Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus

Figuras

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/26181
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/26181
Palabra clave:
570 - Biología
1. Ciencias Naturales
ABTS
Biorremediación
Dinámica molecular
Lacasa
POXA1b
Transferencia electrónica
Docking
Biología
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_21f9ea9a98e5065d7037ba04e412ca44
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/26181
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
title Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
spellingShingle Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
570 - Biología
1. Ciencias Naturales
ABTS
Biorremediación
Dinámica molecular
Lacasa
POXA1b
Transferencia electrónica
Docking
Biología
title_short Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
title_full Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
title_fullStr Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
title_full_unstemmed Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
title_sort Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
dc.contributor.none.fl_str_mv Morales-Álvarez, Edwin David
Rodas Rodríguez, José Mauricio
Grupo de Química Teórica y Bioinformática - QTB (Categoría B)
dc.subject.none.fl_str_mv 570 - Biología
1. Ciencias Naturales
ABTS
Biorremediación
Dinámica molecular
Lacasa
POXA1b
Transferencia electrónica
Docking
Biología
topic 570 - Biología
1. Ciencias Naturales
ABTS
Biorremediación
Dinámica molecular
Lacasa
POXA1b
Transferencia electrónica
Docking
Biología
description Figuras
publishDate 2025
dc.date.none.fl_str_mv 2025-11-14T19:36:19Z
2025-11-14T19:36:19Z
2025-11-14
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/26181
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/26181
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25. https://doi.org/10.1016/j.softx.2015.06.001
Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., ... & Fatma, T. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PloS one, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144
Agrawal, K., & Verma, P. (2020). Multicopper oxidase laccases with distinguished spectral properties: a new outlook. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03972.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410, https://doi.org/10.1016/S0022-2836(05)80360-2
Ardila-Leal, L. D., Monterey-Gutiérrez, P. A., Poutou-Piñales, R. A., Quevedo-Hidalgo, B. E., Galindo, J. F., & Pedroza-Rodríguez, A. M. (2021). Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC biotechnology, 21(1), 37. https://doi.org/10.1186/s12896-021-00698-3
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera De Los Santos, M., ... & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial cell factories, 18, 1-33. https://doi.org/10.1186/s12934-019-1248-0
Ashrafi, S. D., Rezaei, S., Forootanfar, H., Mahvi, A. H., & Faramarzi, M. A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173-181. https://doi.org/10.1016/j.ibiod.2013.07.006
Aza, P., & Camarero, S. (2023). Fungal laccases: Fundamentals, engineering and classification update. Biomolecules, 13(12), 1716. https://doi.org/10.3390/biom13121716
Aza, P., Molpeceres, G., Vind, J., & Camarero, S. (2023). Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum sl. Computational and Structural Journal, 21, Biotechnology https://doi.org/10.1016/j.csbj.2023.01.030
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track 1041-1053. neural Science, 373(6557), network. https://doi.org/10.1126/science.abj8754
Bakratsas, G., Antoniadis, K., Athanasiou, P. E., Katapodis, P., & Stamatis, H. (2023). Laccase and biomass production via submerged cultivation of Pleurotus ostreatus using wine lees. Biomass, 4(1), 1-22. https://doi.org/10.3390/biomass4010001
BIOVIA. Dassault Systèmes. Discovery Studio Visualizer, v25. 1. 0. 24284; Dassault Systèmes: 871-876. San Diego, CA, USA; 2021. Available online: https://discover.3ds.com/discovery-studio-visualizer-download
Cascelli, N., Lettera, V., Sannia, G., Gotor‑Fernández, V., & Lavandera, I. (2023). Laccases from Pleurotus ostreatus applied to the oxidation of furfuryl alcohol for the synthesis of key compounds for polymer industry. ChemSusChem, 16(13), e202300226. https://doi.org/10.1002/cssc.202300226
Case, D. A., Cerutti, D. S., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghazimirsaeed, M., ... & Merz Jr, K. M. (2025). Recent Developments in Amber Biomolecular Simulations. Journal of Chemical Information and Modeling, 65(15), 7835-7843. https://doi.org/10.1021/acs.jcim.5c01063
Chopra, N. K., Singhal, D., Saini, R., & Sondhi, S. (2023). Structure analysis and molecular docking studies of laccase from “Bacillus licheniformis NS2324”. Sustainable Chemistry for the Environment, 1, 100004. https://doi.org/10.1016/j.scenv.2023.100004
Christensen, N. J., & Kepp, K. P. (2014). Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state. Journal of Molecular Catalysis B: Enzymatic, 100, 68-77. https://doi.org/10.1016/j.molcatb.2013.11.017
