Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica

Objetivo: El objetivo del presente estudio fue determinar el efecto de la suplementación con extracto de Passiflora ligularis (granadilla), sobre algunos marcadores de inflamación crónica de bajo grado asociados al sobrepeso en un modelo de ratones albinos alimentados con dieta alta en grasa. Materi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/23449
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/23449
https://doi.org/10.17151/bccm.2022.26.2.3
Palabra clave:
Síndrome metabólico
obesidad
granadilla
inflamación
Metabolic syndrome
obesity
granadilla
inflammation
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUCALDA_1d02d9a6db36cf16ec8667d4245ac849
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/23449
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
Effect of the extract of Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) as a reducing agent of chronic inflammation markers
title Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
spellingShingle Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
Síndrome metabólico
obesidad
granadilla
inflamación
Metabolic syndrome
obesity
granadilla
inflammation
title_short Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
title_full Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
title_fullStr Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
title_full_unstemmed Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
title_sort Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica
dc.subject.none.fl_str_mv Síndrome metabólico
obesidad
granadilla
inflamación
Metabolic syndrome
obesity
granadilla
inflammation
topic Síndrome metabólico
obesidad
granadilla
inflamación
Metabolic syndrome
obesity
granadilla
inflammation
description Objetivo: El objetivo del presente estudio fue determinar el efecto de la suplementación con extracto de Passiflora ligularis (granadilla), sobre algunos marcadores de inflamación crónica de bajo grado asociados al sobrepeso en un modelo de ratones albinos alimentados con dieta alta en grasa. Materiales y métodos: Se utilizaron 36 ratones albinos, distribuidos en un diseño irrestrictamente al azar, en 3 tratamientos y 12 repeticiones. Los tratamientos representaron un grupo con dieta control, un segundo tratamiento con dieta alta en grasa y un grupo que recibió alimento alto en grasa y suplementación con 3g/L de extracto de Passiflora ligularis en el agua de bebida. Pasados 49 días, se evaluaron las variables consumo de alimento, consumo de agua y ganancia de peso, además se evaluaron las concentraciones séricas de los marcadores de inflamación IL-6 y TNF-α. Resultados: La suplementación con extracto de Passiflora ligularis redujo (p < 0,05) la ganancia de peso de los ratones, en comparación con los animales que recibieron la dieta alta en grasa sin suplementación, los niveles séricos de TNF- α en los ratones suplementados no presentaron diferencias con ninguno de los dos grupos control, mientras que las cantidades de IL-6 no fueron afectados por los tratamientos. Conclusión: La concentración de 3g/L en el agua de bebida el extracto de Passiflora ligularis disminuyó la ganancia de peso producida por el aumento de la grasa en la dieta, y redujo la medición del marcador de inflamación sérico TNF-α, indicando un efecto benéfico sobre el riesgo asociado a la inflamación crónica de bajo grado.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-01T00:00:00Z
2022-07-01T00:00:00Z
2022-07-01
2025-10-08T21:06:17Z
2025-10-08T21:06:17Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
Text
info:eu-repo/semantics/article
Journal article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv 0123-3068
https://repositorio.ucaldas.edu.co/handle/ucaldas/23449
10.17151/bccm.2022.26.2.3
2462-8190
https://doi.org/10.17151/bccm.2022.26.2.3
identifier_str_mv 0123-3068
10.17151/bccm.2022.26.2.3
2462-8190
url https://repositorio.ucaldas.edu.co/handle/ucaldas/23449
https://doi.org/10.17151/bccm.2022.26.2.3
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 64
2
53
26
Boletín Científico Centro de Museos Museo de Historia Natural
Bak. M. J., Truong, V. L., Kang, H. S. & Jun, M. (2013). Jeong WS. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/409321
Cao, Y. J., Zhang, Y. M., Qi, J. P., Liu, R., Zhang, H. & He, L. C. (2015). Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. International immunopharmacology, 28(2): 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037
Carmona-Hernández, J. C., Ángel-Isaza, J., González-Correa, C. H. & Narváez-Solarte, W. (2017). Anti-inflammatory effects of flavonoids evaluated in murine models: a descriptive review. Animal Science Papers & Reports, 35(4).
