Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus
Figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/26181
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/26181
- Palabra clave:
- 570 - Biología
1. Ciencias Naturales
ABTS
Biorremediación
Dinámica molecular
Lacasa
POXA1b
Transferencia electrónica
Docking
Biología
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_21f9ea9a98e5065d7037ba04e412ca44 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/26181 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| title |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| spellingShingle |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus 570 - Biología 1. Ciencias Naturales ABTS Biorremediación Dinámica molecular Lacasa POXA1b Transferencia electrónica Docking Biología |
| title_short |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| title_full |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| title_fullStr |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| title_full_unstemmed |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| title_sort |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus |
| dc.contributor.none.fl_str_mv |
Morales-Álvarez, Edwin David Rodas Rodríguez, José Mauricio Grupo de Química Teórica y Bioinformática - QTB (Categoría B) |
| dc.subject.none.fl_str_mv |
570 - Biología 1. Ciencias Naturales ABTS Biorremediación Dinámica molecular Lacasa POXA1b Transferencia electrónica Docking Biología |
| topic |
570 - Biología 1. Ciencias Naturales ABTS Biorremediación Dinámica molecular Lacasa POXA1b Transferencia electrónica Docking Biología |
| description |
Figuras |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-14T19:36:19Z 2025-11-14T19:36:19Z 2025-11-14 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26181 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26181 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25. https://doi.org/10.1016/j.softx.2015.06.001 Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., ... & Fatma, T. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PloS one, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144 Agrawal, K., & Verma, P. (2020). Multicopper oxidase laccases with distinguished spectral properties: a new outlook. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03972. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410, https://doi.org/10.1016/S0022-2836(05)80360-2 Ardila-Leal, L. D., Monterey-Gutiérrez, P. A., Poutou-Piñales, R. A., Quevedo-Hidalgo, B. E., Galindo, J. F., & Pedroza-Rodríguez, A. M. (2021). Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC biotechnology, 21(1), 37. https://doi.org/10.1186/s12896-021-00698-3 Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera De Los Santos, M., ... & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial cell factories, 18, 1-33. https://doi.org/10.1186/s12934-019-1248-0 Ashrafi, S. D., Rezaei, S., Forootanfar, H., Mahvi, A. H., & Faramarzi, M. A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173-181. https://doi.org/10.1016/j.ibiod.2013.07.006 Aza, P., & Camarero, S. (2023). Fungal laccases: Fundamentals, engineering and classification update. Biomolecules, 13(12), 1716. https://doi.org/10.3390/biom13121716 Aza, P., Molpeceres, G., Vind, J., & Camarero, S. (2023). Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum sl. Computational and Structural Journal, 21, Biotechnology https://doi.org/10.1016/j.csbj.2023.01.030 Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track 1041-1053. neural Science, 373(6557), network. https://doi.org/10.1126/science.abj8754 Bakratsas, G., Antoniadis, K., Athanasiou, P. E., Katapodis, P., & Stamatis, H. (2023). Laccase and biomass production via submerged cultivation of Pleurotus ostreatus using wine lees. Biomass, 4(1), 1-22. https://doi.org/10.3390/biomass4010001 BIOVIA. Dassault Systèmes. Discovery Studio Visualizer, v25. 1. 0. 24284; Dassault Systèmes: 871-876. San Diego, CA, USA; 2021. Available online: https://discover.3ds.com/discovery-studio-visualizer-download Cascelli, N., Lettera, V., Sannia, G., Gotor‑Fernández, V., & Lavandera, I. (2023). Laccases from Pleurotus ostreatus applied to the oxidation of furfuryl alcohol for the synthesis of key compounds for polymer industry. ChemSusChem, 16(13), e202300226. https://doi.org/10.1002/cssc.202300226 Case, D. A., Cerutti, D. S., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghazimirsaeed, M., ... & Merz Jr, K. M. (2025). Recent Developments in Amber Biomolecular Simulations. Journal of Chemical Information and Modeling, 65(15), 7835-7843. https://doi.org/10.1021/acs.jcim.5c01063 Chopra, N. K., Singhal, D., Saini, R., & Sondhi, S. (2023). Structure analysis and molecular docking studies of laccase from “Bacillus licheniformis NS2324”. Sustainable Chemistry for the Environment, 1, 100004. https://doi.org/10.1016/j.scenv.2023.100004 Christensen, N. J., & Kepp, K. P. (2014). Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state. Journal of Molecular Catalysis B: Enzymatic, 100, 68-77. https://doi.org/10.1016/j.molcatb.2013.11.017 Dagar, V. K., Babbal, Mohanty, S., & Khasa, Y. P. (2022). Effect of N-glycosylation on secretion, stability, and biological activity of recombinant human interleukin-3 (hIL-3) in Pichia pastoris. 