.pdf
Laksmiari, K. (2021). Analysis Of Extremely Low Frequency (ELF) Magnetic Field Exposure Impact On The Mass Of Great Red Chili Plant (Capsicum annum L). JURNAL PEMBELAJARAN FISIKA, 10(1), 15-21. https://jurnal.unej.ac.id/index.php/JPF/article/download/22372/9675
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and forest meteorology, 87(4), 291-300.
Nobel, P. S. (1999). Physicochemical & environmental plant physiology. Academic press.
Nyakane, N. E., Markus, E. D., & Sedibe, M. M. (2019). The effects of magnetic fields on plants growth: a comprehensive review. Int J Food Eng, 5, 79-87. http://www.ijfe.org/uploadfile/2019/0322/20190322032557876.pdf
Papadopoulos, A. P., & Ormrod, D. P. (1988). Plant spacing effects on photosynthesis and transpiration of the greenhouse tomato. Canadian Journal of Plant Science, 68(4), 1209- 1218.
Pinkard, EA, V. Patel y C. Mohammed. 2006. Determinación de clorofila y nitrógeno para Eucalyptus nitens y E. globulus cultivados en plantaciones utilizando un medidor no destructivo. Gestión de la ecología forestal 223: 211 – 217
Podleśny, J., Podleśna, A., Gładyszewska, B., & Bojarszczuk, J. (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy, 11(3), 494. https://doi.org/10.3390/agronomy11030494
Răcuciu, M. (2020). Development of tomato (Solanum lycopersicum L.) seedlings under the action of extremely low frequency magnetic field in a controlled environment conditions. In AIP Conference Proceedings (Vol. 2206, No. 1, p. 030003). AIP Publishing LLC. https://doi.org/10.1063/5.0000268
Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 25(5), 1107-1119. https://doi.org/10.1007/s12298-019-00699-9
Rathod, G. R., & Anand, A. (2016). Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology, 21, 15-22. https://doi.org/10.1007/s40502-015-0189-9
Rochalska, M. (2005). Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika, 50, 25-28. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ6- 0005-0019/c/Influence_of_frequent_magnetic_field_on_chlorophyll.pdf
Ross, J. J., O'neill, D. P., Wolbang, C. M., Symons, G. M., & Reid, J. B. (2001). Auxin-gibberellin interactions and their role in plant growth. Journal of plant growth regulation, 20(4), 336- 353. https://www.researchgate.net/profile/John-Ross-21/publication/11382927_AuxinGibberellin_Interactions_and_Their_Role_in_Plant_Growth/links/59ee683c458515435 0e8101e/Auxin-Gibberellin-Interactions-and-Their-Role-in-Plant-Growth.pdf
Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., ... & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9(9), 1139. https://doi.org/10.3390/plants9091139
Schlemmer, MR, Francis, DD, Shanahan, JF y Schepers, JS (2005). Medición remota del contenido de clorofila en hojas de maíz con diferentes niveles de nitrógeno y contenido relativo de agua. Revista de agronomía , 97 (1), 106-112. https://doi.org/10.2134/agronj2005.0106
Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International agrophysics, 32(2), 287-302. http://archive.sciendo.com/INTAG/intag.2018.32.issue2/intag-2017-0005/intag-2017-0005.pdf
Shine, M. B., Guruprasad, K. N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32(6), 474-484. https://doi.org/10.1002/bem.20656
Small, D. P., Hüner, N. P., & Wan, W. (2012). Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33(4), 298-308.
Spaninks, K., Lamers, G., van Lieshout, J., & Offringa, R. (2023). Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Scientia Horticulturae, 317, 112082. https://doi.org/10.1016/j.scienta.2023.112082
Taia, W. K., Al-Zahrani, H., & Kotbi, A. (2007). The effect of static magnetic forces on water contents and photosynthetic pigments in sweet basil Ocimum basilicum L.(Lamiaceae). Saudi J. Biol. Sci, 14, 103-107. https://www.researchgate.net/profile/WafaaTaia/publication/237434805_The_Effect_of_Static_Magnetic_Forces_on_Water_Conte nts_and_Photosynthetic_Pigments_in_Sweet_Basil_Ocimum_basilicum_L_Lamiaceae /links/5ff89e0045851553a02e6989/The-Effect-of-Static-Magnetic-Forces-on-WaterContents-and-Photosynthetic-Pigments-in-Sweet-Basil-Ocimum-basilicum-LLamiaceae
Torres, J., Hincapie, E., & Gilart, F. (2018). Characterization of magnetic flux density in passive sources used in magnetic stimulation. Journal of Magnetism and Magnetic Materials, 449, 366–371. https://doi.org/10.1016/j.jmmm.2017.10.037.