Carmona-Hernández, J. C., Taborda-Ocampo, G., Valdez, J. C., Bolling, B. W. & González-Correa, C. H. (2019). polyphenol extracts from three colombian passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of caco-2 cells. Molecules, 24(24). https://doi.org/10.3390/molecules24244614
Chaparro, D. C., Maldonado, M. E., Franco, M. C. & Urango, L. A. (2015). Nutritional and antioxidant characteristics of banana passion fruit (Passiflora mollisima Bailey). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1): 120-128. https://doi.org/10.17533/udea.penh.v16n2a07
Chen, N., Bezzina, R., Hinch, E., Lewandowski, P. A., Cameron-Smith, D., Mathai, M. L. & Weisinger, R. S. (2009). Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutrition Research, 29(11): 784-793. https://doi.org/10.1016/j.nutres.2009.10.003
DANE. (2016). Encuesta Nacional Agropecuaria ENA. Boletín Técnico. Comunicación informativa.
De Melo, T. S., Lima, P. R., Carvalho, K. M. M. B., Fontenele, T. M., Solon, F. R. N., Tomé, A. R. & De Queiroz, M. G. R. (2017). Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 50(1). https://doi.org/10.1590/1414-431x20165630
Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. & Paquot, N. (2014). Inflammation As A Link Between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Research and Clinical Practice, 105(2): 141-150. https://doi.org/10.1016/j.diabres.2014.04.006
Faam, B., Zarkesh, M., Daneshpour, M. S., Azizi, F. & Hedayati, M. (2014). The association between inflammatory markers and obesity-related factors in Tehranian adults: Tehran lipid and glucose study. Iranian Journal of Basic Medical Sciences, 17(8): 577-82.
Hariri, N. & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews, 23(2): 270-299. https://doi.org/10.1017/S0954422410000168
He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., ... & Li, Y. (2020). Passiflora edulis: an insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617. https://doi.org/10.3389/fphar.2020.00617
Ibitoye, O. B. & Ajiboye, T. O. (2018). Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Archives of Physiology and Biochemistry, 124(5), 410-417. https://doi.org/10.1080/13813455.2017.1415938
Kim, J. A., & Choi, K. M. (2020). Newly discovered adipokines: pathophysiological link between obesity and cardiometabolic disorders. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.568800
Lu, C., Zhu, W., Shen, C. L. & Gao, W. (2012). Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038332
Mattila, P., Hellström, J. & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54(19): 7193-7199. https://doi.org/10.1021/jf0615247
Mattila, P., Pihlava, J. M., & Hellström, J., (2005). Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295. https://doi.org/10.1021/jf051437z
Nani, A., Murtaza, B., Khan, A. S., Khan, N. A., & Hichami, A. (2021). Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules, 26(4): 985. https://doi.org/10.3390/MOLECULES26040985
National Research Council. (2010). Guide for the Care and Use of Laboratory Animals. The National Academies Press.