Dagar, V. K., Babbal, Mohanty, S., & Khasa, Y. P. (2022). Effect of N-glycosylation on secretion, stability, and biological activity of recombinant human interleukin-3 (hIL-3) in Pichia pastoris. 3 Biotech, 12(9), 221. https://doi.org/10.1007/s13205-022-03293-1
Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., ... & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic acids research, 39(suppl_2), W13-W17. https://doi.org/10.1093/nar/gkr245
Díaz, R., Díaz-Godínez, G., Anducho-Reyes, M. A., Mercado-Flores, Y., & Herrera-Zúñiga, L. D. (2018). In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Frontiers in Microbiology, 9, 2743. https://doi.org/10.3389/fmicb.2018.02743
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
Garzillo, A. M., Colao, M. C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., ... & Sannia, G. (2001). Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. Journal of protein chemistry, 20, 191-201. https://doi.org/10.1023/A:1010954812955
Giacobelli, V. G., Monza, E., Lucas, M. F., Pezzella, C., Piscitelli, A., Guallar, V., & Sannia, G. (2017). Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering–the case of POXA1b. Catalysis Science & Technology, 7(2), 515-523. https://doi.org/10.1039/C6CY02410F
Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., CENNAMO, G., & Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochemical Journal, 341(3), 655-663. https://doi.org/10.1042/bj3410655
Gräff, M., Buchholz, P. C., Le Roes‑Hill, M., & Pleiss, J. (2020). Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins: Structure, Function, and Bioinformatics, 88(10), 1329-1339. https://doi.org/10.1002/prot.25952
Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007
Han, W., Zhao, Y., Chen, Q., Xie, Y., Zhang, M., Yao, H., ... & Zhang, Y. (2024). Laccase surface-display for environmental tetracycline removal: From structure to function. Chemosphere, 365, 143286. https://doi.org/10.1016/j.chemosphere.2024.143286
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95. https://doi.org/10.1109/MCSE.2007.55
Islam, M. N., Toprak-Cavdur, T., Islam, S., Tarannum, F., & Walters, K. B. (2024). Reactive Dye Wash-Off Processing of Cotton Fabrics Using Polymer Dye Transfer Inhibitors for Sustainable Dyeing. Sustainability, 16(18), 7991. https://doi.org/10.3390/su16187991
Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial technology, 52(1), 1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003
Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966
Jeyabalan, J., Veluchamy, A., Kumar, A., Chandrasekar, R., & Narayanasamy, S. (2023). A review on the laccase assisted decolourization of dyes: Recent trends and research progress. Journal of the Taiwan Institute of Chemical Engineers, 151, 105081. https://doi.org/10.1016/j.jtice.2023.105081
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics, 79(2), 926-935. https://doi.org/10.1063/1.445869
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Kim, W., Mirdita, M., Levy Karin, E., Gilchrist, C. L., Schweke, H., Söding, J., ... & Steinegger, M. (2025). Rapid and sensitive protein complex alignment with Foldseek Multimer. Nature Methods, 22(3), 469-472. https://doi.org/10.1038/s41592-025 02593-7
Kumar, S. S., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and bioengineering, 83(4), 386-394. https://doi.org/10.1002/bit.10681
Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12), msae263. https://doi.org/10.1093/molbev/msae263
Kumar, V. V., Kirupha, S. D., Periyaraman, P., & Sivanesan, S. (2011). Screening and induction of laccase activity in fungal species and its application in dye decolorization. African Journal of Microbiology Research, 5(11), https://doi.org/1261 1267. 10.5897/AJMR10.894
Lettera, V., Pezzella, C., Cicatiello, P., Piscitelli, A., Giacobelli, V. G., Galano, E., ... & Sannia, G. (2016). Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chemistry, 196, 1272-1278. https://doi.org/10.1016/j.foodchem.2015.10.074
Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and detoxification of synthetic dyes by mexican strains of trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610
Li, M. C., Zhang, Y. Q., Meng, C. W., Gao, J. G., Xie, C. J., Liu, J. Y., & Xu, Y. N. (2021). Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) FA Barkley-a review. Journal of Ethnopharmacology, 267, 113476. https://doi.org/10.1016/j.jep.2020.113476
Li, Q., Feng, Y., Zhuang, S., Kang, L., & Yang, Y. (2025). Decolorization and Detoxification of Azo and Triphenylmethane Dyes Damaging Human Health by Crude Laccase from White-Rot Fungus Pleurotus ostreatus Yang1 and Molecular Docking Between Laccase and Structurally Diverse Dyes. International Journal of Molecular Sciences, 26(17), 8363. https://doi.org/10.3390/ijms26178363
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., ... & Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123-1130, https://doi.org/10.1126/science.ade2574
Loi, M., Glazunova, O., Fedorova, T., Logrieco, A. F., & Mulè, G. (2021). Fungal laccases: The forefront of enzymes for sustainability. Journal of Fungi, 7(12), 1048. https://doi.org/10.3390/jof7121048
Macellaro, G., Baratto, M. C., Piscitelli, A., Pezzella, C., Fabrizi De Biani, F., Palmese, A., ... & Sannia, G. (2014). Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Applied microbiology and biotechnology, 98, 4949-4961. https://doi.org/10.1007/s00253-013-5491-8
Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation, 11(8), 3696 3713. https://doi.org/10.1021/acs.jctc.5b00255
Malmström, B. G. (1997). Early and more recent history in the research on multi-copper oxidases. In Multi-Copper Oxidases (1-22). https://doi.org/10.1142/9789812830081_0001
Mano, N., & de Poulpiquet, A. (2017). O2 reduction in enzymatic biofuel cells. Chemical reviews, 118(5), 2392-2468. https://doi.org/10.1021/acs.chemrev.7b00220
Martins, D. S., He, Y., Eberhardt, J., Sharma, P., Bruciaferri, N., Holcomb, M., ... & Forli, S. (2025). Meeko: molecule parameterization and software interoperability for docking and beyond. https://github.com/forlilab/Meeko
Mate, D. M., & Alcalde, M. (2017). Laccase: a multi‑purpose biocatalyst at the forefront of biotechnology. Microbial biotechnology, 10(6), 1457-1467. https://doi.org/10.1111/1751-7915.12422
McGuffin, L. J., Adiyaman, R., Maghrabi, A. H., Shuid, A. N., Brackenridge, D. A., Nealon, J. O., & Philomina, L. S. (2019). IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic acids research, 47(W1), W408-W413. https://doi.org/10.1093/nar/gkz322
Mehra, R., Meyer, A. S., & Kepp, K. P. (2018). Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC advances, 8(64), 36915-36926. https://doi.org/10.1039/c8ra07138a
Mehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8(1), 17285. https://doi.org/10.1038/s41598-018-35633-8
Miele, A., Giardina, P., Notomista, E., Piscitelli, A., Sannia, G., & Faraco, V. (2010). A semi-rational approach to engineering laccase enzymes. Molecular biotechnology, 46, 149-156. https://doi.org/10.1007/s12033-010-9289-y
Mohtashami, M., Fooladi, J., Haddad-Mashadrizeh, A., & Housaindokht, M. (2019). Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Molecular biology reports, 46, 981-990. https://doi.org/10.1007/s11033 018-4555-3
Mora-Gamboa, M. P., Ferrucho-Calle, M. C., Ardila-Leal, L. D., Rojas-Ojeda, L. M., Galindo, J. F., Poutou-Piñales, R. A., ... & Quevedo-Hidalgo, B. E. (2023). Statistical improvement of rGILCC 1 and rPOXA 1B laccases activity assay conditions supported by molecular dynamics. Molecules, 28(21), 7263. https://doi.org/10.3390/molecules28217263
Mora-Gamboa, M. P., Rincón-Gamboa, S. M., Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2022). Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules, 27(14), 4436. https://doi.org/10.3390/molecules27144436
Morales-Álvarez, E. D., Rivera-Hoyos, C. M., González-Ogliastri, N., Rodríguez-Vázquez, R., Poutou-Piñales, R. A., Daza, C. E., & Pedroza-Rodríguez, A. M. (2016). Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus. Universitas Scientiarum, 21(3), 259-285. https://doi.org/10.11144/Javeriana.SC21-3.prad
Morales-Álvarez, E. D., Rivera-Hoyos, C. M., Poveda-Cuevas, S. A., Reyes-Guzmán, E. A., Pedroza-Rodríguez, A. M., Reyes-Montaño, E. A., & Poutou-Piñales, R. A. (2018). Malachite green and crystal violet decolorization by ganoderma lucidum and pleurotus ostreatus supernatant and by rGlLCC1 and rPOXA 1B concentrates: molecular docking analysis. Applied biochemistry and biotechnology, 184, 794-805. https://doi.org/10.1007/s12010-017-2560-y
Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Moscow), 72, 1136-1150. https://doi.org/10.1134/S0006297907100112
Nasir, M., Hashim, R., Sulaiman, O., Nordin, N. A., Lamaming, J., & Asim, M. (2015). Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources, 10(3). http://doi.org/10.15376/biores.10.3.Nasir
Nunes, C. S., & Kunamneni, A. (2018). Laccases—properties and applications. In Enzymes in human and animal nutrition (pp. 133-161). Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00007-1
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71
Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and environmental microbiology, 66(3), 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000
Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., ... & Im, W. (2019). CHARMM GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320-331. https://doi.org/10.1093/glycob/cwz003
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084
Pezzella, C., Giacobelli, V. G., Lettera, V., Olivieri, G., Cicatiello, P., Sannia, G., & Piscitelli, A. (2017). A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. Journal of biotechnology, 259, 175-181. https://doi.org/10.1016/j.jbiotec.2017.07.022
Piscitelli, A., Giardina, P., Mazzoni, C., & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 69, 428-439. https://doi.org/10.1007/s00253-005-0004-z
Pramanik, S., & Chaudhuri, S. (2018). Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology, 46(1), https://doi.org/10.1080/12298093.2018.1454006
Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS computational biology, . 11(12), e1004586. https://doi.org/10.1371/journal.pcbi.1004586
Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poveda-Cuevas, S. A., Reyes-Guzman, E. A., Poutou-Pinales, R. A., Reyes-Montano, E. A., ... & Cardozo-Bernal, A. M. (2015). Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLOS one, 10(1), e0116524. https://doi.org/10.1371/journal.pone.0116524