Vashisth, A., Meena, N., & Krishnan, P. (2021). Magnetic field affects growth and yield of sunflower under different moisture stress conditions. Bioelectromagnetics, 42(6), 473- 483. https://doi.org/10.1002/bem.22354
Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, 29(3), 179-186. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a2127d890812cdea d37291ba99f326c15c920ff0
Willige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin regulates PIN-FORMED abundance and is required for auxin transport–dependent growth and development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. https://doi.org/10.1105/tpc.111.086355
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ciencias Agropecuarias
Manizales
Ingeniería Agronómica
publisher.none.fl_str_mv Facultad de Ciencias Agropecuarias
Manizales
Ingeniería Agronómica
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145016161959936
spelling Análisis del desarrollo vegetativo de plantas de Solanum lycopersicum L., generadas de semillas tratadas magnéticamente.TomateCampo magnético estático no homogéneoCrecimientoFenologíaCiencias de la tierraIlustraciones, gráficasspa:El tomate es la hortaliza con mayor importancia económica y alimenticia en el mundo. Para satisfacer la demanda creciente, los sistemas productivos deben integrar métodos novedosos con criterios de rentabilidad, sostenibilidad ambiental y bienestar social. El tratamiento magnético de semillas es una técnica de aplicación accesible, bajo costo y puede favorecer el metabolismo vegetal. Este trabajo de tipo explicativo- validatorio, buscó analizar el efecto del tratamiento de semillas con campo magnético estático no homogéneo sobre el desarrollo vegetativo de Solanum lycopersicum L., a través de la evaluación de la fenología y la cinética del crecimiento de la planta. Se evaluaron variables morfométricas y bioquímicas no destructivas dos veces por semana. El área foliar se calculó sobre la tercera hoja verdadera por tratamiento de imagen con la aplicación para dispositivos móviles Easy leaf area free, la altura de la planta se midió con un distanciómetro láser Fluke 480D, el diámetro del tallo se midió con un pie de rey Mitutoyo absolute digimatic (CD-8” CSX-B), el contenido de clorofilas se cuantificó con el clorofilómetro portátil Spad 502 Plus (Konica Minolta INC) en dos hojas por planta. La metodología para el tratamiento magnético de semillas de tomate fue desarrollada experimentalmente por el grupo de investigación en Magnetobiología. Los resultados indicaron que las plantas generadas por tratamiento magnético de semillas presentaron mayor altura, diámetro del tallo, número de hojas, área foliar y contenido de clorofila que las plantas generadas de semillas no tratadas. Las plantas provenientes de semillas tratadas magnéticamente presentaron 21 % más área foliar y 9 % más altura que las plantas germinadas de semillas que no fueron expuestas a campo magnético. Por tanto, se concluye que la exposición de semillas de tomate a campo magnético estático no homogéneo favorece el desarrollo vegetativo de las plantas.eng:The tomato is the vegetable with the greatest economic and nutritional importance in the world. To satisfy the increasing demand, the production systems must integrate innovative methods with criteria of profitability, environmental sustainability and social welfare. Magnetic seed treatment is an accessible, low-cost application technique that can promote plant metabolism. This validation-explanatory type work sought to analyze the effect of seed treatment with a non-homogeneous static magnetic field on the vegetative development of Solanum lycopersicum L., through the evaluation of the phenology and the kinetics of plant growth. Non-destructive morphometric and biochemical variables were evaluated twice week. Leaf area was calculated on the third true leaf by image processing with the Easy leaf area free mobile application, plant height was measured with a Fluke 480D laser distance meter, stem diameter was measured with a caliper Mitutoyo absolute digimatic (CD8” CSX-B), the chlorophyll content was quantified with the Spad 502 Plus portable chlorophyllometer (Konica Minolta INC) in two leaves per plant. The methodology for the magnetic treatment of tomato seeds was developed experimentally by the Magnetobiology research group. The results indicated that