3 Biotech, 12(9), 221. https://doi.org/10.1007/s13205-022-03293-1 Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., ... & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic acids research, 39(suppl_2), W13-W17. https://doi.org/10.1093/nar/gkr245 Díaz, R., Díaz-Godínez, G., Anducho-Reyes, M. A., Mercado-Flores, Y., & Herrera-Zúñiga, L. D. (2018). In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Frontiers in Microbiology, 9, 2743. https://doi.org/10.3389/fmicb.2018.02743 Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203 Garzillo, A. M., Colao, M. C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., ... & Sannia, G. (2001). Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. Journal of protein chemistry, 20, 191-201. https://doi.org/10.1023/A:1010954812955 Giacobelli, V. G., Monza, E., Lucas, M. F., Pezzella, C., Piscitelli, A., Guallar, V., & Sannia, G. (2017). Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering–the case of POXA1b. Catalysis Science & Technology, 7(2), 515-523. https://doi.org/10.1039/C6CY02410F Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., CENNAMO, G., & Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochemical Journal, 341(3), 655-663. https://doi.org/10.1042/bj3410655 Gräff, M., Buchholz, P. C., Le Roes‑Hill, M., & Pleiss, J. (2020). Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins: Structure, Function, and Bioinformatics, 88(10), 1329-1339. https://doi.org/10.1002/prot.25952 Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007 Han, W., Zhao, Y., Chen, Q., Xie, Y., Zhang, M., Yao, H., ... & Zhang, Y. (2024). Laccase surface-display for environmental tetracycline removal: From structure to function. Chemosphere, 365, 143286. https://doi.org/10.1016/j.chemosphere.2024.143286 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95. https://doi.org/10.1109/MCSE.2007.55 Islam, M. N., Toprak-Cavdur, T., Islam, S., Tarannum, F., & Walters, K. B. (2024). Reactive Dye Wash-Off Processing of Cotton Fabrics Using Polymer Dye Transfer Inhibitors for Sustainable Dyeing. Sustainability, 16(18), 7991. https://doi.org/10.3390/su16187991 Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial technology, 52(1), 1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003 Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966 Jeyabalan, J., Veluchamy, A., Kumar, A., Chandrasekar, R., & Narayanasamy, S. (2023). A review on the laccase assisted decolourization of dyes: Recent trends and research progress. Journal of the Taiwan Institute of Chemical Engineers, 151, 105081. https://doi.org/10.1016/j.jtice.2023.105081 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics, 79(2), 926-935. https://doi.org/10.1063/1.445869 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2 Kim, W., Mirdita, M., Levy Karin, E., Gilchrist, C. L., Schweke, H., Söding, J., ... & Steinegger, M. (2025). Rapid and sensitive protein complex alignment with Foldseek Multimer. Nature Methods, 22(3), 469-472. https://doi.org/10.1038/s41592-025 02593-7 Kumar, S. S., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and bioengineering, 83(4), 386-394. https://doi.org/10.1002/bit.10681 Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12), msae263. https://doi.org/10.1093/molbev/msae263 Kumar, V. V., Kirupha, S. D., Periyaraman, P., & Sivanesan, S. (2011). Screening and induction of laccase activity in fungal species and its application in dye decolorization. African Journal of Microbiology Research, 5(11), https://doi.org/1261 1267. 10.5897/AJMR10.894 Lettera, V., Pezzella, C., Cicatiello, P., Piscitelli, A., Giacobelli, V. G., Galano, E., ... & Sannia, G. (2016). Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chemistry, 196, 1272-1278. https://doi.org/10.1016/j.foodchem.2015.10.074 Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and detoxification of synthetic dyes by mexican strains of trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610 Li, M. C., Zhang, Y. Q., Meng, C. W., Gao, J. G., Xie, C. J., Liu, J. Y., & Xu, Y. N. (2021). Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) FA Barkley-a review. Journal of Ethnopharmacology, 267, 113476. https://doi.org/10.1016/j.jep.2020.113476 Li, Q., Feng, Y., Zhuang, S., Kang, L., & Yang, Y. (2025). Decolorization and Detoxification of Azo and Triphenylmethane Dyes Damaging Human Health by Crude Laccase from White-Rot Fungus Pleurotus ostreatus Yang1 and Molecular Docking Between Laccase and Structurally Diverse Dyes. International Journal of Molecular Sciences, 26(17), 8363. https://doi.org/10.3390/ijms26178363 Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., ... & Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123-1130, https://doi.org/10.1126/science.ade2574 Loi, M., Glazunova, O., Fedorova, T., Logrieco, A. F., & Mulè, G. (2021). Fungal laccases: The forefront of enzymes for sustainability. Journal of Fungi, 7(12), 1048. https://doi.org/10.3390/jof7121048 Macellaro, G., Baratto, M. C., Piscitelli, A., Pezzella, C., Fabrizi De Biani, F., Palmese, A., ... & Sannia, G. (2014). Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Applied microbiology and biotechnology, 98, 4949-4961. https://doi.org/10.1007/s00253-013-5491-8 Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation, 11(8), 3696 3713. https://doi.org/10.1021/acs.jctc.5b00255 Malmström, B. G. (1997). Early and more recent history in the research on multi-copper oxidases. In Multi-Copper Oxidases (1-22). https://doi.org/10.1142/9789812830081_0001 Mano, N., & de Poulpiquet, A. (2017). O2 reduction in enzymatic biofuel cells. Chemical reviews, 118(5), 2392-2468. https://doi.org/10.1021/acs.chemrev.7b00220 Martins, D. S., He, Y., Eberhardt, J., Sharma, P., Bruciaferri, N., Holcomb, M., ... & Forli, S. (2025). Meeko: molecule parameterization and software interoperability for docking and beyond. https://github.com/forlilab/Meeko Mate, D. M., & Alcalde, M. (2017). Laccase: a multi‑purpose biocatalyst at the forefront of biotechnology. Microbial biotechnology, 10(6), 1457-1467. https://doi.org/10.1111/1751-7915.12422 McGuffin, L. J., Adiyaman, R., Maghrabi, A. H., Shuid, A. N., Brackenridge, D. A., Nealon, J. O., & Philomina, L. S. (2019). IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic acids research, 47(W1), W408-W413. https://doi.org/10.1093/nar/gkz322 Mehra, R., Meyer, A. S., & Kepp, K. P. (2018). Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC advances, 8(64), 36915-36926. https://doi.org/10.1039/c8ra07138a Mehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8(1), 17285. https://doi.org/10.1038/s41598-018-35633-8 Miele, A., Giardina, P., Notomista, E., Piscitelli, A., Sannia, G., & Faraco, V. (2010). A semi-rational approach to engineering laccase enzymes. Molecular biotechnology, 46, 149-156. https://doi.org/10.1007/s12033-010-9289-y Mohtashami, M., Fooladi, J., Haddad-Mashadrizeh, A., & Housaindokht, M. (2019). Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Molecular biology reports, 46, 981-990. https://doi.org/10.1007/s11033 018-4555-3 Mora-Gamboa, M. P., Ferrucho-Calle, M. C., Ardila-Leal, L. D., Rojas-Ojeda, L. M., Galindo, J. F., Poutou-Piñales, R. A., ... & Quevedo-Hidalgo, B. E. (2023). Statistical improvement of rGILCC 1 and rPOXA 1B laccases activity assay conditions supported by molecular dynamics. Molecules, 28(21), 7263. https://doi.org/10.3390/molecules28217263 Mora-Gamboa, M. P., Rincón-Gamboa, S. M., Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2022). Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules, 27(14), 4436. https://doi.org/10.3390/molecules27144436 Morales-Álvarez, E. D., Rivera-Hoyos, C. M., González-Ogliastri, N., Rodríguez-Vázquez, R., Poutou-Piñales, R. A., Daza, C. E., & Pedroza-Rodríguez, A. M. (2016). Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus. Universitas Scientiarum, 21(3), 259-285. https://doi.org/10.11144/Javeriana.SC21-3.prad Morales-Álvarez, E. D., Rivera-Hoyos, C. M., Poveda-Cuevas, S. A., Reyes-Guzmán, E. A., Pedroza-Rodríguez, A. M., Reyes-Montaño, E. A., & Poutou-Piñales, R. A. (2018). Malachite green and crystal violet decolorization by ganoderma lucidum and pleurotus ostreatus supernatant and by rGlLCC1 and rPOXA 1B concentrates: molecular docking analysis. Applied biochemistry and biotechnology, 184, 794-805. https://doi.org/10.1007/s12010-017-2560-y Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Moscow), 72, 1136-1150. https://doi.org/10.1134/S0006297907100112 Nasir, M., Hashim, R., Sulaiman, O., Nordin, N. A., Lamaming, J., & Asim, M. (2015). Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources, 10(3). http://doi.org/10.15376/biores.10.3.Nasir Nunes, C. S., & Kunamneni, A. (2018). Laccases—properties and applications. In Enzymes in human and animal nutrition (pp. 133-161). Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00007-1 Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71 Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and environmental microbiology, 66(3), 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000 Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., ... & Im, W. (2019). CHARMM GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320-331. https://doi.org/10.1093/glycob/cwz003 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084 Pezzella, C., Giacobelli, V. G., Lettera, V., Olivieri, G., Cicatiello, P., Sannia, G., & Piscitelli, A. (2017). A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. Journal of biotechnology, 259, 175-181. https://doi.org/10.1016/j.jbiotec.2017.07.022 Piscitelli, A., Giardina, P., Mazzoni, C., & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 69, 428-439. https://doi.org/10.1007/s00253-005-0004-z Pramanik, S., & Chaudhuri, S. (2018). Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology, 46(1), https://doi.org/10.1080/12298093.2018.1454006 Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS computational biology, . 11(12), e1004586. https://doi.org/10.1371/journal.pcbi.1004586 Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poveda-Cuevas, S. A., Reyes-Guzman, E. A., Poutou-Pinales, R. A., Reyes-Montano, E. A., ... & Cardozo-Bernal, A. M. (2015). Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLOS one, 10(1), e0116524. https://doi.org/10.1371/journal.pone.0116524 Ruiz-Dueñas, F. J., Barrasa, J. M., Sánchez-García, M., Camarero, S., Miyauchi, S., Serrano, A., ... & Martínez, A. T. (2021). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Molecular biology and evolution, 38(4), 1428-1446. https://doi.org/10.1093/molbev/msaa301 Rydén, L. (2018). Ceruloplasmin. In Copper proteins and copper enzymes (pp. 37-100). CRC Press. https://doi.org/10.1016/B978-0-12-810532-0.00009-4 Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 Schake, P., Bolz, S. N., Linnemann, K., & Schroeder, M. (2025). PLIP 2025: introducing protein–protein interactions to the protein–ligand interaction profiler. Nucleic Acids Research, gkaf361. https://doi.org/10.1093/nar/gkaf361 Shuid, A. N., Kempster, R., & McGuffin, L. J. (2017). ReFOLD: a server for the refinement 44 of 3D protein models guided by accurate quality estimates. Nucleic acids research, W1), W422-W428. https://doi.org/10.1093/nar/gkx249 Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., ... & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non steroidal anti-inflammatory drugs. Biochemical and biophysical research communications, 469(2), 306-312. https://doi.org/10.1016/j.bbrc.2015.11.096 Srinivasan, S., & Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of water process engineering, 22, 180-191. https://doi.org/10.1016/j.jwpe.2018.02.004 Strong, P. J., & Claus, H. (2011). Laccase: a review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373-434. https://doi.org/10.1080/10643380902945706 Thakur, S., & Gupte, A. (2015). Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Annals of microbiology, 65(1), 185-196. https://doi.org/10.1007/s13213-014-0849-4 Uziela, K., Menéndez Hurtado, D., Shu, N., Wallner, B., & Elofsson, A. (2017). ProQ3D: improved model quality assessments using deep learning. Bioinformatics, 33(10), 1578-1580. https://doi.org/10.1093/bioinformatics/btw819 Uziela, K., Shu, N., Wallner, B., & Elofsson, A. (2016). ProQ3: Improved model quality assessments using Rosetta energy terms. Scientific reports, 6(1), 33509. https://doi.org/10.1038/srep33509 Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace Varriale, S., Delorme, A. E., Andanson, J. M., Devemy, J., Malfreyt, P., Verney, V., & Pezzella, C. (2022). Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 10(1), 572-581. https://doi.org/10.1021/acssuschemeng.1c07104 Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of computational chemistry, 25(9), 1157-1174. https://doi.org/10.1002/jcc.20035 Wang, Y., Chen, T., Zhang, X., & Mwamulima, T. (2021). Removal study of crystal violet and methylene blue from aqueous solution by activated carbon embedded zero valent iron: Effect of reduction methods. Frontiers in Environmental Science, 9, 99264. https://doi.org/10.3389/fenvs.2021.799264 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427 Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, 54(1), 5-6. https://doi.org/10.1002/cpbi.3. Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., ... & Peng, J. (2022). High resolution de novo structure prediction from primary sequence. BioRxiv, 2022-07. https://doi.org/10.1101/2022.07.21.500999 Xiao, Z., & Wedd, A. G. (2011). Metallo-oxidase enzymes: design of their active sites. Australian Journal of Chemistry, 64(3), 231-238. https://doi.org/10.1071/CH10428 Yoshida, H. (1883). LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions, 43, 472 486. https://doi.org/10.1039/CT8834300472 Zhou, Q., & Qiu, H. (2019). The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), https://doi.org/10.1016/j.xphs.2018.11.029 1366-1377 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
46 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas. Colombia Biología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas. Colombia Biología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532551978876928 |
| spelling |
Aproximación in silico al mecanismo de reacción del complejo lacasa POXA1b – ABTS de Pleurotus ostreatus570 - Biología1. Ciencias NaturalesABTSBiorremediaciónDinámica molecularLacasaPOXA1bTransferencia electrónicaDockingBiologíaFigurasLas lacasas fúngicas de alto potencial, como POXA1b de Pleurotus ostreatus, son biocatalizadores versátiles para oxidar sustratos aromáticos y mediar procesos de biorremediación. Este trabajo caracteriza in silico el complejo POXA1b–ABTS y propone una ruta de transferencia electrónica (ET) compatible con la reducción de O₂ a H₂O. Se construyó un modelo estructural de POXA1b con glicosilaciones y el centro multicobre completo y estados de protonación a pH 4.5. El reconocimiento de sustratos se estudió mediante docking por lotes (AutoDock Vina 1.2) de ABTS-2 y 99 colorantes industriales. Posteriormente, el complejo ABTS–POXA1b se sometió a dinámica molecular (MD) de 200 ns con el software AMBER24; se verificó estabilidad termodinámica y se realizó clústering por RMSD de proteína y ligando. El docking mostró una distribución de afinidades centrada en −8.59 kcal/mol, con un subconjunto reducido de ligandos de alta afinidad (mínimo ~−11.6 kcal/mol; Direct Blue 71). Un mapa de contactos identificó “hotspots” en PRO393, ASN207, PHE238, ASN263 y SER426 (ocupancias ≥75%). En MD, ABTS-2 permaneció anclado cerca de CuT1 mediante