Ruiz-Dueñas, F. J., Barrasa, J. M., Sánchez-García, M., Camarero, S., Miyauchi, S., Serrano, A., ... & Martínez, A. T. (2021). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Molecular biology and evolution, 38(4), 1428-1446. https://doi.org/10.1093/molbev/msaa301
Rydén, L. (2018). Ceruloplasmin. In Copper proteins and copper enzymes (pp. 37-100). CRC Press. https://doi.org/10.1016/B978-0-12-810532-0.00009-4
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Schake, P., Bolz, S. N., Linnemann, K., & Schroeder, M. (2025). PLIP 2025: introducing protein–protein interactions to the protein–ligand interaction profiler. Nucleic Acids Research, gkaf361. https://doi.org/10.1093/nar/gkaf361
Shuid, A. N., Kempster, R., & McGuffin, L. J. (2017). ReFOLD: a server for the refinement 44 of 3D protein models guided by accurate quality estimates. Nucleic acids research, W1), W422-W428. https://doi.org/10.1093/nar/gkx249
Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., ... & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non steroidal anti-inflammatory drugs. Biochemical and biophysical research communications, 469(2), 306-312. https://doi.org/10.1016/j.bbrc.2015.11.096
Srinivasan, S., & Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of water process engineering, 22, 180-191. https://doi.org/10.1016/j.jwpe.2018.02.004
Strong, P. J., & Claus, H. (2011). Laccase: a review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373-434. https://doi.org/10.1080/10643380902945706
Thakur, S., & Gupte, A. (2015). Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Annals of microbiology, 65(1), 185-196. https://doi.org/10.1007/s13213-014-0849-4
Uziela, K., Menéndez Hurtado, D., Shu, N., Wallner, B., & Elofsson, A. (2017). ProQ3D: improved model quality assessments using deep learning. Bioinformatics, 33(10), 1578-1580. https://doi.org/10.1093/bioinformatics/btw819
Uziela, K., Shu, N., Wallner, B., & Elofsson, A. (2016). ProQ3: Improved model quality assessments using Rosetta energy terms. Scientific reports, 6(1), 33509. https://doi.org/10.1038/srep33509
Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace
Varriale, S., Delorme, A. E., Andanson, J. M., Devemy, J., Malfreyt, P., Verney, V., & Pezzella, C. (2022). Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 10(1), 572-581. https://doi.org/10.1021/acssuschemeng.1c07104
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of computational chemistry, 25(9), 1157-1174. https://doi.org/10.1002/jcc.20035
Wang, Y., Chen, T., Zhang, X., & Mwamulima, T. (2021). Removal study of crystal violet and methylene blue from aqueous solution by activated carbon embedded zero valent iron: Effect of reduction methods. Frontiers in Environmental Science, 9, 99264. https://doi.org/10.3389/fenvs.2021.799264
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, 54(1), 5-6. https://doi.org/10.1002/cpbi.3.
Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., ... & Peng, J. (2022). High resolution de novo structure prediction from primary sequence. BioRxiv, 2022-07. https://doi.org/10.1101/2022.07.21.500999
Xiao, Z., & Wedd, A. G. (2011). Metallo-oxidase enzymes: design of their active sites. Australian Journal of Chemistry, 64(3), 231-238. https://doi.org/10.1071/CH10428
Yoshida, H. (1883). LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions, 43, 472 486. https://doi.org/10.1039/CT8834300472
Zhou, Q., & Qiu, H. (2019). The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), https://doi.org/10.1016/j.xphs.2018.11.029 1366-1377
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 46 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas. Colombia
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas. Colombia
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532551978876928
spelling Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus570 - Biología1. Ciencias NaturalesABTSBiorremediaciónDinámica molecularLacasaPOXA1bTransferencia electrónicaDockingBiologíaFigurasLas lacasas fúngicas de alto potencial, como POXA1b de Pleurotus ostreatus, son biocatalizadores versátiles para oxidar sustratos aromáticos y mediar procesos de biorremediación. Este trabajo caracteriza in silico el complejo POXA1b–ABTS y propone una ruta de transferencia electrónica (ET) compatible con la reducción de O₂ a H₂O. Se construyó un modelo estructural de POXA1b con glicosilaciones y el centro multicobre completo y estados de protonación a pH 4.5. El reconocimiento de sustratos se estudió mediante docking por lotes (AutoDock Vina 1.2) de ABTS-2 y 99 colorantes industriales. Posteriormente, el complejo ABTS–POXA1b se sometió a dinámica molecular (MD) de 200 ns con el software AMBER24; se verificó estabilidad termodinámica y se realizó clústering por RMSD de proteína y ligando. El docking mostró una distribución de afinidades centrada en −8.59 kcal/mol, con un subconjunto reducido de ligandos de alta afinidad (mínimo ~−11.6 kcal/mol; Direct Blue 71). Un mapa de contactos identificó “hotspots” en PRO393, ASN207, PHE238, ASN263 y SER426 (ocupancias ≥75%). En MD, ABTS-2 permaneció anclado cerca de CuT1 mediante un enlace de hidrógeno