Navarrete, S., Alarcón, M. & Palomo, I. (2015). Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS- activated macrophages. Molecules, 20(8), 15319-15329. https://doi.org/10.3390/molecules200815319
Pan, M. H., Yang, G., Li, S., Li, M. Y., Tsai, M. L., Wu, J. C. & Lai, C. S. (2017). Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Molecular Nutrition and Food Research, 61(11): 1-29. https://doi.org/10.1002/mnfr.201601104
Peluso, I., Raguzzini, A. & Serafini, M. (2013). Effect of flavonoids on circulating levels of TNF-α and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition and Food Research, 57(5): 784-801. https://doi.org/10.1002/mnfr.201200721
Rani, V., Deep, G., Singh, R. K., Palle, K. & Yadav, U. C. S. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148: 183-193. https://doi.org/10.1016/j.lfs.2016.02.002
Rivera, L., Morón, R., Sánchez, M., Zarzuelo, A. & Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity, 16(9): 2081-2087. https://doi.org/10.1038/oby.2008.315
Romier, B., Van De Walle, J., During, A., Larondelle, Y. & Schneider, Y. J. (2008). Modulation of signalling nuclear factor-kB activation pathway by polyphenols in human intestinal Caco-2 cells. British Journal of Nutrition, 100(3): 542-551. https://doi.org/10.1017/S0007114508966666
Sabogal-Palma, A., Chávez-Marín, J., Oliveros-Gómez, D., Murillo-Perea, E. & Méndez-Arteaga, J. J. (2016). Funcionalidades Biológicas de Passiflora Maliformis del Sur Macizo Colombiano. Bioagro, 28(1): 3-12.
Sae-Tan, S., Grove, K. A., Kennett, M. J. & Lambert, J. D. (2011). (−)-Epigallocatechin-3- gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food & Function, 2(2): 111. https://doi.org/10.1039/C0FO00155D
Senaphan, K., Kukongviriyapan, U., Sangartit, W., Pakdeechote, P., Pannangpetch, P., Prachaney, P. & Kukongviriyapan, V. (2015). Ferulic acid alleviates changes in a rat model of metabolic syndrome induced by high-carbohydrate, high-fat diet. Nutrients, 7(8): 6446-6464. https://doi.org/10.3390/nu7085283
Shishikura, Y., Khokhar, S. & Murray, B. S. (2006). Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. Journal of Agricultural and Food Chemistry, 54(5): 1906-1913. https://doi.org/10.1021/jf051988p
Sun, C., Zhao, C., Guven, E. C., Paoli, P., Simal‐Gandara, J., Ramkumar, K. M., ... & Xiao, J. (2020). Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1): 18-44. https://doi.org/10.1002/FFT2.15
Torres, A. (2012). Caracterización Física, Química y Compuestos Bioactivos de Pulpa Madura de Tomate de Árbol (Cyphomandra Betacea) (Cav.) Sendtn. Archivos Latinoamericanos de Nutrición, 62(4): 381-388.
Wang, J. Q., Li, J., Zou, Y. H., Cheng, W. M., Lu. C., Zhang, L., Ge, J. F., Huang, C., Jin, Y., Lv, X. W., Hu, C. M. & Liu, L. P. (2009). Preventive effects of total flavonoids of Litsea coreana leve on hepatic steatosis in rats fed with high fat diet. Journal of Ethnopharmacology, 121(1): 54-60. https://doi.org/10.1016/j.jep.2008.09.029
Wang, O., Liu, J., Cheng, Q., Guo, X., Wang, Y., Zhao, L., ... y Ji, B. (2015). Effects of ferulic acid and γ-oryzanol on high-fat and highfructose diet-induced metabolic syndrome in rats. PloS one, 10(2): e0118135. https://doi.org/10.1371/journal.pone.0118135
Xu, Y., Zhang, M., Wu, T., Dai, S., Xu, J. & Zhou, Z. (2015). The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct, 6(1): 296-303. https://doi.org/10.1039/C4FO00970C
Zapata, K., Cortes, F. B. & Rojano, B. A. (2013). Polifenoles y actividad antioxidante del fruto de guayaba agria (Psidium Araca). Información Tecnológica, 24(5): 103.112. http://dx.doi.org/10.4067/S0718-07642013000500012
Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in Physiology, 10, 1607. https://doi.org/10.3389/FPHYS.2019.01607
Zhang, H. & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42. https://doi.org/10.1016/j.cofs.2016.02.002
Zhao, Z. & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4): 691-702. https://doi.org/10.1016/j.foodchem.2008.02.039
Núm. 2 , Año 2022 : Julio - Diciembre