plants generated by magnetic seed treatment had greater height, stem diameter, number of leaves, leaf area and chlorophyll content than plants generated from untreated seeds. Plants from magnetically treated seeds had 21 % more leaf area and 9 % more height than plants germinated from seeds that were not exposed to a magnetic field. Therefore, it is concluded that the exposure of tomato seeds to a non-homogeneous static magnetic field favors the vegetative development of the plants.1. Resumen / 2. Abstract / 3. Introducción / 4. Materiales y métodos / 5. Resultados / 6. Discusión / 7. Conclusiones / 8. Bibliografía / 9. AnexosUniversitarioIngeniero(a) Agronómico(a)MagnetobiologíaFacultad de Ciencias AgropecuariasManizalesIngeniería AgronómicaTorres Osorio, Javier IgnacioZamorano-Montañez, CarolinaCampos Electromagnéticos, Medio Ambiente y Salud Pública (Categoría C)Villa Carmona, Elisabed2023-11-11T14:51:13Z2023-11-11T14:51:13Z2023-11-11Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19679Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAbdel Latef, A. A. H., Dawood, M. F., Hassanpour, H., Rezayian, M., & Younes, N. A. (2020). Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology, 9(7), 172. https://doi.org/10.3390/biology9070172Agustrina, R., Nurcahyani, E., Pramono, E., Listiana, I., & Nastiti, E. (2016). The influence of magnetic field on the growth of tomato (Lycopersicum esculentum) infected with Fusarium oxysporum. INSIST, 1(1). https://doi.org/10.23960/ins.v1i1.16.Agustrina, R., Nurcahyani, E., Irawan, B., Pramono, E., Listiani, I., Nastiti, E., & Hadi, S. (2020). The resistance of tomato plants from seed treated with a magnetic field of 0.2 m T against Fusarium sp. Ecology, Environment and Conservation Journal Papers, 26(3), 1036-1042.Aladjadjiyan A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays.Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 8(3), 369-380. https://www.researchgate.net/publication/27203889_The_use_of_physical_methods_fo r_plant_growing_stimulation_in_BulgariaAladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys, 24(3), 321-324Aladjadjiyan, A. & Zahariev, A. (2002). Influence of stationary magnetic field on the absorption spectra of the photosynthetic apparatus of some ornamental perennial species. Bulg. J. Phys, 29(3-4), 179-183.Allen, F., T. Center y E. Mattison. 2012. In situ estimates of water hyacinth leaf tissue nitrogen using a SPAD502 chlorophyll meter. Aquat. Bot. 100, 72-75. https://doi.org/10.1016/j.aquabot.2012.03.005Anand, A., Nagarajan, S., Verma, A. P. S., Joshi, D. K., Pathak, P. C., & Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). http://nopr.niscpr.res.in/handle/123456789/13593Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magneto primed tomato seeds. Scientific reports. https://doi.org/10.1038/s41598-019-45102-5Azcón-Bieto, J. & Talón, M. (2008). Fundamentos de Fisiología Vegetal. InteramericanaMcGraw-Hill, Madrid.Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37(7), 455-470. https://doi.org/10.1002/bem.21988Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718-730. https://doi.org/10.1007/s11099-017-0722-3Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1). https://doi.org/10.5586/aa.1757Belyavskaya, N. A. (2004). Biological effects due to weak magnetic fields on plants. Advances in space Research, 34(7), 1566-1574Castañeda, C. S., Almanza-Merchán, P. J., Pinzón, E. H., CELY-REYES, G. E., & SERRANOCELY, P. A. (2018). Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker. Revista Colombiana de Ciencias Hortícolas, 12(2), 329-337. http://repositorio.uptc.edu.co/handle/001/2929Coste, S., Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A. D., ... & Hérault, B. (2010). Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana.Annals of Forest Science, 67, 607-607. https://doi.org/10.1051/forest/2010020Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity? Annual Research & Review in Biology, 886-896. https://www.researchgate.net/profile/FatenDhawi/publication/305933673_Why_Magnetic_Fields_are_Used_to_Enhance_a_Plant %27s_Growth_and_Productivity/links/5805893008ae98cb6f2a78b0/Why-MagneticFields-are-Used-to-Enhance-a-Plants-Growth-and-Productivity.pdfDe Souza, A., Garcí, D., Sueiro, L., Gilart, F., Porras, E., & Licea, L. (2006). Pre‐sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 27(4), 247-257. https://doi.org/10.1002/bem.20206De Souza-Torres, A., Sueiro-Pelegrín, L., Zambrano-Reyes, M., Macías-Socarras, I., GonzálezPosada, M., & García-Fernández, D. (2020). Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. International Journal of Radiation Biology, 96(7), 951-957. https://doi.org/10.1080/09553002.2020.1748912Díaz Marín, C. (2014). Evaluación del dispositivo portátil SPAD-502 como indicador de la concentración de nitrógeno en plantas de café "Coffea arabica".Dziwulska-Hunek, A., Kornarzyńska-Gregorowicz, A., Niemczynowicz, A., & Matwijczuk, A. (2020). Influence of electromagnetic stimulation of seeds on the photosynthetic indicators in Medicago sativa L. leaves at various stages of development. Agronomy, 10(4), 594. https://doi.org/10.3390/agronomy10040594Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1400033.Ercan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., Alshamrani, R., ... Kayed, T. S. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36-48. https://doi.org/10.1016/j.plaphy.2021.11.033Fatima, A., Kataria, S., Prajapati, R., Jain, M., Agrawal, A. K., Singh, B., ... & Gadre, R. (2021). Magnetopriming effects on arsenic stress‐induced morphological and physiological variations in soybean involving synchrotron imaging. Physiologia Plantarum, 173(1), 88- 99.FAOSTAT. (2023). Food and Agricultural Organization of the United Nations. Naciones Unidas Para La Alimentación y La Agricultura. Disponible en: https://www.fao.org/faostat/es/#data/QCL. Con acceso el 07/07/2023.Fischer, G., & Orduz-Rogríguez, J. O. (2012). Ecofisiología en frutales (No. Doc. 26022) COBAC, Bogotá).Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., ... & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. https://doi.org/10.1073/pnas.1119992109Golbaz, G., & Kaviani, B. (2019). Effect of Magnetic Field on Growth and Development Parameters of Rudbeckia hirta L. Seed in Dry and Humid Conditions. Journal of Ornamental Plants. http://jornamental.iaurasht.ac.ir/article_667497_2a6c219af03a733c1af09bf6fff9b2e0.pd fGoogle Earth. (2023). https://earth.google.com/web/search/FINCA+MARTINICA,+Risaralda,+Caldas,+Rep% c3%bablica+de+Colombia/@5.14182399,- 75.74234232,1127.42883701a,559.03947823d,35y,- 38.16107179h,44.99686749t,0r/data=CqQBGnoSdAokMHg4ZTQ3OWQxMWU4ZTg1 MDRmOjB4YjA2YjQ3ODdhYWEwNDNmGbgSy3c6kRRAIfMaYIuC71LAKjpGSU5DQS BNQVJUSU5JQ0EsIFJpc2FyYWxkYSwgQ2FsZGFzLCBSZXDDumJsaWNhIGRlIENvb G9tYmlhGAIgASImCiQJEceDl5goFEAR_uDjJDQUFEAZEei8CsHaUsAhyNYzJdzcUsAHunt, E., & Daughtry, C. S. (2014). Chlorophyll meter calibrations for chlorophyll content using measured and simulated leaf transmittances. Agronomy Journal, 106(3), 931-939.Hussain, M. S., Dastgeer, G., Afzal, A. M., Hussain, S., & Kanwar, R. R. (2020). Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental nanotechnology, monitoring & management, 14, 100299. https://doi.org/10.1016/j.enmm.2020.100299nternational Seed Testing Association. (1985). International rules for seed testing. Rules 1985. Seed science and technology, 13(2), 299-513Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology, 10, 83-90. https://doi.org/10.1016/j.bcab.2017.02.010Kataria, S., Rastogi, A., Bele, A., & Jain, M. (2020). Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. Physiology and Molecular Biology of Plants, 26(5), 931-945. https://doi.org/10.1007/s12298-020-00802-5Kutby, A. M., Al-Zahrani, H. S., & Hakeem, K. R. (2020). Role of magnetic field and brassinosteroids in mitigating salinity stress in tomato (Lycopersicon esculentum L.). Int. J. Eng. Res. Technol, 9, 306-319. https://www.academia.edu/download/63676670/role-of-magnetic-field-and-brassinosteroids-in-IJERTV9IS06018820200619-130446- 18yei6p.pdfLaksmiari, K. (2021). Analysis Of Extremely Low Frequency (ELF) Magnetic Field Exposure Impact On The Mass Of Great Red Chili Plant (Capsicum annum L). JURNAL PEMBELAJARAN FISIKA, 10(1), 15-21. https://jurnal.unej.ac.id/index.php/JPF/article/download/22372/9675McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and forest meteorology, 87(4), 291-300.Nobel, P. S. (1999). Physicochemical & environmental plant physiology. Academic press.Nyakane, N. E., Markus, E. D., & Sedibe, M. M. (2019). The effects of magnetic fields on plants growth: a comprehensive review. Int J Food Eng, 5, 79-87. http://www.ijfe.org/uploadfile/2019/0322/20190322032557876.pdfPapadopoulos, A. P., & Ormrod, D. P. (1988). Plant spacing effects on photosynthesis and transpiration of the greenhouse tomato. Canadian Journal of Plant Science, 68(4), 1209- 1218.Pinkard, EA, V. Patel y C. Mohammed. 