Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia)
Figuras y tablas.
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2026
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/26552
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/26552
- Palabra clave:
- 570 - Biología
Ecological restoration
Andean forests
Native species
Biomass
Slope
Pioneer species
Biodiversity recovery
Biología
Biomasa
Biodiversidad
Gestión forestal
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_137c1255de386cc928631dd6b9e07f59 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/26552 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| title |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| spellingShingle |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) 570 - Biología Ecological restoration Andean forests Native species Biomass Slope Pioneer species Biodiversity recovery Biología Biomasa Biodiversidad Gestión forestal |
| title_short |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| title_full |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| title_fullStr |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| title_full_unstemmed |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| title_sort |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia) |
| dc.contributor.none.fl_str_mv |
Duque Castrillón, Cesar Augusto Universidad de Caldas |
| dc.subject.none.fl_str_mv |
570 - Biología Ecological restoration Andean forests Native species Biomass Slope Pioneer species Biodiversity recovery Biología Biomasa Biodiversidad Gestión forestal |
| topic |
570 - Biología Ecological restoration Andean forests Native species Biomass Slope Pioneer species Biodiversity recovery Biología Biomasa Biodiversidad Gestión forestal |
| description |
Figuras y tablas. |
| publishDate |
2026 |
| dc.date.none.fl_str_mv |
2026-01-26T15:55:25Z 2026-01-26T15:55:25Z 2026-01-26 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26552 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26552 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Aguayo, M., Pauchard, A., Azócar, G., & Parra, O. (2020). Ecosystem services and land use change in Chilean temperate forests. Forest Ecology and Management, 490, 118–136. http://dx.doi.org/10.4067/S0716-078X2009000300004 Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration. Forest Ecology and Management, 77(1–3), 77–91. https://doi.org/10.1046/j.1526-100x.2000.80048.x Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., … Muñiz, M. (2013). Deforestation and reforestation of Latin America and the Caribbean (20012010). Biotropica, 7429.2012.00908.x 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x Álvarez-Acuña, C., & Williams-Linera, G. (2012). Seedling survival and growth of tree species: Site condition and seasonality in Tropical Dry Forest restoration. Botanical Sciences, 90(3), 341–351. https://doi.org/10.17129/botsci.395 Alvarez-Dávila, E., et al. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 12(3), e0171072. https://doi.org/10.1371/journal.pone.0171072 Armenteras, D., Rodríguez, N., Retana, J., & Morales, M. (2010). Understanding deforestation in the Colombian Andes: Drivers and spatial distribution. Regional Environmental Change, 17(1), 1–13. http://dx.doi.org/10.1007/s10113-010-0200-y Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J.-S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2014). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x Bare, M. C., & Ashton, M. S. (2015). Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New Forests, 46, 123–144. https://doi.org/10.1007/s11056-015-9519z Brancalion, P. H. S., & Holl, K. D. (2020). Guidance for successful tree planting initiatives. Journal of Applied Ecology, 57(12), 2349–2361. https://doi.org/10.1111/13652664.13725 Brancalion Pedro H. S. et al. (2019).Global restoration opportunities in tropical rainforest landscapes.Sci. Adv.5,eaav3223. https://doi.org/10.1126/sciadv.aav3223 Batterman, S. A., et al. (2013). Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature, 502(7470), 224–227. https://doi.org/10.1038/nature12525B Buytaert, W., Iniguez, V., & Bièvre, B. D. (2006). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management, 251(1-2), 22–30. https://doi.org/10.1016/j.foreco.2007.06.035 Ceccon, E., Sánchez, S., & Campo, J. (2004). Dinámica de plántulas de árboles en dos bosques secos tropicales abandonados con diferente estado sucesional en Yucatán, México: un experimento de campo con fertilización con N y P. Plant Ecology, 170(2), 277–285. https://doi.org/10.1023/B:VEGE.0000021699.63151.47 Chave, J., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629 Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365 Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age deforestation. University of Chicago Press. https://doi.org/10.7208/chicago/9780226118109.001.0001 Chazdon, R. L., et al. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639. https://doi.org/10.1126/sciadv.1501639 Chazdon, R. L., & Brancalion, P. H. S. (2019). Restoring forests as a means to restore biodiversity and ecosystem services. Science, 365(6448), 24–25. https://doi.org/10.1126/science.aax9539 Chazdon, Robin & Falk, Donald & Banin, Lindsay & Wagner, Markus & Wilson, Sarah & Grabowski, Robert & Suding, Katherine. (2021). The intervention continuum in restoration ecology: rethinking the active‐passive dichotomy. Restoration Ecology. 32. 10.1111/rec.13535. https://doi.org/10.1111/rec.13535 Christmann, T., Palomeque, X., Armenteras, D., Wilson, S. J., Malhi, Y., & Oliveras Menor, I. (2023). La recuperación alterada de los bosques montanos dificulta la conservación de la biodiversidad en los Andes tropicales. Global Ecology and Biogeography, 32(5), 793–808. https://doi.org/10.1111/geb.13666 Crouzeilles, R., et al. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345. https://doi.org/10.1126/sciadv.1701345 Etter, A., McAlpine, C., Wilson, K., Phinn, S., & Possingham, H. (2006). Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment, 114(2-4), 369–386. https://doi.org/10.1016/j.agee.2005.11.013 Poveda, G., Mesa, OJ, Salazar, LF, Arias, PA, Moreno, HA, Vieira, SC, Agudelo, PA, Toro, VG, & Álvarez, JF (2005). El ciclo diurno de precipitaciones en los Andes tropicales de Colombia. Revisión meteorológica mensual, 133 (1), 228 240. https://doi.org/10.1175/MWR-2853.1 Peng, Y., Schmidt, I. K., Vesterdal, L., et al. (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, Article 118510. https://doi.org/10.1016/j.foreco.2020.118510 FAO. (2020). The State of the World’s Forests 2020. https://doi.org/10.4060/ca8642en Franklin, J., & Buckley, D. (2019). Influence of Microtopography and Soil Treatments on Tree Establischment on a Reclaimed Quarry. Forests, 10(7), 597. https://doi.org/10.3390/f10070597 Galindo, V., Calle, Z., Chará, J., & Armbrecht, I. (2017). Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restoration Ecology, 25(5), 675–683. https://doi.org/10.1111/rec.12490 Griscom, H. P., & Ashton, M. S. (2011). Restoration of dry tropical forests in Central America: A review of pattern and process. Forest Ecology and Management, 261(10), 1564–1579. https://doi.org/10.1016/j.foreco.2010.08.027 Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 Hermy, M., & Verheyen, K. (2007). Legacies of the past in the present-day forest biodiversity: A review of past land-use effects on forest plant species composition and diversity. Ecological Research, 22(3), 361–371. https://doi.org/10.1007/s11284-007-0354-3 Hofstede, R., et al. (2014). Climate change and biodiversity in the tropical Andes. InterAmerican Institute for Global Change Research. DOI: 10.13140/RG.2.1.1991.0564 Holl, K. D. (2017). Restoring tropical forests from the bottom up. Science, 355(6324), 455–456. https://doi.org/10.1126/science.aal3020 Holl, K. D., & Brancalion, P. H. S. (2020). Tree planting is not a simple solution. Science, 368(6491), 580–581. https://doi.org/10.1126/science.aba8232 Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 135–145. http://dx.doi.org/10.1016/j.foreco.2014.01.024 Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R., & Cordell, S. (2010). Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restoration Ecology, Early View. https://doi.org/10.1111/j.1526-100X.2010.00674.x Hooper, E., Legendre, P., & Condit, R. (2004). Factors affecting community composition of forest regeneration in deforested landscapes. Ecology, 83(11), 3397–3409. http://dx.doi.org/10.1890/03-0655 Informe establecimiento de la medida de reposición (2023). resolución no. 2023-1017 establecimiento de árboles en la ladera del centro cultural universitario rogelio salmona, de la Universidad de Caldas. Kawsay Consultorías Ambientales S.A.S (2023). Informe de mantenimiento de árboles establecidos en la ladera del centro cultural universitario rogelio salmona de la universidad de caldas como medida de reposición en el marco del proyecto cable aéreo linea 3 Kanninen, M., et al. (2004). Estimación de la biomasa aérea total en árboles de sombra y plantas de café. Agroforestería en las Américas, 41(12), 45–52. Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., … Lovejoy, T. E. (2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144(1), 56–67. https://doi.org/10.1016/j.biocon.2010.09.021 Letcher, S. G., et al. (2015). Environmental gradients and successional sequences in a tropical dry forest: Vegetation dynamics over a 30-year interval. Journal of Tropical Ecology, 31(1), 1–12. https://doi.org/10.1111/1365-2745.12435 Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Paz, H., González-Espinosa, M., & Bongers, F. (2015). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 96(5), 12111216. https://doi.org/10.1890/12-1850.1 Marín-Spiotta, E., Ostertag, R., & Silver, W. L. (2007). Long-term patterns in tropical reforestation: plant community dynamics, carbon and nitrogen accumulation. Ecological Applications, 17(7), 1639–1657. https://doi.org/10.1890/06-1268 Martínez-Garza, C., & Howe, H. F. (2003). Restoring tropical diversity: Beating the time tax on species loss. Journal of Applied Ecology, 40(3), 423–429. https://doi.org/10.1046/j.1365-2664.2003.00819.x Meli, P., et al. (2017). Four approaches to guide ecological restoration in Latin America. Restoration Ecology, 25(2), 156–163. https://doi.org/10.1111/rec.12473 Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x Molina, Armando & Vanacker, Veerle & Balthazar, Vincent & Mora, Diego & Govers, Gerard. (2012). Complex land cover change, water and sediment yield in a degraded Andean environment. Journal of Hydrology. s 472–473. 25–35. https://doi.org/10.1016/j.jhydrol.2012.09.012. Monge-Nájera, J., & Pérez-Gómez, G. (2015). Urban vegetation change after a hundred years in a tropical city (San José de Costa Rica). ArXiv. Recuperado de arXiv.org https://doi.org/10.48550/arXiv.1511.00953 Murcia, C., & Guariguata, M. R. (2014). La restauración ecológica en Colombia: Tendencias, necesidades y oportunidades. Revista Colombia Forestal, 17(2), 201221. ISBN 978-602-1504-35-2 Piquer-Doblas, M., Correa-Londoño, G. A., & Osorio-Vélez, L. F. (2024). From Stand to Forest: Woody Plant Recruitment in an Andean Restoration Project. Plants, 13(17), 2474. https://doi.org/10.3390/plants13172474 Poorter, L., et al. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211–214. https://doi.org/10.1038/nature16512 Ramírez-Bamonde, E. S., Sánchez-Velásquez, L. R., & Andrade-Torres, A. (2005). Seedling survival and growth of three species of mountain cloud forest in Mexico, under different canopy treatments. New Forests, 30(1), 95–101. https://doi.org/10.1007/s11056-004-5397-5 Restrepo-Carvajal, I. C., Clerici, N., & Alvarado, S. T. (2025). Assessing restoration strategies for the recovery of Colombian Moist Forests: A meta-analysis. Restoration Ecology. Advance online publication. https://doi.org/10.1111/rec.70085 Rodríguez-Eraso, N., Armenteras, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: Dynamics and drivers. Regional Environmental Change, 13(4), 873–887. https://doi.org/10.1080/1747423X.2011.650228 Rozendaal, D.M.A. and Chazdon, R.L. (2015), Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 25: 506-516. https://doi.org/10.1890/14-0054.1 Sierra, C. A., et al. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2–3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026 Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C., & de la Cruz, M. (2015). Deforestation and forest fragmentation in South Ecuador since the 1970s – Losing a hotspot of biodiversity. PLoS ONE, 10(9), e0133701. https://doi.org/10.1371/journal.pone.0133701 Tayllon Serra, R., Santos, C. D., Rousseau, G. X., Pinzón Triana, S., Muñoz Gutiérrez, J. A., & Burgos Guerrero, J. E. (2021). Fast recovery of soil macrofauna in regenerating forests of the Amazon. Journal of Animal Ecology, 90(9), 2094–2108. https://doi.org/10.1111/1365-2656.13506 Thomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., Bordács, S., Smith, P., & Bozzano, M. (2014). Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, 333, 66 - 75. https://doi.org/10.1016/j.foreco.2014.07.015 Vuille, M., E. Franquist, R. Garreaud, W. S. Lavado, Casimiro, and B. Cáceres (2015). Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120, 3745–3757. https://doi.org/10.1002/2015JD023126. Wheeler, C. E., Omeja, P. A., Chapman, C. A., Glipin, M., Tumwesigye, C., & Lewis, S. L. (2016). Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Forest Ecology and Management, 373, 44–55 https://doi.org/10.1016/j.foreco.2016.04.025 Wright, S. J., Kitajima, K., Kraft, N. J., Reich, P. B., Wright, I. J., Bunker, D. E., ... & Ackerly, D. D. (2010). Functional traits and the growth–mortality trade-off in tropical trees. Ecology, 91(12), 3664–3674. https://doi.org/10.1890/09-2335.1 Wilson, S. J., & Rhemtulla, J. M. (2016). Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecological Applications, 26(1), 203–215. https://doi.org/10.1890/14-2129 Zahawi, R. A., Holl, K. D., Cole, R. J., & Reid, J. L. (2015). Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, 52(3), 721–730. https://doi.org/10.1111/1365-2664.12014 Zhang, H., Zheng, X., Wu, Y., Xu, B., Cui, P., Zhou, X., Fang, Y., Xie, L., & Ding, H. (2024). Impact of microtopography and neighborhood effects on individual survival across life history stages Plants, 13(22), 3216. https://doi.org/10.3390/plants13223216 Zhang, J., Cardoso, F. C. G., Zhu, H., Cheuk, M. L., Fischer, G. A., & Gale, S. W. (2025). Temporal shifts in the importance of environmental factors and management interventions among species in the early stages of forest restoration. Journal of Forestry Research, 36, Article 56. https://doi.org/10.1007/s11676-025-01857-4 Zhang, P., Li, X., Xue, S. et al. (2021). Effects of weeding and fertilization on soil biology and biochemical processes and tree growth in a mixed stand of Dalbergia odorifera and Santalum album. J. For. Res. 32, 2633–2644. https://doi.org/10.1007/s11676-020-01286-5 Zorrilla-Azcué, S., González-Rodríguez, A., Oyama, K., González, M. A., & RodríguezCorrea, H. (2021). The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecology and Evolution, 11(13), 68146828. https://doi.org/10.1002/ece3.7529 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
33 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Biología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Biología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532486444974080 |
| spelling |
Evaluación del desempeño de especies nativas en las etapas iniciales de un proceso de reforestación en la Universidad de Caldas, Manizales (Colombia)570 - BiologíaEcological restorationAndean forestsNative speciesBiomassSlopePioneer speciesBiodiversity recoveryBiologíaBiomasaBiodiversidadGestión forestalFiguras y tablas.La degradación de los ecosistemas andinos, impulsada por la deforestación, la agricultura y la expansión urbana, ha reducido su biodiversidad y servicios ecosistémicos, destacando la urgente necesidad de restauración ecológica asistida. Este estudio evaluó el desempeño temprano de 19 especies de árboles nativos plantados en un proyecto de restauración de 0.5 ha en la Universidad de Caldas (Manizales, Colombia), considerando la pendiente como una variable topográfica clave. El crecimiento (altura y diámetro basal), la acumulación de biomasa y la supervivencia se monitorearon durante un año a través de tres campañas de medición, y los datos se analizaron mediante pruebas estadísticas no paramétricas. Los