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/7516/6589
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletín Científico
publisher.none.fl_str_mv Boletín Científico
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/7516
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532641568161792
spelling Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónicaEffect of the extract of Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) as a reducing agent of chronic inflammation markersSíndrome metabólicoobesidadgranadillainflamaciónMetabolic syndromeobesitygranadillainflammationObjetivo: El objetivo del presente estudio fue determinar el efecto de la suplementación con extracto de Passiflora ligularis (granadilla), sobre algunos marcadores de inflamación crónica de bajo grado asociados al sobrepeso en un modelo de ratones albinos alimentados con dieta alta en grasa. Materiales y métodos: Se utilizaron 36 ratones albinos, distribuidos en un diseño irrestrictamente al azar, en 3 tratamientos y 12 repeticiones. Los tratamientos representaron un grupo con dieta control, un segundo tratamiento con dieta alta en grasa y un grupo que recibió alimento alto en grasa y suplementación con 3g/L de extracto de Passiflora ligularis en el agua de bebida. Pasados 49 días, se evaluaron las variables consumo de alimento, consumo de agua y ganancia de peso, además se evaluaron las concentraciones séricas de los marcadores de inflamación IL-6 y TNF-α. Resultados: La suplementación con extracto de Passiflora ligularis redujo (p < 0,05) la ganancia de peso de los ratones, en comparación con los animales que recibieron la dieta alta en grasa sin suplementación, los niveles séricos de TNF- α en los ratones suplementados no presentaron diferencias con ninguno de los dos grupos control, mientras que las cantidades de IL-6 no fueron afectados por los tratamientos. Conclusión: La concentración de 3g/L en el agua de bebida el extracto de Passiflora ligularis disminuyó la ganancia de peso producida por el aumento de la grasa en la dieta, y redujo la medición del marcador de inflamación sérico TNF-α, indicando un efecto benéfico sobre el riesgo asociado a la inflamación crónica de bajo grado.Objective: The objective of this study was to determine the effect of the supplementation with Passiflora ligularis (granadilla) extract on some low-grade chronic inflammation markers associated with overweight in a model of albino mice fed a high-fat diet. Materials and methods: thirty-six albino mice were used, distributed in an unrestrictedly random design in 3 treatments and 12 repetitions. The treatments represented a group with a control diet, a secondtreatment with a high-fat diet, and a group that received high-fat food and supplementation with 3g/L of Passiflora ligularis extract in the drinking water. After 49 days, the variables food consumption, water consumption, and weight gain were evaluated, in addition to the serum concentration of the inflammation markers IL-6 and TNF-α. Results: Supplementation with Passiflora ligularis extract reduced (p <0.05) the weight gain of mice compared to animals that received the high-fat diet without supplementation. Serum levels of TNF-α on supplemented mice did not show differences with neither of both control groups while the amounts of IL-6 were not affected by the treatments. Conclusion: The concentration of 3g/L in the drinking water of the of Passiflora ligularis extract decreased the weight gain produced by the increase fat in diet and reduced the measurement of the serum inflammation marker TNF-α indicating a beneficial effect on the risk associated with chronic low-grade inflammation.Boletín Científico2022-07-01T00:00:00Z2025-10-08T21:06:17Z2022-07-01T00:00:00Z2025-10-08T21:06:17Z2022-07-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf0123-3068https://repositorio.ucaldas.edu.co/handle/ucaldas/2344910.17151/bccm.2022.26.2.32462-8190https://doi.org/10.17151/bccm.2022.26.2.3https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/7516spa6425326Boletín Científico Centro de Museos Museo de Historia NaturalBak. M. J., Truong, V. L., Kang, H. S. & Jun, M. (2013). Jeong WS. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/409321Cao, Y. J., Zhang, Y. M., Qi, J. P., Liu, R., Zhang, H. & He, L. C. (2015). Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. International immunopharmacology, 28(2): 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037Carmona-Hernández, J. C., Ángel-Isaza, J., González-Correa, C. H. & Narváez-Solarte, W. (2017). Anti-inflammatory effects of flavonoids evaluated in murine models: a descriptive review. Animal Science Papers & Reports, 35(4).Carmona-Hernández, J. C., Taborda-Ocampo, G., Valdez, J. C., Bolling, B. W. & González-Correa, C. H. (2019). polyphenol extracts from three colombian passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of caco-2 cells. Molecules, 24(24). https://doi.org/10.3390/molecules24244614Chaparro, D. C., Maldonado, M. E., Franco, M. C. & Urango, L. A. (2015). Nutritional and antioxidant characteristics of banana passion fruit (Passiflora mollisima Bailey). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1): 120-128. https://doi.org/10.17533/udea.penh.v16n2a07Chen, N., Bezzina, R., Hinch, E., Lewandowski, P. A., Cameron-Smith, D., Mathai, M. L. & Weisinger, R. S. (2009). Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutrition Research, 29(11): 784-793. https://doi.org/10.1016/j.nutres.2009.10.003DANE. (2016). Encuesta Nacional Agropecuaria ENA. Boletín Técnico. Comunicación informativa.De Melo, T. S., Lima, P. R., Carvalho, K. M. M. B., Fontenele, T. M., Solon, F. R. N., Tomé, A. R. & De Queiroz, M. G. R. (2017). Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 50(1). https://doi.org/10.1590/1414-431x20165630Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. & Paquot, N. (2014). Inflammation As A Link Between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Research and Clinical Practice, 105(2): 141-150. https://doi.org/10.1016/j.diabres.2014.04.006Faam, B., Zarkesh, M., Daneshpour, M. S., Azizi, F. & Hedayati, M. (2014). The association between inflammatory markers and obesity-related factors in Tehranian adults: Tehran lipid and glucose study. Iranian Journal of Basic Medical Sciences, 17(8): 577-82.Hariri, N. & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews, 23(2): 270-299. https://doi.org/10.1017/S0954422410000168He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., ... & Li, Y. (2020). Passiflora edulis: an insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617. https://doi.org/10.3389/fphar.2020.00617Ibitoye, O. B. & Ajiboye, T. O. (2018). Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Archives of Physiology and Biochemistry, 124(5), 410-417. https://doi.org/10.1080/13813455.2017.1415938Kim, J. A., & Choi, K. M. (2020). Newly discovered adipokines: pathophysiological link between obesity and cardiometabolic disorders. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.568800Lu, C., Zhu, W., Shen, C. L. & Gao, W. (2012). Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038332Mattila, P., Hellström, J. & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54(19): 7193-7199. https://doi.org/10.1021/jf0615247Mattila, P., Pihlava, J. M., & Hellström, J., (2005). Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295. https://doi.org/10.1021/jf051437zNani, A., Murtaza, B., Khan, A. S., Khan, N. A., & Hichami, A. (2021). Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules, 26(4): 985. https://doi.org/10.3390/MOLECULES26040985National Research Council. (2010). Guide for the Care and Use of Laboratory Animals. The National Academies Press.Navarrete, S., Alarcón, M. & Palomo, I. (2015). Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS- activated macrophages. Molecules, 20(8), 15319-15329. https://doi.org/10.3390/molecules200815319Pan, M. H., Yang, G., Li, S., Li, M. Y., Tsai, M. L., Wu, J. C. & Lai, C. S. (2017). Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Molecular Nutrition and Food Research, 61(11): 1-29. https://doi.org/10.1002/mnfr.201601104Peluso, I., Raguzzini, A. & Serafini, M. (2013). Effect of flavonoids on circulating levels of TNF-α and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition and Food Research, 57(5): 784-801. https://doi.org/10.1002/mnfr.201200721Rani, V., Deep, G., Singh, R. K., Palle, K. & Yadav, U. C. S. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148: 183-193. https://doi.org/10.1016/j.lfs.2016.02.002Rivera, L., Morón, R., Sánchez, M., Zarzuelo, A. & Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity, 16(9): 2081-2087. https://doi.org/10.1038/oby.2008.315Romier, B., Van De Walle, J., During, A., Larondelle, Y. & Schneider, Y. J. (2008). Modulation of signalling nuclear factor-kB activation pathway by polyphenols in human intestinal Caco-2 cells. British Journal of Nutrition, 100(3): 542-551. https://doi.org/10.1017/S0007114508966666Sabogal-Palma, A., Chávez-Marín, J., Oliveros-Gómez, D., Murillo-Perea, E. & Méndez-Arteaga, J. J. (2016). Funcionalidades Biológicas de Passiflora Maliformis del Sur Macizo Colombiano. Bioagro, 28(1): 3-12.Sae-Tan, S., Grove, K. A., Kennett, M. J. & Lambert, J. D. (2011). (−)-Epigallocatechin-3- gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food & Function, 2(2): 111. https://doi.org/10.1039/C0FO00155DSenaphan, K., Kukongviriyapan, U., Sangartit, W., Pakdeechote, P., Pannangpetch, P., Prachaney, P. & Kukongviriyapan, V. (2015). Ferulic acid alleviates changes in a rat model of metabolic syndrome induced by high-carbohydrate, high-fat diet. Nutrients, 7(8): 6446-6464. https://doi.org/10.3390/nu7085283Shishikura, Y., Khokhar, S. & Murray, B. S. (2006). Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. Journal of Agricultural and Food Chemistry, 54(5): 1906-1913. https://doi.org/10.1021/jf051988pSun, C., Zhao, C., Guven, E. C., Paoli, P., Simal‐Gandara, J., Ramkumar, K. M., ... & Xiao, J. (2020). Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1): 18-44. https://doi.org/10.1002/FFT2.15Torres, A. (2012). Caracterización Física, Química y Compuestos Bioactivos de Pulpa Madura de Tomate de Árbol (Cyphomandra Betacea) (Cav.) Sendtn. Archivos Latinoamericanos de Nutrición, 62(4): 381-388.Wang, J. Q., Li, J., Zou, Y. H., Cheng, W. M., Lu. C., Zhang, L., Ge, J. F., Huang, C., Jin, Y., Lv, X. W., Hu, C. M. & Liu, L. P. (2009). Preventive effects of total flavonoids of Litsea coreana leve on hepatic steatosis in rats fed with high fat diet. Journal of Ethnopharmacology, 121(1): 54-60. https://doi.org/10.1016/j.jep.2008.09.029Wang, O., Liu, J., Cheng, Q., Guo, X., Wang, Y., Zhao, L., ... y Ji, B. (2015). Effects of ferulic acid and γ-oryzanol on high-fat and highfructose diet-induced metabolic syndrome in rats. PloS one, 10(2): e0118135. https://doi.org/10.1371/journal.pone.0118135Xu, Y., Zhang, M., Wu, T., Dai, S., Xu, J. & Zhou, Z. (2015). The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct, 6(1): 296-303. https://doi.org/10.1039/C4FO00970CZapata, K., Cortes, F. B. & Rojano, B. A. (2013). Polifenoles y actividad antioxidante del fruto de guayaba agria (Psidium Araca). Información Tecnológica, 24(5): 103.112. http://dx.doi.org/10.4067/S0718-07642013000500012Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in Physiology, 10, 1607. https://doi.org/10.3389/FPHYS.2019.01607Zhang, H. & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42. https://doi.org/10.1016/j.cofs.2016.02.002Zhao, Z. & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4): 691-702. https://doi.org/10.1016/j.foodchem.2008.02.039Núm. 2 , Año 2022 : Julio - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/7516/6589https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carmona Hernández, Juan C.Ángel Isaza, JaimeRestrepo López, Juan P.Narváez Solarte, WilliamGonzález Correa, Clara H.oai:repositorio.ucaldas.edu.co:ucaldas/234492025-10-08T21:06:18Z