un enlace de hidrógeno persistente HIS456–N(azino) (≈2.14±0.21 Å; 158.7±11.4° ≥50 ns) y una red de interacciones π con PHE238, PHE331, PHE338, PRO393 e ILE453; además, el grupo sulfonato estableció múltiples enlaces de hidrógeno con el backbone de ALA329 y vecinos. El clústering del ligando estuvo dominado por tres poses que explicaron ~66% de la trayectoria, con variabilidad localizada en bucles que rodean el bolsillo. Integrando estos hallazgos, se propone una ET desde ABTS a CuT1 (coordinado por HIS394/CYS451/HIS456), seguida de transferencia intraproteica hacia el TNC y reducción de O₂, coherente con lacasas fúngicas de alto potencial. En conjunto, el “ancla” HIS456–azino y la red π emergen como determinantes de orientación y estabilidad del sustrato, con implicaciones para ingeniería de sitio activo y selección de mediadores en la decoloración de colorantes y remoción de contaminantes aromáticos.High-potential fungal laccases, such as POXA1b from Pleurotus ostreatus, are versatile biocatalysts for oxidizing aromatic substrates and mediating bioremediation processes. This work characterizes the POXA1b–ABTS complex in silico and proposes an electron transfer (ET) pathway compatible with the reduction of O2 to H2O. A structural model of POXA1b was constructed with glycosylations and the complete multi-copper center and protonation states at pH 4.5. Substrate recognition was studied by batch docking (AutoDock Vina 1.2) of ABTS-2 and 99 industrial dyes. Subsequently, the ABTS–POXA1b complex underwent 200 ns molecular dynamics (MD) with AMBER24 software; thermodynamic stability was verified, and clustering was performed by protein and ligand RMSD. Docking showed an affinity distribution centered at −8.59 kcal/mol, with a small subset of high-affinity ligands (minimum ~−11.6 kcal/mol; Direct Blue 71). A contact map identified hotspots at PRO393, ASN207, PHE238, ASN263, and SER426 (occupancies ≥75%). In MD, ABTS-2 remained anchored near CuT1 via a persistent HIS456–N(azino) hydrogen bond (≈2.14±0.21 Å; 158.7±11.4° ≥50 ns) and a network of π interactions with PHE238, PHE331, PHE338, PRO393, and ILE453; in addition, the sulfonate group established multiple hydrogen bonds with the backbone of ALA329 and neighbors. Ligand clustering was dominated by three poses that explained ~66% of the trajectory, with variability localized in loops surrounding the pocket. Integrating these findings, an ET from ABTS to CuT1 (coordinated by HIS394/CYS451/HIS456) is proposed, followed by intraprotein transfer to TNC and O2 reduction, consistent with high-potential fungal laccases. Together, the HIS456–azino “anchor” and the π network emerge as determinants of substrate orientation and stability, with implications for active site engineering and mediator selection in dye decolorization and aromatic contaminant removal.Resumen -- Introducción -- Objetivos -- Objetivo General -- Objetivos Específicos -- Materiales y métodos -- Modelado computacional -- Estudio de acoplamiento -- Simulación de dinámica molecular -- Análisis de resultados -- Resultados -- Modelado computacional -- Estudio de acoplamiento -- Simulación de dinámica molecular -- Discusión -- Conclusiones -- ReferenciasPregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, Caldas. ColombiaBiologíaMorales-Álvarez, Edwin DavidRodas Rodríguez, José MauricioGrupo de Química Teórica y Bioinformática - QTB (Categoría B)Gil Traslaviña, Natalia2025-11-14T19:36:19Z2025-11-14T19:36:19Z2025-11-14Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis46 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26181Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25. https://doi.org/10.1016/j.softx.2015.06.001Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., ... & Fatma, T. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PloS one, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144Agrawal, K., & Verma, P. (2020). Multicopper oxidase laccases with distinguished spectral properties: a new outlook. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03972.Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410, https://doi.org/10.1016/S0022-2836(05)80360-2Ardila-Leal, L. D., Monterey-Gutiérrez, P. A., Poutou-Piñales, R. A., Quevedo-Hidalgo, B. E., Galindo, J. F., & Pedroza-Rodríguez, A. M. (2021). Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC biotechnology, 21(1), 37. https://doi.org/10.1186/s12896-021-00698-3Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera De Los Santos, M., ... & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial cell factories, 18, 1-33. https://doi.org/10.1186/s12934-019-1248-0Ashrafi, S. D., Rezaei, S., Forootanfar, H., Mahvi, A. H., & Faramarzi, M. A. (2013). The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration & Biodegradation, 85, 173-181. https://doi.org/10.1016/j.ibiod.2013.07.006Aza, P., & Camarero, S. (2023). Fungal laccases: Fundamentals, engineering and classification update. Biomolecules, 13(12), 1716. https://doi.org/10.3390/biom13121716Aza, P., Molpeceres, G., Vind, J., & Camarero, S. (2023). Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum sl. Computational and Structural Journal, 21, Biotechnology https://doi.org/10.1016/j.csbj.2023.01.030Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track 1041-1053. neural Science, 373(6557), network. https://doi.org/10.1126/science.abj8754Bakratsas, G., Antoniadis, K., Athanasiou, P. E., Katapodis, P., & Stamatis, H. (2023). Laccase and biomass production via submerged cultivation of Pleurotus ostreatus using wine lees. Biomass, 4(1), 1-22. https://doi.org/10.3390/biomass4010001BIOVIA. Dassault Systèmes. Discovery Studio Visualizer, v25. 1. 0. 24284; Dassault Systèmes: 871-876. San Diego, CA, USA; 2021. Available online: https://discover.3ds.com/discovery-studio-visualizer-downloadCascelli, N., Lettera, V., Sannia, G., Gotor‑Fernández, V., & Lavandera, I. (2023). Laccases from Pleurotus ostreatus applied to the oxidation of furfuryl alcohol for the synthesis of key compounds for polymer industry. ChemSusChem, 16(13), e202300226. https://doi.org/10.1002/cssc.202300226Case, D. A., Cerutti, D. S., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghazimirsaeed, M., ... & Merz Jr, K. M. (2025). Recent Developments in Amber Biomolecular Simulations. Journal of Chemical Information and Modeling, 65(15), 7835-7843. https://doi.org/10.1021/acs.jcim.5c01063Chopra, N. K., Singhal, D., Saini, R., & Sondhi, S. (2023). Structure analysis and molecular docking studies of laccase from “Bacillus licheniformis NS2324”. Sustainable Chemistry for the Environment, 1, 100004. https://doi.org/10.1016/j.scenv.2023.100004Christensen, N. J., & Kepp, K. P. (2014). Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state. Journal of Molecular Catalysis B: Enzymatic, 100, 68-77. https://doi.org/10.1016/j.molcatb.2013.11.017Dagar, V. K., Babbal, Mohanty, S., & Khasa, Y. P. (2022). Effect of N-glycosylation on secretion, stability, and biological activity of recombinant human interleukin-3 (hIL-3) in Pichia pastoris. 3 Biotech, 12(9), 221. https://doi.org/10.1007/s13205-022-03293-1Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., ... & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic acids research, 39(suppl_2), W13-W17. https://doi.org/10.1093/nar/gkr245Díaz, R., Díaz-Godínez, G., Anducho-Reyes, M. A., Mercado-Flores, Y., & Herrera-Zúñiga, L. D. (2018). In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Frontiers in Microbiology, 9, 2743. https://doi.org/10.3389/fmicb.2018.02743Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. Journal of chemical information and modeling, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203Garzillo, A. M., Colao, M. C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., ... & Sannia, G. (2001). Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. Journal of protein chemistry, 20, 191-201. https://doi.org/10.1023/A:1010954812955Giacobelli, V. G., Monza, E., Lucas, M. F., Pezzella, C., Piscitelli, A., Guallar, V., & Sannia, G. (2017). Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering–the case of POXA1b. Catalysis Science & Technology, 7(2), 515-523. https://doi.org/10.1039/C6CY02410FGiardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., CENNAMO, G., & Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochemical Journal, 341(3), 655-663. https://doi.org/10.1042/bj3410655Gräff, M., Buchholz, P. C., Le Roes‑Hill, M., & Pleiss, J. (2020). Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins: Structure, Function, and Bioinformatics, 88(10), 1329-1339. https://doi.org/10.1002/prot.25952Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007Han, W., Zhao, Y., Chen, Q., Xie, Y., Zhang, M., Yao, H., ... & Zhang, Y. (2024). Laccase surface-display for environmental tetracycline removal: From structure to function. Chemosphere, 365, 143286. https://doi.org/10.1016/j.chemosphere.2024.143286Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95. https://doi.org/10.1109/MCSE.2007.55Islam, M. N., Toprak-Cavdur, T., Islam, S., Tarannum, F., & Walters, K. B. (2024). Reactive Dye Wash-Off Processing of Cotton Fabrics Using Polymer Dye Transfer Inhibitors for Sustainable Dyeing. Sustainability, 16(18), 7991. https://doi.org/10.3390/su16187991Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial technology, 52(1), 1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966Jeyabalan, J., Veluchamy, A., Kumar, A., Chandrasekar, R., & Narayanasamy, S. (2023). A review on the laccase assisted decolourization of dyes: Recent trends and research progress. Journal of the Taiwan Institute of Chemical Engineers, 151, 105081. https://doi.org/10.1016/j.jtice.2023.105081Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics, 79(2), 926-935. https://doi.org/10.1063/1.445869Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2Kim, W., Mirdita, M., Levy Karin, E., Gilchrist, C. L., Schweke, H., Söding, J., ... & Steinegger, M. (2025). Rapid and sensitive protein complex alignment with Foldseek Multimer. Nature Methods, 22(3), 469-472. https://doi.org/10.1038/s41592-025 02593-7Kumar, S. S., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and bioengineering, 83(4), 386-394. https://doi.org/10.1002/bit.10681Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12), msae263. https://doi.org/10.1093/molbev/msae263Kumar, V. V., Kirupha, S. D., Periyaraman, P., & Sivanesan, S. (2011). Screening and induction of laccase activity in fungal species and its application in dye decolorization. African Journal of Microbiology Research, 5(11), https://doi.org/1261 1267. 