persistente HIS456–N(azino) (≈2.14±0.21 Å; 158.7±11.4° ≥50 ns) y una red de interacciones π con PHE238, PHE331, PHE338, PRO393 e ILE453; además, el grupo sulfonato estableció múltiples enlaces de hidrógeno con el backbone de ALA329 y vecinos. El clústering del ligando estuvo dominado por tres poses que explicaron ~66% de la trayectoria, con variabilidad localizada en bucles que rodean el bolsillo. Integrando estos hallazgos, se propone una ET desde ABTS a CuT1 (coordinado por HIS394/CYS451/HIS456), seguida de transferencia intraproteica hacia el TNC y reducción de O₂, coherente con lacasas fúngicas de alto potencial. En conjunto, el “ancla” HIS456–azino y la red π emergen como determinantes de orientación y estabilidad del sustrato, con implicaciones para ingeniería de sitio activo y selección de mediadores en la decoloración de colorantes y remoción de contaminantes aromáticos.High-potential fungal laccases, such as POXA1b from Pleurotus ostreatus, are versatile biocatalysts for oxidizing aromatic substrates and mediating bioremediation processes. This work characterizes the POXA1b–ABTS complex in silico and proposes an electron transfer (ET) pathway compatible with the reduction of O2 to H2O. A structural model of POXA1b was constructed with glycosylations and the complete multi-copper center and protonation states at pH 4.5. Substrate recognition was studied by batch docking (AutoDock Vina 1.2) of ABTS-2 and 99 industrial dyes. Subsequently, the ABTS–POXA1b complex underwent 200 ns molecular dynamics (MD) with AMBER24 software; thermodynamic stability was verified, and clustering was performed by protein and ligand RMSD. Docking showed an affinity distribution centered at −8.59 kcal/mol, with a small subset of high-affinity ligands (minimum ~−11.6 kcal/mol; Direct Blue 71). A contact map identified hotspots at PRO393, ASN207, PHE238, ASN263, and SER426 (occupancies ≥75%). In MD, ABTS-2 remained anchored near CuT1 via a persistent HIS456–N(azino) hydrogen bond (≈2.14±0.21 Å; 158.7±11.4° ≥50 ns) and a network of π interactions with PHE238, PHE331, PHE338, PRO393, and ILE453; in addition, the sulfonate group established multiple hydrogen bonds with the backbone of ALA329 and neighbors. Ligand clustering was dominated by three poses that explained ~66% of the trajectory, with variability localized in loops surrounding the pocket. Integrating these findings, an ET from ABTS to CuT1 (coordinated by HIS394/CYS451/HIS456) is proposed, followed by intraprotein transfer to TNC and O2 reduction, consistent with high-potential fungal laccases. Together, the HIS456–azino “anchor” and the π network emerge as determinants of substrate orientation and stability, with implications for active site engineering and mediator selection in dye decolorization and aromatic contaminant removal.Resumen -- Introducción -- Objetivos -- Objetivo General -- Objetivos Específicos -- Materiales y métodos -- Modelado computacional -- Estudio de acoplamiento -- Simulación de dinámica molecular -- Análisis de resultados -- Resultados -- Modelado computacional -- Estudio de acoplamiento -- Simulación de dinámica molecular -- Discusión -- Conclusiones -- ReferenciasPregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, Caldas. ColombiaBiologíaMorales-Álvarez, Edwin DavidRodas Rodríguez, José MauricioGrupo de Química Teórica y Bioinformática - QTB (Categoría B)Gil Traslaviña, Natalia2025-11-14T19:36:19Z2025-11-14T19:36:19Z2025-11-14Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis46 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26181Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25. https://doi.org/10.1016/j.softx.2015.06.001Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., ... & Fatma, T. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PloS one, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144Agrawal, K., & Verma, P. (2020). Multicopper oxidase laccases with distinguished spectral properties: a new outlook. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03972.Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410, https://doi.org/10.1016/S0022-2836(05)80360-2Ardila-Leal, L. D., Monterey-Gutiérrez, P. A., Poutou-Piñales, R. A., Quevedo-Hidalgo, B. E., Galindo, J. F., & Pedroza-Rodríguez, A. M. (2021). Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC biotechnology, 21(1), 37. https://doi.org/10.1186/s12896-021-00698-3Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera De Los Santos, M., ... & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial cell factories, 18, 1-33. https://doi.org/10.1186/s12934-019-1248-0Ashrafi, S. D., Rezaei, S., Forootanfar, H., Mahvi, A. H., & Faramarzi, M. A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173-181. https://doi.org/10.1016/j.ibiod.2013.07.006Aza, P., & Camarero, S. (2023). Fungal laccases: Fundamentals, engineering and classification update. Biomolecules, 13(12), 1716. https://doi.org/10.3390/biom13121716Aza, P., Molpeceres, G., Vind, J., & Camarero, S. (2023). Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum sl. Computational and Structural Journal, 21, Biotechnology https://doi.org/10.1016/j.csbj.2023.01.030Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track 1041-1053. neural Science, 373(6557), network. https://doi.org/10.1126/science.abj8754Bakratsas, G., Antoniadis, K., Athanasiou, P. E., Katapodis, P., & Stamatis, H. (2023). Laccase and biomass production via submerged cultivation of Pleurotus ostreatus using wine lees. Biomass, 4(1), 1-22. https://doi.org/10.3390/biomass4010001BIOVIA. Dassault Systèmes. Discovery Studio Visualizer, v25. 1. 0. 24284; Dassault Systèmes: 871-876. San Diego, CA, USA; 2021. Available online: https://discover.3ds.com/discovery-studio-visualizer-downloadCascelli, N., Lettera, V., Sannia, G., Gotor‑Fernández, V., & Lavandera, I. (2023). Laccases from Pleurotus ostreatus applied to the oxidation of furfuryl alcohol for the synthesis of key compounds for polymer industry. ChemSusChem, 16(13), e202300226. https://doi.org/10.1002/cssc.202300226Case, D. A., Cerutti, D. S., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghazimirsaeed, M., ... & Merz Jr, K. M. (2025). Recent Developments in Amber Biomolecular Simulations. Journal of Chemical Information and Modeling, 65(15), 7835-7843. https://doi.org/10.1021/acs.jcim.5c01063Chopra, N. K., Singhal, D., Saini, R., & Sondhi, S. (2023). Structure analysis and molecular docking studies of laccase from “Bacillus licheniformis NS2324”. Sustainable Chemistry for the Environment, 1, 100004. https://doi.org/10.1016/j.scenv.2023.100004Christensen, N. J., & Kepp, K. P. (2014). Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state. Journal of Molecular Catalysis B: Enzymatic, 100, 68-77. https://doi.org/10.1016/j.molcatb.2013.11.017Dagar, V. K., Babbal, Mohanty, S., & Khasa, Y. P. (2022). Effect of N-glycosylation on secretion, stability, and biological activity of recombinant human interleukin-3 (hIL-3) in Pichia pastoris. 3 Biotech, 12(9), 221. https://doi.org/10.1007/s13205-022-03293-1Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., ... & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic acids research, 39(suppl_2), W13-W17. https://doi.org/10.1093/nar/gkr245Díaz, R., Díaz-Godínez, G., Anducho-Reyes, M. A., Mercado-Flores, Y., & Herrera-Zúñiga, L. D. (2018). In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Frontiers in Microbiology, 9, 2743. https://doi.org/10.3389/fmicb.2018.02743Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203Garzillo, A. M., Colao, M. C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., ... & Sannia, G. (2001). Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. Journal of protein chemistry, 20, 191-201. https://doi.org/10.1023/A:1010954812955Giacobelli, V. G., Monza, E., Lucas, M. F., Pezzella, C., Piscitelli, A., Guallar, V., & Sannia, G. (2017). Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering–the case of POXA1b. Catalysis Science & Technology, 7(2), 515-523. https://doi.org/10.1039/C6CY02410FGiardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., CENNAMO, G., & Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochemical Journal, 341(3), 655-663. https://doi.org/10.1042/bj3410655Gräff, M., Buchholz, P. C., Le Roes‑Hill, M., & Pleiss, J. (2020). Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins: Structure, Function, and Bioinformatics, 88(10), 1329-1339. https://doi.org/10.1002/prot.25952Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007Han, W., Zhao, Y., Chen, Q., Xie, Y., Zhang, M., Yao, H., ... & Zhang, Y. (2024). Laccase surface-display for environmental tetracycline removal: From structure to function. Chemosphere, 365, 143286. https://doi.org/10.1016/j.chemosphere.2024.143286Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95. https://doi.org/10.1109/MCSE.2007.55Islam, M. N., Toprak-Cavdur, T., Islam, S., Tarannum, F., & Walters, K. B. (2024). Reactive Dye Wash-Off Processing of Cotton Fabrics Using Polymer Dye Transfer Inhibitors for Sustainable Dyeing. Sustainability, 16(18), 7991. https://doi.org/10.3390/su16187991Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial technology, 52(1), 1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966Jeyabalan, J., Veluchamy, A., Kumar, A., Chandrasekar, R., & Narayanasamy, S. (2023). A review on the laccase assisted decolourization of dyes: Recent trends and research progress. Journal of the Taiwan Institute of Chemical Engineers, 151, 105081. https://doi.org/10.1016/j.jtice.2023.105081Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics, 79(2), 926-935. https://doi.org/10.1063/1.445869Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2Kim, W., Mirdita, M., Levy Karin, E., Gilchrist, C. L., Schweke, H., Söding, J., ... & Steinegger, M. (2025). Rapid and sensitive protein complex alignment with Foldseek Multimer. Nature Methods, 22(3), 469-472. https://doi.org/10.1038/s41592-025 02593-7Kumar, S. S., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and bioengineering, 83(4), 386-394. https://doi.org/10.1002/bit.10681Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12), msae263. https://doi.org/10.1093/molbev/msae263Kumar, V. V., Kirupha, S. D., Periyaraman, P., & Sivanesan, S. (2011). Screening and induction of laccase activity in fungal species and its application in dye decolorization. African Journal of Microbiology Research, 5(11), https://doi.org/1261 1267. 