resultados mostraron una tasa de supervivencia general del 77.9%, con diferencias significativas entre especies y categorías de pendiente. Especies pioneras como Heliocarpus popoyanensis, Montanoa quadrangularis, Verbesina arborea y Croton magdaleniensis exhibieron el mayor crecimiento y acumulación de biomasa (>6 kg individual⁻¹), confirmando su papel como facilitadores ecológicos. En contraste, especies de sucesión tardía como Quercus humboldtii y Tabernaemontana sp. Presentaron una menor supervivencia y crecimiento, lo que indica la necesidad de micrositios sombreados o etapas de plantación más tardías. Las pendientes más pronunciadas (>24°) favorecieron el crecimiento y la biomasa, lo que sugiere que la microtopografía modula el éxito del establecimiento. Más allá de la dinámica de la vegetación, se registró una colonización temprana por insectos y reptiles, lo que evidencia la rápida reactivación de las interacciones ecológicas. Estos hallazgos refuerzan la importancia de combinar especies pioneras y de sucesión tardía, e incorporar explícitamente la pendiente en la planificación de la restauración. El estudio destaca que la reforestación nativa no solo restaura la cobertura vegetal, sino que también impulsa la recuperación de la biodiversidad y la prestación de servicios ecosistémicos, incluso en paisajes urbanos degradados.The degradation of Andean ecosystems, driven by deforestation, agriculture, and urban expansion, has reduced their biodiversity and ecosystem services, highlighting the urgent need for assisted ecological restoration. This study evaluated the early performance of 19 native tree species planted in a 0.5 ha restoration project at the Universidad de Caldas (Manizales, Colombia), considering slope as a key topographic variable. Growth (height and basal diameter), biomass accumulation, and survival were monitored during one year through three measurement campaigns, and data were analyzed using non-parametric statistical tests. Results showed a general survival rate of 77.9%, with significant differences among species and slope categories. Pioneer species such as Heliocarpus popoyanensis, Montanoa quadrangularis, Verbesina arborea and Croton magdaleniensis exhibited the highest growth and biomass accumulation (>6 kg individual⁻¹), confirming their role as ecological facilitators. In contrast, late-successional species like Quercus humboldtii and Tabernaemontana sp. displayed lower survival and growth, indicating a need for shaded microsites or later planting stages. Steeper slopes (>24°) favored growth and biomass, suggesting that microtopography modulates establishment success. Beyond vegetation dynamics, early colonization by insects and reptiles was recorded, evidencing the rapid reactivation of ecological interactions. These findings reinforce the importance of combining pioneer and late-successional species and explicitly incorporating slope into restoration planning. The study highlights that native reforestation not only restores vegetation cover but also initiates biodiversity recovery and ecosystem service provision, even in degraded urban landscapes.PregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, CaldasBiologíaDuque Castrillón, Cesar AugustoUniversidad de CaldasValencia Ramirez, Juan Sebastian2026-01-26T15:55:25Z2026-01-26T15:55:25Z2026-01-26Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis33 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26552Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAguayo, M., Pauchard, A., Azócar, G., & Parra, O. (2020). Ecosystem services and land use change in Chilean temperate forests. Forest Ecology and Management, 490, 118–136. http://dx.doi.org/10.4067/S0716-078X2009000300004Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration. Forest Ecology and Management, 77(1–3), 77–91. https://doi.org/10.1046/j.1526-100x.2000.80048.xAide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., … Muñiz, M. (2013). Deforestation and reforestation of Latin America and the Caribbean (20012010). Biotropica, 7429.2012.00908.x 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.xÁlvarez-Acuña, C., & Williams-Linera, G. (2012). Seedling survival and growth of tree species: Site condition and seasonality in Tropical Dry Forest restoration. Botanical Sciences, 90(3), 341–351. https://doi.org/10.17129/botsci.395Alvarez-Dávila, E., et al. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 12(3), e0171072. https://doi.org/10.1371/journal.pone.0171072Armenteras, D., Rodríguez, N., Retana, J., & Morales, M. (2010). Understanding deforestation in the Colombian Andes: Drivers and spatial distribution. Regional Environmental Change, 17(1), 1–13. http://dx.doi.org/10.1007/s10113-010-0200-yBalvanera, P., Pfisterer, A. B., Buchmann, N., He, J.-S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2014). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.xBare, M. C., & Ashton, M. S. (2015). Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New Forests, 46, 123–144. https://doi.org/10.1007/s11056-015-9519zBrancalion, P. H. S., & Holl, K. D. (2020). Guidance for successful tree planting initiatives. Journal of Applied Ecology, 57(12), 2349–2361. https://doi.org/10.1111/13652664.13725Brancalion Pedro H. S. et al. (2019).Global restoration opportunities in tropical rainforest landscapes.Sci. Adv.5,eaav3223. https://doi.org/10.1126/sciadv.aav3223Batterman, S. A., et al. (2013). Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature, 502(7470), 224–227. https://doi.org/10.1038/nature12525BBuytaert, W., Iniguez, V., & Bièvre, B. D. (2006). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management, 251(1-2), 22–30. https://doi.org/10.1016/j.foreco.2007.06.035Ceccon, E., Sánchez, S., & Campo, J. (2004). Dinámica de plántulas de árboles en dos bosques secos tropicales abandonados con diferente estado sucesional en Yucatán, México: un experimento de campo con fertilización con N y P. Plant Ecology, 170(2), 277–285. https://doi.org/10.1023/B:VEGE.0000021699.63151.47Chave, J., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age deforestation. University of Chicago Press. https://doi.org/10.7208/chicago/9780226118109.001.0001Chazdon, R. L., et al. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639. https://doi.org/10.1126/sciadv.1501639Chazdon, R. L., & Brancalion, P. H. S. (2019). Restoring forests as a means to restore biodiversity and ecosystem services. Science, 365(6448), 24–25. https://doi.org/10.1126/science.aax9539Chazdon, Robin & Falk, Donald & Banin, Lindsay & Wagner, Markus & Wilson, Sarah & Grabowski, Robert & Suding, Katherine. (2021). The intervention continuum in restoration ecology: rethinking the active‐passive dichotomy. Restoration Ecology. 32. 10.1111/rec.13535. https://doi.org/10.1111/rec.13535Christmann, T., Palomeque, X., Armenteras, D., Wilson, S. J., Malhi, Y., & Oliveras Menor, I. (2023). La recuperación alterada de los bosques montanos dificulta la conservación de la biodiversidad en los Andes tropicales. Global Ecology and Biogeography, 32(5), 793–808. https://doi.org/10.1111/geb.13666Crouzeilles, R., et al. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345. https://doi.org/10.1126/sciadv.1701345Etter, A., McAlpine, C., Wilson, K., Phinn, S., & Possingham, H. (2006). Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment, 114(2-4), 369–386. https://doi.org/10.1016/j.agee.2005.11.013Poveda, G., Mesa, OJ, Salazar, LF, Arias, PA, Moreno, HA, Vieira, SC, Agudelo, PA, Toro, VG, & Álvarez, JF (2005). El ciclo diurno de precipitaciones en los Andes tropicales de Colombia. Revisión meteorológica mensual, 133 (1), 228 240. https://doi.org/10.1175/MWR-2853.1Peng, Y., Schmidt, I. K., Vesterdal, L., et al. (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, Article 118510. https://doi.org/10.1016/j.foreco.2020.118510FAO. (2020). The State of the World’s Forests 2020. https://doi.org/10.4060/ca8642enFranklin, J., & Buckley, D. (2019). Influence of Microtopography and Soil Treatments on Tree Establischment on a Reclaimed Quarry. Forests, 10(7), 597. https://doi.org/10.3390/f10070597Galindo, V., Calle, Z., Chará, J., & Armbrecht, I. (2017). Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restoration Ecology, 25(5), 675–683. https://doi.org/10.1111/rec.12490Griscom, H. P., & Ashton, M. S. (2011). Restoration of dry tropical forests in Central America: A review of pattern and process. Forest Ecology and Management, 261(10), 1564–1579. https://doi.org/10.1016/j.foreco.2010.08.027Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1Hermy, M., & Verheyen, K. (2007). Legacies of the past in the present-day forest biodiversity: A review of past land-use effects on forest plant species composition and diversity. Ecological Research, 22(3), 361–371. https://doi.org/10.1007/s11284-007-0354-3Hofstede, R., et al. (2014). Climate change and biodiversity in the tropical Andes. InterAmerican Institute for Global Change Research. DOI: 10.13140/RG.2.1.1991.0564Holl, K. D. (2017). Restoring tropical forests from the bottom up. Science, 355(6324), 455–456. https://doi.org/10.1126/science.aal3020Holl, K. D., & Brancalion, P. H. S. (2020). Tree planting is not a simple solution. Science, 368(6491), 580–581. https://doi.org/10.1126/science.aba8232Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 135–145. http://dx.doi.org/10.1016/j.foreco.2014.01.024Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R., & Cordell, S. (2010). Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restoration Ecology, Early View. https://doi.org/10.1111/j.1526-100X.2010.00674.xHooper, E., Legendre, P., & Condit, R. (2004). Factors affecting community composition of forest regeneration in deforested landscapes. Ecology, 83(11), 3397–3409. http://dx.doi.org/10.1890/03-0655Informe establecimiento de la medida de reposición (2023). resolución no. 2023-1017 establecimiento de árboles en la ladera del centro cultural universitario rogelio salmona, de la Universidad de Caldas.Kawsay Consultorías Ambientales S.A.S (2023). Informe de mantenimiento de árboles establecidos en la ladera del centro cultural universitario rogelio salmona de la universidad de caldas como medida de reposición en el marco del proyecto cable aéreo linea 3Kanninen, M., et al. (2004). Estimación de la biomasa aérea total en árboles de sombra y plantas de café. Agroforestería en las Américas, 41(12), 45–52.Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., … Lovejoy, T. E. (2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144(1), 56–67. https://doi.org/10.1016/j.biocon.2010.09.021Letcher, S. G., et al. (2015). Environmental gradients and successional sequences in a tropical dry forest: Vegetation dynamics over a 30-year interval. Journal of Tropical Ecology, 31(1), 1–12. https://doi.org/10.1111/1365-2745.12435Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Paz, H., González-Espinosa, M., & Bongers, F. (2015). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 96(5), 12111216. https://doi.org/10.1890/12-1850.1Marín-Spiotta, E., Ostertag, R., & Silver, W. L. (2007). Long-term patterns in tropical reforestation: plant community dynamics, carbon and nitrogen accumulation. Ecological Applications, 17(7), 1639–1657. https://doi.org/10.1890/06-1268Martínez-Garza, C., & Howe, H. F. (2003). Restoring tropical diversity: Beating the time tax on species loss. Journal of Applied Ecology, 40(3), 423–429. https://doi.org/10.1046/j.1365-2664.2003.00819.xMeli, P., et al. (2017). Four approaches to guide ecological restoration in Latin America. Restoration Ecology, 25(2), 156–163. https://doi.org/10.1111/rec.12473Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.xMolina, Armando & Vanacker, Veerle & Balthazar, Vincent & Mora, Diego & Govers, Gerard. (2012). Complex land cover change, water and sediment yield in a degraded Andean environment. Journal of Hydrology. s 472–473. 25–35. https://doi.org/10.1016/j.jhydrol.2012.09.012.Monge-Nájera, J., & Pérez-Gómez, G. (2015). Urban vegetation change after a hundred years in a tropical city (San José de Costa Rica). ArXiv. Recuperado de arXiv.org https://doi.org/10.48550/arXiv.1511.00953Murcia, C., & Guariguata, M. R. (2014). La restauración ecológica en Colombia: Tendencias, necesidades y oportunidades. Revista Colombia Forestal, 17(2), 201221. ISBN 978-602-1504-35-2Piquer-Doblas, M., Correa-Londoño, G. A., & Osorio-Vélez, L. F. (2024). From Stand to Forest: Woody Plant Recruitment in an Andean Restoration Project. Plants, 13(17), 2474. https://doi.org/10.3390/plants13172474Poorter, L., et al. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211–214. https://doi.org/10.1038/nature16512Ramírez-Bamonde, E. S., Sánchez-Velásquez, L. R., & Andrade-Torres, A. (2005). Seedling survival and growth of three species of mountain cloud forest in Mexico, under different canopy treatments. New Forests, 30(1), 95–101. https://doi.org/10.1007/s11056-004-5397-5Restrepo-Carvajal, I. C., Clerici, N., & Alvarado, S. T. (2025). Assessing restoration strategies for the recovery of Colombian Moist Forests: A meta-analysis. Restoration Ecology. Advance online publication. https://doi.org/10.1111/rec.70085Rodríguez-Eraso, N., Armenteras, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: Dynamics and drivers. Regional Environmental Change, 13(4), 873–887. https://doi.org/10.1080/1747423X.2011.650228Rozendaal, D.M.A. and Chazdon, R.L. (2015), Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 25: 506-516. https://doi.org/10.1890/14-0054.1Sierra, C. A., et al. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2–3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C., & de la Cruz, M. (2015). Deforestation and forest fragmentation in South Ecuador since the 1970s – Losing a hotspot of biodiversity. PLoS ONE, 10(9), e0133701. https://doi.org/10.1371/journal.pone.0133701Tayllon Serra, R., Santos, C. D., Rousseau, G. X., Pinzón Triana, S., Muñoz Gutiérrez, J. A., & Burgos Guerrero, J. E. (2021). Fast recovery of soil macrofauna in regenerating forests of the Amazon. Journal of Animal Ecology, 90(9), 2094–2108. https://doi.org/10.1111/1365-2656.13506Thomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., Bordács, S., Smith, P., & Bozzano, M. (2014). Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, 333, 66 - 75. https://doi.org/10.1016/j.foreco.2014.07.015Vuille, M., E. Franquist, R. Garreaud, W. S. Lavado, Casimiro, and B. Cáceres (2015). Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120, 3745–3757. https://doi.org/10.1002/2015JD023126.Wheeler, C. E., Omeja, P. A., Chapman, C. A., Glipin, M., Tumwesigye, C., & Lewis, S. L. (2016). Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Forest Ecology and Management, 373, 44–55 https://doi.org/10.1016/j.foreco.2016.04.025Wright, S. J., Kitajima, K., Kraft, N. J., Reich, P. B., Wright, I. J., Bunker, D. E., ... & Ackerly, D. D. (2010). Functional traits and the growth–mortality trade-off in tropical trees. Ecology, 91(12), 3664–3674. https://doi.org/10.1890/09-2335.1Wilson, S. J., & Rhemtulla, J. M. (2016). Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecological Applications, 26(1), 203–215. https://doi.org/10.1890/14-2129Zahawi, R. A., Holl, K. D., Cole, R. J., & Reid, J. L. (2015). Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, 52(3), 721–730. https://doi.org/10.1111/1365-2664.12014Zhang, H., Zheng, X., Wu, Y., Xu, B., Cui, P., Zhou, X., Fang, Y., Xie, L., & Ding, H. (2024). Impact of microtopography and neighborhood effects on individual survival across life history stages Plants, 13(22), 3216. https://doi.org/10.3390/plants13223216Zhang, J., Cardoso, F. C. G., Zhu, H., Cheuk, M. L., Fischer, G. A., & Gale, S. W. (2025). Temporal shifts in the importance of environmental factors and management interventions among species in the early stages of forest restoration. Journal of Forestry Research, 36, Article 56. https://doi.org/10.1007/s11676-025-01857-4Zhang, P., Li, X., Xue, S. et al. (2021). Effects of weeding and fertilization on soil biology and biochemical processes and tree growth in a mixed stand of Dalbergia odorifera and Santalum album. J. For. Res. 32, 2633–2644. https://doi.org/10.1007/s11676-020-01286-5Zorrilla-Azcué, S., González-Rodríguez, A., Oyama, K., González, M. A., & RodríguezCorrea, H. (2021). The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecology and Evolution, 11(13), 68146828. https://doi.org/10.1002/ece3.7529https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/265522026-01-26T16:04:57Z |