10.5897/AJMR10.894Lettera, V., Pezzella, C., Cicatiello, P., Piscitelli, A., Giacobelli, V. G., Galano, E., ... & Sannia, G. (2016). Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chemistry, 196, 1272-1278. https://doi.org/10.1016/j.foodchem.2015.10.074Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and detoxification of synthetic dyes by mexican strains of trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610Li, M. C., Zhang, Y. Q., Meng, C. W., Gao, J. G., Xie, C. J., Liu, J. Y., & Xu, Y. N. (2021). Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) FA Barkley-a review. Journal of Ethnopharmacology, 267, 113476. https://doi.org/10.1016/j.jep.2020.113476Li, Q., Feng, Y., Zhuang, S., Kang, L., & Yang, Y. (2025). Decolorization and Detoxification of Azo and Triphenylmethane Dyes Damaging Human Health by Crude Laccase from White-Rot Fungus Pleurotus ostreatus Yang1 and Molecular Docking Between Laccase and Structurally Diverse Dyes. International Journal of Molecular Sciences, 26(17), 8363. https://doi.org/10.3390/ijms26178363Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., ... & Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123-1130, https://doi.org/10.1126/science.ade2574Loi, M., Glazunova, O., Fedorova, T., Logrieco, A. F., & Mulè, G. (2021). Fungal laccases: The forefront of enzymes for sustainability. Journal of Fungi, 7(12), 1048. https://doi.org/10.3390/jof7121048Macellaro, G., Baratto, M. C., Piscitelli, A., Pezzella, C., Fabrizi De Biani, F., Palmese, A., ... & Sannia, G. (2014). Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Applied microbiology and biotechnology, 98, 4949-4961. https://doi.org/10.1007/s00253-013-5491-8Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation, 11(8), 3696 3713. https://doi.org/10.1021/acs.jctc.5b00255Malmström, B. G. (1997). Early and more recent history in the research on multi-copper oxidases. In Multi-Copper Oxidases (1-22). https://doi.org/10.1142/9789812830081_0001Mano, N., & de Poulpiquet, A. (2017). O2 reduction in enzymatic biofuel cells. Chemical reviews, 118(5), 2392-2468. https://doi.org/10.1021/acs.chemrev.7b00220Martins, D. S., He, Y., Eberhardt, J., Sharma, P., Bruciaferri, N., Holcomb, M., ... & Forli, S. (2025). Meeko: molecule parameterization and software interoperability for docking and beyond. https://github.com/forlilab/MeekoMate, D. M., & Alcalde, M. (2017). Laccase: a multi‑purpose biocatalyst at the forefront of biotechnology. Microbial biotechnology, 10(6), 1457-1467. https://doi.org/10.1111/1751-7915.12422McGuffin, L. J., Adiyaman, R., Maghrabi, A. H., Shuid, A. N., Brackenridge, D. A., Nealon, J. O., & Philomina, L. S. (2019). IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic acids research, 47(W1), W408-W413. https://doi.org/10.1093/nar/gkz322Mehra, R., Meyer, A. S., & Kepp, K. P. (2018). Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC advances, 8(64), 36915-36926. https://doi.org/10.1039/c8ra07138aMehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8(1), 17285. https://doi.org/10.1038/s41598-018-35633-8Miele, A., Giardina, P., Notomista, E., Piscitelli, A., Sannia, G., & Faraco, V. (2010). A semi-rational approach to engineering laccase enzymes. Molecular biotechnology, 46, 149-156. https://doi.org/10.1007/s12033-010-9289-yMohtashami, M., Fooladi, J., Haddad-Mashadrizeh, A., & Housaindokht, M. (2019). Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Molecular biology reports, 46, 981-990. https://doi.org/10.1007/s11033 018-4555-3Mora-Gamboa, M. P., Ferrucho-Calle, M. C., Ardila-Leal, L. D., Rojas-Ojeda, L. M., Galindo, J. F., Poutou-Piñales, R. A., ... & Quevedo-Hidalgo, B. E. (2023). Statistical improvement of rGILCC 1 and rPOXA 1B laccases activity assay conditions supported by molecular dynamics. Molecules, 28(21), 7263. https://doi.org/10.3390/molecules28217263Mora-Gamboa, M. P., Rincón-Gamboa, S. M., Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2022). Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules, 27(14), 4436. https://doi.org/10.3390/molecules27144436Morales-Álvarez, E. D., Rivera-Hoyos, C. M., González-Ogliastri, N., Rodríguez-Vázquez, R., Poutou-Piñales, R. A., Daza, C. E., & Pedroza-Rodríguez, A. M. (2016). Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus. Universitas Scientiarum, 21(3), 259-285. https://doi.org/10.11144/Javeriana.SC21-3.pradMorales-Álvarez, E. D., Rivera-Hoyos, C. M., Poveda-Cuevas, S. A., Reyes-Guzmán, E. A., Pedroza-Rodríguez, A. M., Reyes-Montaño, E. A., & Poutou-Piñales, R. A. (2018). Malachite green and crystal violet decolorization by ganoderma lucidum and pleurotus ostreatus supernatant and by rGlLCC1 and rPOXA 1B concentrates: molecular docking analysis. Applied biochemistry and biotechnology, 184, 794-805. https://doi.org/10.1007/s12010-017-2560-yMorozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Moscow), 72, 1136-1150. https://doi.org/10.1134/S0006297907100112Nasir, M., Hashim, R., Sulaiman, O., Nordin, N. A., Lamaming, J., & Asim, M. (2015). Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources, 10(3). http://doi.org/10.15376/biores.10.3.NasirNunes, C. S., & Kunamneni, A. (2018). Laccases—properties and applications. In Enzymes in human and animal nutrition (pp. 133-161). Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00007-1Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and environmental microbiology, 66(3), 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., ... & Im, W. (2019). CHARMM GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320-331. https://doi.org/10.1093/glycob/cwz003Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084Pezzella, C., Giacobelli, V. G., Lettera, V., Olivieri, G., Cicatiello, P., Sannia, G., & Piscitelli, A. (2017). A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. Journal of biotechnology, 259, 175-181. https://doi.org/10.1016/j.jbiotec.2017.07.022Piscitelli, A., Giardina, P., Mazzoni, C., & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 69, 428-439. https://doi.org/10.1007/s00253-005-0004-zPramanik, S., & Chaudhuri, S. (2018). Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology, 46(1), https://doi.org/10.1080/12298093.2018.1454006Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS computational biology, . 11(12), e1004586. https://doi.org/10.1371/journal.pcbi.1004586Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poveda-Cuevas, S. A., Reyes-Guzman, E. A., Poutou-Pinales, R. A., Reyes-Montano, E. A., ... & Cardozo-Bernal, A. M. (2015). Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLOS one, 10(1), e0116524. https://doi.org/10.1371/journal.pone.0116524Ruiz-Dueñas, F. J., Barrasa, J. M., Sánchez-García, M., Camarero, S., Miyauchi, S., Serrano, A., ... & Martínez, A. T. (2021). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Molecular biology and evolution, 38(4), 1428-1446. https://doi.org/10.1093/molbev/msaa301Rydén, L. (2018). Ceruloplasmin. In Copper proteins and copper enzymes (pp. 37-100). CRC Press. https://doi.org/10.1016/B978-0-12-810532-0.00009-4Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Schake, P., Bolz, S. N., Linnemann, K., & Schroeder, M. (2025). PLIP 2025: introducing protein–protein interactions to the protein–ligand interaction profiler. Nucleic Acids Research, gkaf361. https://doi.org/10.1093/nar/gkaf361Shuid, A. N., Kempster, R., & McGuffin, L. J. (2017). ReFOLD: a server for the refinement 44 of 3D protein models guided by accurate quality estimates. Nucleic acids research, W1), W422-W428. https://doi.org/10.1093/nar/gkx249Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., ... & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non steroidal anti-inflammatory drugs. Biochemical and biophysical research communications, 469(2), 306-312. https://doi.org/10.1016/j.bbrc.2015.11.096Srinivasan, S., & Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of water process engineering, 22, 180-191. https://doi.org/10.1016/j.jwpe.2018.02.004Strong, P. J., & Claus, H. (2011). Laccase: a review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373-434. https://doi.org/10.1080/10643380902945706Thakur, S., & Gupte, A. (2015). Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Annals of microbiology, 65(1), 185-196. https://doi.org/10.1007/s13213-014-0849-4Uziela, K., Menéndez Hurtado, D., Shu, N., Wallner, B., & Elofsson, A. (2017). ProQ3D: improved model quality assessments using deep learning. Bioinformatics, 33(10), 1578-1580. https://doi.org/10.1093/bioinformatics/btw819Uziela, K., Shu, N., Wallner, B., & Elofsson, A. (2016). ProQ3: Improved model quality assessments using Rosetta energy terms. Scientific reports, 6(1), 33509. https://doi.org/10.1038/srep33509Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpaceVarriale, S., Delorme, A. E., Andanson, J. M., Devemy, J., Malfreyt, P., Verney, V., & Pezzella, C. (2022). Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 10(1), 572-581. https://doi.org/10.1021/acssuschemeng.1c07104Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of computational chemistry, 25(9), 1157-1174. https://doi.org/10.1002/jcc.20035Wang, Y., Chen, T., Zhang, X., & Mwamulima, T. (2021). Removal study of crystal violet and methylene blue from aqueous solution by activated carbon embedded zero valent iron: Effect of reduction methods. Frontiers in Environmental Science, 9, 99264. https://doi.org/10.3389/fenvs.2021.799264Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, 54(1), 5-6. https://doi.org/10.1002/cpbi.3.Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., ... & Peng, J. (2022). High resolution de novo structure prediction from primary sequence. BioRxiv, 2022-07. https://doi.org/10.1101/2022.07.21.500999Xiao, Z., & Wedd, A. G. (2011). Metallo-oxidase enzymes: design of their active sites. Australian Journal of Chemistry, 64(3), 231-238. https://doi.org/10.1071/CH10428Yoshida, H. (1883). LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions, 43, 472 486. https://doi.org/10.1039/CT8834300472Zhou, Q., & Qiu, H. (2019). The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), https://doi.org/10.1016/j.xphs.2018.11.029 1366-1377https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/261812025-11-15T08:01:22Z |