10.5897/AJMR10.894Lettera, V., Pezzella, C., Cicatiello, P., Piscitelli, A., Giacobelli, V. G., Galano, E., ... & Sannia, G. (2016). Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chemistry, 196, 1272-1278. https://doi.org/10.1016/j.foodchem.2015.10.074Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and detoxification of synthetic dyes by mexican strains of trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610Li, M. C., Zhang, Y. Q., Meng, C. W., Gao, J. G., Xie, C. J., Liu, J. Y., & Xu, Y. N. (2021). Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) FA Barkley-a review. Journal of Ethnopharmacology, 267, 113476. https://doi.org/10.1016/j.jep.2020.113476Li, Q., Feng, Y., Zhuang, S., Kang, L., & Yang, Y. (2025). Decolorization and Detoxification of Azo and Triphenylmethane Dyes Damaging Human Health by Crude Laccase from White-Rot Fungus Pleurotus ostreatus Yang1 and Molecular Docking Between Laccase and Structurally Diverse Dyes. International Journal of Molecular Sciences, 26(17), 8363. https://doi.org/10.3390/ijms26178363Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., ... & Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123-1130, https://doi.org/10.1126/science.ade2574Loi, M., Glazunova, O., Fedorova, T., Logrieco, A. F., & Mulè, G. (2021). Fungal laccases: The forefront of enzymes for sustainability. Journal of Fungi, 7(12), 1048. https://doi.org/10.3390/jof7121048Macellaro, G., Baratto, M. C., Piscitelli, A., Pezzella, C., Fabrizi De Biani, F., Palmese, A., ... & Sannia, G. (2014). Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Applied microbiology and biotechnology, 98, 4949-4961. https://doi.org/10.1007/s00253-013-5491-8Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation, 11(8), 3696 3713. https://doi.org/10.1021/acs.jctc.5b00255Malmström, B. G. (1997). Early and more recent history in the research on multi-copper oxidases. In Multi-Copper Oxidases (1-22). https://doi.org/10.1142/9789812830081_0001Mano, N., & de Poulpiquet, A. (2017). O2 reduction in enzymatic biofuel cells. Chemical reviews, 118(5), 2392-2468. https://doi.org/10.1021/acs.chemrev.7b00220Martins, D. S., He, Y., Eberhardt, J., Sharma, P., Bruciaferri, N., Holcomb, M., ... & Forli, S. (2025). Meeko: molecule parameterization and software interoperability for docking and beyond. https://github.com/forlilab/MeekoMate, D. M., & Alcalde, M. (2017). Laccase: a multi‑purpose biocatalyst at the forefront of biotechnology. Microbial biotechnology, 10(6), 1457-1467. https://doi.org/10.1111/1751-7915.12422McGuffin, L. J., Adiyaman, R., Maghrabi, A. H., Shuid, A. N., Brackenridge, D. A., Nealon, J. O., & Philomina, L. S. (2019). IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic acids research, 47(W1), W408-W413. https://doi.org/10.1093/nar/gkz322Mehra, R., Meyer, A. S., & Kepp, K. P. (2018). Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC advances, 8(64), 36915-36926. https://doi.org/10.1039/c8ra07138aMehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8(1), 17285. https://doi.org/10.1038/s41598-018-35633-8Miele, A., Giardina, P., Notomista, E., Piscitelli, A., Sannia, G., & Faraco, V. (2010). A semi-rational approach to engineering laccase enzymes. Molecular biotechnology, 46, 149-156. https://doi.org/10.1007/s12033-010-9289-yMohtashami, M., Fooladi, J., Haddad-Mashadrizeh, A., & Housaindokht, M. (2019). Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Molecular biology reports, 46, 981-990. https://doi.org/10.1007/s11033 018-4555-3Mora-Gamboa, M. P., Ferrucho-Calle, M. C., Ardila-Leal, L. D., Rojas-Ojeda, L. M., Galindo, J. F., Poutou-Piñales, R. A., ... & Quevedo-Hidalgo, B. E. (2023). Statistical improvement of rGILCC 1 and rPOXA 1B laccases activity assay conditions supported by molecular dynamics. Molecules, 28(21), 7263. https://doi.org/10.3390/molecules28217263Mora-Gamboa, M. P., Rincón-Gamboa, S. M., Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2022). Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules, 27(14), 4436. https://doi.org/10.3390/molecules27144436Morales-Álvarez, E. D., Rivera-Hoyos, C. M., González-Ogliastri, N., Rodríguez-Vázquez, R., Poutou-Piñales, R. A., Daza, C. E., & Pedroza-Rodríguez, A. M. (2016). Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus. Universitas Scientiarum, 21(3), 259-285. https://doi.org/10.11144/Javeriana.SC21-3.pradMorales-Álvarez, E. D., Rivera-Hoyos, C. M., Poveda-Cuevas, S. A., Reyes-Guzmán, E. A., Pedroza-Rodríguez, A. M., Reyes-Montaño, E. A., & Poutou-Piñales, R. A. (2018). Malachite green and crystal violet decolorization by ganoderma lucidum and pleurotus ostreatus supernatant and by rGlLCC1 and rPOXA 1B concentrates: molecular docking analysis. Applied biochemistry and biotechnology, 184, 794-805. https://doi.org/10.1007/s12010-017-2560-yMorozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Moscow), 72, 1136-1150. https://doi.org/10.1134/S0006297907100112Nasir, M., Hashim, R., Sulaiman, O., Nordin, N. A., Lamaming, J., & Asim, M. (2015). Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources, 10(3). http://doi.org/10.15376/biores.10.3.NasirNunes, C. S., & Kunamneni, A. (2018). Laccases—properties and applications. In Enzymes in human and animal nutrition (pp. 133-161). Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00007-1Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and environmental microbiology, 66(3), 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., ... & Im, W. (2019). CHARMM GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320-331. https://doi.org/10.1093/glycob/cwz003Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084Pezzella, C., Giacobelli, V. G., Lettera, V., Olivieri, G., Cicatiello, P., Sannia, G., & Piscitelli, A. (2017). A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. Journal of biotechnology, 259, 175-181. https://doi.org/10.1016/j.jbiotec.2017.07.022Piscitelli, A., Giardina, P., Mazzoni, C., & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 69, 428-439. https://doi.org/10.1007/s00253-005-0004-zPramanik, S., & Chaudhuri, S. (2018). Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology, 46(1), https://doi.org/10.1080/12298093.2018.1454006Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS computational biology, . 11(12), e1004586. https://doi.org/10.1371/journal.pcbi.1004586Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poveda-Cuevas, S. A., Reyes-Guzman, E. A., Poutou-Pinales, R. A., Reyes-Montano, E. A., ... & Cardozo-Bernal, A. M. (2015). Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLOS one, 10(1), e0116524. https://doi.org/10.1371/journal.pone.0116524Ruiz-Dueñas, F. J., Barrasa, J. M., Sánchez-García, M., Camarero, S., Miyauchi, S., Serrano, A., ... & Martínez, A. T. (2021). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Molecular biology and evolution, 38(4), 1428-1446. https://doi.org/10.1093/molbev/msaa301Rydén, L. (2018). Ceruloplasmin. In Copper proteins and copper enzymes (pp. 37-100). CRC Press. https://doi.org/10.1016/B978-0-12-810532-0.00009-4Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Schake, P., Bolz, S. N., Linnemann, K., & Schroeder, M. (2025). PLIP 2025: introducing protein–protein interactions to the protein–ligand interaction profiler. Nucleic Acids Research, gkaf361. https://doi.org/10.1093/nar/gkaf361Shuid, A. N., Kempster, R., & McGuffin, L. J. (2017). ReFOLD: a server for the refinement 44 of 3D protein models guided by accurate quality estimates. Nucleic acids research, W1), W422-W428. https://doi.org/10.1093/nar/gkx249Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., ... & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non steroidal anti-inflammatory drugs. Biochemical and biophysical research communications, 469(2), 306-312. https://doi.org/10.1016/j.bbrc.2015.11.096Srinivasan, S., & Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of water process engineering, 22, 180-191. https://doi.org/10.1016/j.jwpe.2018.02.004Strong, P. J., & Claus, H. (2011). Laccase: a review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373-434. https://doi.org/10.1080/10643380902945706Thakur, S., & Gupte, A. (2015). Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Annals of microbiology, 65(1), 185-196. https://doi.org/10.1007/s13213-014-0849-4Uziela, K., Menéndez Hurtado, D., Shu, N., Wallner, B., & Elofsson, A. (2017). ProQ3D: improved model quality assessments using deep learning. Bioinformatics, 33(10), 1578-1580. https://doi.org/10.1093/bioinformatics/btw819Uziela, K., Shu, N., Wallner, B., & Elofsson, A. (2016). ProQ3: Improved model quality assessments using Rosetta energy terms. Scientific reports, 6(1), 33509. https://doi.org/10.1038/srep33509Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpaceVarriale, S., Delorme, A. E., Andanson, J. M., Devemy, J., Malfreyt, P., Verney, V., & Pezzella, C. (2022). Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 10(1), 572-581. https://doi.org/10.1021/acssuschemeng.1c07104Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of computational chemistry, 25(9), 1157-1174. https://doi.org/10.1002/jcc.20035Wang, Y., Chen, T., Zhang, X., & Mwamulima, T. (2021). Removal study of crystal violet and methylene blue from aqueous solution by activated carbon embedded zero valent iron: Effect of reduction methods. Frontiers in Environmental Science, 9, 99264. https://doi.org/10.3389/fenvs.2021.799264Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, 54(1), 5-6. https://doi.org/10.1002/cpbi.3.Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., ... & Peng, J. (2022). High resolution de novo structure prediction from primary sequence. BioRxiv, 2022-07. https://doi.org/10.1101/2022.07.21.500999Xiao, Z., & Wedd, A. G. (2011). Metallo-oxidase enzymes: design of their active sites. Australian Journal of Chemistry, 64(3), 231-238. https://doi.org/10.1071/CH10428Yoshida, H. (1883). LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions, 43, 472 486. https://doi.org/10.1039/CT8834300472Zhou, Q., & Qiu, H. (2019). The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), https://doi.org/10.1016/j.xphs.2018.11.029 1366-1377https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/261812025-11-15T08:01:22Z