2006. Determinación de clorofila y nitrógeno para Eucalyptus nitens y E. globulus cultivados en plantaciones utilizando un medidor no destructivo. Gestión de la ecología forestal 223: 211 – 217Podleśny, J., Podleśna, A., Gładyszewska, B., & Bojarszczuk, J. (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy, 11(3), 494. https://doi.org/10.3390/agronomy11030494Răcuciu, M. (2020). Development of tomato (Solanum lycopersicum L.) seedlings under the action of extremely low frequency magnetic field in a controlled environment conditions. In AIP Conference Proceedings (Vol. 2206, No. 1, p. 030003). AIP Publishing LLC. https://doi.org/10.1063/5.0000268Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 25(5), 1107-1119. https://doi.org/10.1007/s12298-019-00699-9Rathod, G. R., & Anand, A. (2016). Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology, 21, 15-22. https://doi.org/10.1007/s40502-015-0189-9Rochalska, M. (2005). Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika, 50, 25-28. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ6- 0005-0019/c/Influence_of_frequent_magnetic_field_on_chlorophyll.pdfRoss, J. J., O'neill, D. P., Wolbang, C. M., Symons, G. M., & Reid, J. B. (2001). Auxin-gibberellin interactions and their role in plant growth. Journal of plant growth regulation, 20(4), 336- 353. https://www.researchgate.net/profile/John-Ross-21/publication/11382927_AuxinGibberellin_Interactions_and_Their_Role_in_Plant_Growth/links/59ee683c458515435 0e8101e/Auxin-Gibberellin-Interactions-and-Their-Role-in-Plant-Growth.pdfSarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., ... & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9(9), 1139. https://doi.org/10.3390/plants9091139Schlemmer, MR, Francis, DD, Shanahan, JF y Schepers, JS (2005). Medición remota del contenido de clorofila en hojas de maíz con diferentes niveles de nitrógeno y contenido relativo de agua. Revista de agronomía , 97 (1), 106-112. https://doi.org/10.2134/agronj2005.0106Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International agrophysics, 32(2), 287-302. http://archive.sciendo.com/INTAG/intag.2018.32.issue2/intag-2017-0005/intag-2017-0005.pdfShine, M. B., Guruprasad, K. N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32(6), 474-484. https://doi.org/10.1002/bem.20656Small, D. P., Hüner, N. P., & Wan, W. (2012). Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33(4), 298-308.Spaninks, K., Lamers, G., van Lieshout, J., & Offringa, R. (2023). Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Scientia Horticulturae, 317, 112082. https://doi.org/10.1016/j.scienta.2023.112082Taia, W. K., Al-Zahrani, H., & Kotbi, A. (2007). The effect of static magnetic forces on water contents and photosynthetic pigments in sweet basil Ocimum basilicum L.(Lamiaceae). Saudi J. Biol. Sci, 14, 103-107. https://www.researchgate.net/profile/WafaaTaia/publication/237434805_The_Effect_of_Static_Magnetic_Forces_on_Water_Conte nts_and_Photosynthetic_Pigments_in_Sweet_Basil_Ocimum_basilicum_L_Lamiaceae /links/5ff89e0045851553a02e6989/The-Effect-of-Static-Magnetic-Forces-on-WaterContents-and-Photosynthetic-Pigments-in-Sweet-Basil-Ocimum-basilicum-LLamiaceaeTorres, J., Hincapie, E., & Gilart, F. (2018). Characterization of magnetic flux density in passive sources used in magnetic stimulation. Journal of Magnetism and Magnetic Materials, 449, 366–371. https://doi.org/10.1016/j.jmmm.2017.10.037.Vashisth, A., Meena, N., & Krishnan, P. (2021). Magnetic field affects growth and yield of sunflower under different moisture stress conditions. Bioelectromagnetics, 42(6), 473- 483. https://doi.org/10.1002/bem.22354Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, 29(3), 179-186. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a2127d890812cdea d37291ba99f326c15c920ff0Willige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin regulates PIN-FORMED abundance and is required for auxin transport–dependent growth and development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. https://doi.org/10.1105/tpc.111.086355info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/196792024-07-16T21:39:49Z