Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l.
Gráficas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/19754
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/19754
https://repositorio.ucaldas.edu.co/
- Palabra clave:
- Borrelia s.l.
Enfermedades transmitidas por vectores,
Genomas
Plásmidos
Predicción
Análisis filogenético
Biología
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUCALDA_0f3abcd1f15106438e721c7e4ff1d986 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/19754 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
title |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
spellingShingle |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. Borrelia s.l. Enfermedades transmitidas por vectores, Genomas Plásmidos Predicción Análisis filogenético Biología |
title_short |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
title_full |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
title_fullStr |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
title_full_unstemmed |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
title_sort |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l. |
dc.contributor.none.fl_str_mv |
Rodríguez-Rey, Ghennie T |
dc.subject.none.fl_str_mv |
Borrelia s.l. Enfermedades transmitidas por vectores, Genomas Plásmidos Predicción Análisis filogenético Biología |
topic |
Borrelia s.l. Enfermedades transmitidas por vectores, Genomas Plásmidos Predicción Análisis filogenético Biología |
description |
Gráficas |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-22T20:44:36Z 2024-01-22T20:44:36Z 2024-01-22 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19754 Universidad de Caldas Repositorio Institucional Universidad de Caldas https://repositorio.ucaldas.edu.co/ |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19754 https://repositorio.ucaldas.edu.co/ |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
Adeolu, M., & Gupta, R. S. (2014). A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek, 105, 1049-1072. Alozie-Chidi, V. C. (2022). Why Do Some Human Associated Escherichia coli Strains Lack Antibiotic Resistance? (Doctoral dissertation, The Australian National University (Australia)). Andrews, S. (2017). FastQC: A Quality Control Tool for High Throughput Sequence Data. Angel, T. E., Luft, B. J., Yang, X., Nicora, C. D., Camp, D. G., Jacobs, J. M., & Smith, R. D. (2010). Proteome analysis of Borrelia burgdorferi response to environmental change. PloS one, 5(11), e13800. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455- 477. Baranton, G. U. Y., Postic, D., Saint Girons, I., Boerlin, P., Piffaretti, J. C., Assous, M., & Grimont, P. A. (1992). Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. International Journal of Systematic and Evolutionary Microbiology, 42(3), 378-383. Barbour, A. G., Maupin, G. O., Teltow, G. J., Carter, C. J., & Piesman, J. (1996). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. Journal of Infectious Diseases, 173(2), 403-409. Barbour, A. G. (2016). Multiple and diverse vsp and vlp sequences in Borrelia miyamotoi, a hard tick-borne zoonotic pathogen. PLoS One, 11(1), e0146283. Barbour, A. G., Adeolu, M., & Gupta, R. S. (2017). Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al.(2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10 099/ijsem. 0.001717). International journal of systematic and evolutionary microbiology, 67(6), 2058-2067. Baril, C., Richaud, C., Baranton, G., & Saint Girons, I. (1989). Linear chromosome of Borrelia burgdorferi. Research in microbiology, 140(7), 507-516. Benz, F., & Hall, A. R. (2023). Host-specific plasmid evolution explains the variable spread of clinical antibiotic-resistance plasmids. Proceedings of the National Academy of Sciences, 120(15), e2212147120. Berende, A., Oosting, M., Kullberg, B. J., Netea, M. G., & Joosten, L. A. (2010). Activation of innate host defense mechanisms by Borrelia. European cytokine network, 21(1), 7- 18. Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W., & Huntoon, F. M. (1925). Bergey's Manual of Determinative Bacteriology (2nd ed.). The Williams & Wilkins Co. Bermudez, S. E., Armstrong, B. A., Dominguez, L., Krishnavajhala, A., Kneubehl, A. R., Gunter, S. M., ... Lopez, J. E. (2021). Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Neglected Tropical Diseases, 15(12), e0009642. https://doi.org/10 371/journal.pntd.0009642 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10 093/bioinformatics/btu170 Borremans, B., Hobman, J. L., Provoost, A., Brown, N. L., & van Der Lelie, D. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651-5658. https://doi.org/10 128/JB 83 9.5651-5658.2001 Bowen, H. G., Kenedy, M. R., Johnson, D. K., MacKerell, A. D., & Akins, D. R. (2023). Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathogens and Disease, 81. Brandt, M. E., Riley, B. S., Radolf, J. D., & Norgard, M. V. (1990). Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infection and Immunity, 58, 983–991. Brisson, D., Zhou, W., Jutras, B. L., Casjens, S., & Stevenson, B. (2013). Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Applied and Environmental Microbiology, 79(13), 4115-4128. https://doi.org/10 128/AEM.00518-13 Brumpt, E. (1922). Les Spirochetoses. In G. H. Roger, F. Widal, & P. J. Teissier (Eds.), Nouveau Traité de Médecine (pp. 491-531). Masson. Burman, N., Shamaei-Tousi, A., & Bergström, S. (1998). The Spirochete Borrelia crocidurae Causes Erythrocyte Rosetting during Relapsing Fever. Infection and Immunity, 66, 815-819. https://doi.org/10 128/IAI.66.2.815-819 998 Caimano, M. J., Yang, X., Popova, T. G., Clawson, M. L., Akins, D. R., Norgard, M. V., & Radolf, J. D. (2000). Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Infection and Immunity, 68(3), 1574-1586. https://doi.org/10 128/IAI.68.3 574-1586.2000 Cairns, V., & Godwin, J. (2005). Post-Lyme borreliosis syndrome: a meta-analysis of reported symptoms. International journal of epidemiology, 34(6), 1340-1345. Calva, E., Silva, C., Zaidi, M. B., Sanchez-Flores, A., Estrada, K., Silva, G. G., ... & Vinuesa, P. (2015). Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype. Genome Announcements, 3(3), 10-1128. https://doi.org/10 128/genomeA.00663-15 Canica, M. M., Nato, F., du Merle, L., Mazie, J. C., Baranton, G., & Postic, D. (1993). Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scandinavian Journal of Infectious Diseases, 25, 441-448. Casjens, S. R., Fraser-Liggett, C. M., Mongodin, E. F., Qiu, W. G., Dunn, J. J., Luft, B. J., ... Schutzer, S. E. (2011). Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. Journal of Bacteriology, 193, 1489-1490. https://doi.org/10 128/JB.01506-10 Casjens, S. R., Gilcrease, E. B., Vujadinovic, M., Mongodin, E. F., Luft, B. J., Schutzer, S. E., ... & Qiu, W. G. (2017). Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics, 18(1), 1-18. https://doi.org/10 186/s12864-016-3441-y Casjens, S. R., Di, L., Akther, S., Mongodin, E. F., Luft, B. J., Schutzer, S. E., ... & Qiu, W. G. (2018). Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics, 19, 1-24. https://doi.org/10 186/s12864-017-4425-4 Casselli, T., Tourand, Y., Bankhead, T. (2012). Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infection and Immunity, 80(5), 1773-1782. https://doi.org/10 128/IAI.05984-11 Casselli, T., Tourand, Y., Gura, K., Stevenson, B., Zückert, W. R., & Brissette, C. A. (2023). Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii. Infection and Immunity, 91(3), e00061-23. https://doi.org/10 128/IAI.00061-23 Chanda, E., Govere, M. J., Macdonald, B. M., Lako, L. R., Haque, U., Baba, P. S., ... Mnzava, A. (2013). Integrated vector management: A critical strategy for combating vectorborne diseases in South Sudan. Malaria Journal, 12, 1-9. https://doi.org/10 186/1475-2875-12-1 Chang, Y. F. (2012). U.S. Patent Application No. 12/679,643. Charon, N., Nyles, A., Goldstein, S. F., Marko, M., Hsieh, C. E., Gebhardt, L. L., ... & Rowe, N. (2009). The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology. Journal of Bacteriology, 191(2), 600-607. https://doi.org/10 128/JB.01288-08 Chenail, A. M., Jutras, B. L., Adams, C. A., Burns, L. H., Bowman, A., Verma, A., & Stevenson, B. (2012). Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein. Journal of Bacteriology, 194(17), 4570-4578. https://doi.org/10 128/JB.00732-12 Conlan, S., Lau, A. F., NISC Comparative Sequencing Program, Palmore, T. N., Frank, K. M., & Segre, J. A. (2016). Complete genome sequence of a Klebsiella pneumoniae strain carrying bla NDM-1 on a Multidrug resistance plasmid. Genome Announcements, 4(4), 10-1128. https://doi.org/10 128/genomeA.00663-15 Čorak, N., Anniko, S., Daschkin-Steinborn, C., Krey, V., Koska, S., Futo, M., ... & Domazet-Lošo, T. (2023). Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. International Journal of Molecular Sciences, 24(6), 5594. Criswell, D. C. (2004). Characterization of antibiotic resistance mutations in Borrelia burgdorferi. (Order No. 9482). Retrieved from University of Montana ScholarWorks: https://scholarworks.umt.edu/etd/9482 Cutler, S. J., Scott, J. C., & Wright, D. J. (2008). Phylogenetic origins of Borrelia recurrentis. International Journal of Medical Microbiology, 298, 193-202. Ehounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., et al. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Cote d'Ivoire. PLoS Neglected Tropical Diseases, 10(1), e0004367. https://doi.org/10 371/journal.pntd.0004367 Ehounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., et al. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Cote d'Ivoire. PLoS Neglected Tropical Diseases, 10(1), e0004367. https://doi.org/10 371/journal.pntd.0004367 Davis, G. E. (1957). Order IX. Spirochaetales Buchanan 1918. In R. S. Breed, E. G. D. Murray, & N. R. Smith (Eds.), Bergey's Manual of Determinative Bacteriology, seventh edition (pp. 892-907). The Williams & Wilkins Co. Delihas, N. (2009). Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs. BMC Genomics, 10, 101. https://doi.org/10 186/1471-2164-10-101 Dulebohn, D. P., Bestor, A., Rego, R. O., Stewart, P. E., & Rosa, P. A. (2011). Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Infection and Immunity, 79(9), 3510-3517. Dykhuizen, D. E., & Baranton, G. (2001). The implications of a low rate of horizontal transfer in Borrelia. Trends in Microbiology, 9(7), 344-350. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. Elbir, H., Abi-Rached, L., Pontarotti, P., Yoosuf, N., & Drancourt, M. (2014). African Relapsing Fever Borreliae Genomospecies Revealed by Comparative Genomics. Frontiers in Public Health, 2. https://doi.org/10.3389/fpubh.2014.00043 Faccini-Martínez, Á. A., Silva-Ramos, C. R., Santodomingo, A. M., Ramírez-Hernández, A., Costa, F. B., Labruna, M. B., & Muñoz-Leal, S. (2022). Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites & Vectors, 15(1), 1-20. Ferdows, M. S., & Barbour, A. G. (1989). Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proceedings of the National Academy of Sciences of the United States of America, 86, 5969-5973. Fikrig, E., Barthold, S. W., Sun, W., Feng, W., Telford, S. R., & Flavell, R. A. (1997). Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity, 6(5), 531-539. Franco, R., Toro, G., & Martinez, J. (1911). Fiebre amarilla y fiebre espiroquetal. Sesiones Científicas del Centenario. Acad Nac Med Bogota, 1, 169-227. Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., ... & Venter, J. C. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390(6660), 580-586. Ford, L., & Tufts, D. M. (2021). Lyme neuroborreliosis: Mechanisms of B. burgdorferi infection of the nervous system. Brain Sciences, 11(6), 789. Fukunaga, M., Takahashi, Y., Tsuruta, Y., Matsushita, O., Ralph, D., McClelland, M., & Nakao, M. (1995). Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. International Journal of Systematic and Evolutionary Microbiology, 45, 804-810. Fukunaga, M., Hamase, A., Okada, K., Nakao, M. (1996a). Borrelia tanukii sp. nov. and Borrelia turdae sp. nov. found from ixodid ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. Microbiology and Immunology, 40, 877- 881. Fukunaga, M., Okada, K., Nakao, M., Konishi, T., & Sato, Y. (1996b). Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. International Journal of Systematic and Evolutionary Microbiology, 46(4), 898-905. Gilmore, R. D., Kneubehl, A. R., Lopez, J. E., Armstrong, B. A., Brandt, K. S., & Van Gundy, T. J. (2022). Modification of the multiplex plasmid PCR assay for Borrelia miyamotoi strain LB-2001 based on the complete genome sequence reflecting genomic rearrangements differing from strain CT13–2396. Ticks and Tick-borne Diseases, 13(1), 101843. Giuseppe, P. O., Neves, F. O., Nascimento, A. L. T., & Guimarães, B. G. (2008). The leptospiral antigen Lp49 is a two-domain protein with putative protein binding function. Journal of Structural Biology, 163(1), 53-60. Glöckner, G., Lehmann, R., Romualdi, A., Pradella, S., Schulte-Spechtel, U., Schilhabel, M., ... & Platzer, M. (2004). Comparative analysis of the Borrelia garinii genome. Nucleic acids research, 32(20), 6038-6046. González-Domínguez, M. S., Villegas, J. P., Carmona, S., & Castañeda, H. (2014). First report of canine borreliosis seroprevalence in a middle-altitude tropical urban area (Medellín-Colombia). CES Medicina Veterinaria y Zootecnia, 9(2), 348-354. Goren, A., Mysterud, A., Jore, S., Viljugrein, H., Bakka, H., & Vindenes, Y. (2023). Demographic patterns in Lyme borreliosis seasonality over 25 years. Zoonoses and Public Health, 70(7), 647-655. Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA. (2004). Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun, 72(10), 5938-5946. https://doi.org/10 128/IAI.72 0.5938-5946.2004 Guner ES, Watanabe M, Hashimoto N, Kadosaka T, Kawamura Y, Ezaki T, Kawabata H, Imai Y, Kaneda K, Masuzawa T. (2004). Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int J Syst Evol Microbiol, 54, 1649-1652 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072-1075. Hinnebusch, J., & Barbour, A. G. (1991). Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. Journal of bacteriology, 173(22), 7233-7239. Hooton, S. P., Timms, A. R., Cummings, N. J., Moreton, J., Wilson, R., & Connerton, I. F. (2014). The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288. Plasmid, 76, 32-39. Hördt A, Lopez MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Goker M. (2020). Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol, 11, 468. Iriarte A, Giner-Lamia J, Silva C, Betancor L, Astocondor L, Cestero JJ, Ochoa T, García C, Puente JL, Chabalgoity JA; SalmoIber CYTED Network; García-Del Portillo F. (2017). Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection. Genome Announc, 5(29), e00679-17. https://doi.org/10128/genomeA.00679-17 Ivanova LB, Tomova A, Gonzalez-Acuna D, Murua R, Moreno CX, Hernandez C, Cabello J, Cabello C, Daniels TJ, Godfrey HP, et al. (2014). Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol, 16, 1069-1080. Johnson, R. C., Schmid, G. P., Hyde, F. W., Steigerwalt, A. G., & Brenner, D. J. (1984). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. International Journal of Systematic Bacteriology, 34(4), 496-497. Johnson, R. C., Burgdorfer, W., Lane, R. S., Barbour, A. G., Hayes, S. F., & Hyde, F. W. (1987). Borrelia coriaceae sp. nov.: putative agent of epizootic bovine abortion. International Journal of Systematic Bacteriology, 37(1), 72-74. Jewett, M. W., Lawrence, K., Bestor, A. C., Tilly, K., Grimm, D., Shaw, P., ... & Rosa, P. A. (2007). The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Molecular microbiology, 64(5), 1358-1374. Kalmar, Z., Cozma, V., Sprong, H., Jahfari, S., D’Amico, G., Mărcuțan, D. I., ... & Mihalca, A. D. (2015). Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS One, 10(2), e0115520. Kasumba, I. N., Bestor, A., Tilly, K., & Rosa, P. A. (2015). Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi. Applied and Environmental Microbiology, 81(3), 1038-1046. Kawabata H, Masuzawa T, Yanagihara Y. (1993). Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiology and Immunology, 37, 843-848. Kim, C. M., Yun, N. R., & Kim, D. M. (2022). Case report: The first Borrelia yangtzensis infection in a human in Korea. The American Journal of Tropical Medicine and Hygiene, 106(1), 45. Kingry, L. C., Batra, D., Replogle, A., Rowe, L. A., Pritt, B. S., & Petersen, J. M. (2016). Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PloS one, 11(12), e0168994. Kogan, K., Haapasalo, K., Kotila, T., Moore, R., Lappalainen, P., Goldman, A., & Meri, T. (2022). Mechanism of Borrelia immune evasion by FhbA-related proteins. PLoS Pathogens, 18(3), e1010338. LaFrance, M. E., Pierce, J. V., Antonara, S., & Coburn, J. (2011). The Borrelia burgdorferi integrin ligand P66 affects gene expression by human cells in culture. Infection and Immunity, 79(8), 3249-3261. Le Fleche A, Postic D, Girardet K, Peter O, Baranton G. (1997). Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. International Journal of Systematic Bacteriology, 47, 921-925. Lemieux, J. E., Huang, W., Hill, N., Cerar, T., Freimark, L., Hernandez, S., ... & Strle, K. (2023). Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathogens, 19(8), e1011243. Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M. (2008). The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genetics, 4(9), e1000185. Li, Z. M., Xiao, X., Zhou, C. M., Liu, J. X., Gu, X. L., Fang, L. Z., ... & Han, H. J. (2021). Human-pathogenic relapsing fever Borrelia found in bats from Central China phylogenetically clustered together with relapsing fever borreliae reported in the New World. PLoS Neglected Tropical Diseases, 15(3), e0009113. Lischer, H. E., & Shimizu, K. K. (2017). Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics, 18(1), 1- 12. Loh, S. M., Gillett, A., Ryan, U., Irwin, P., & Oskam, C. (2017). Molecular characterization of 'Candidatus Borrelia tachyglossi' (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. International Journal of Systematic and Evolutionary Microbiology, 67, 1075-1080. Maddison, W., & Maddison, D. (2011). Mesquite: A Modular System for Evolutionary Analysis. Versión 2.74 Available online at: http://www.mesquiteproject.org. Marchetti, V. M., Bitar, I., Mercato, A., Nucleo, E., Bonomini, A., Pedroni, P., ... & Migliavacca, R. (2020). Complete nucleotide sequence of plasmids of two Escherichia coli strains carrying bla NDM–5 and bla NDM–5 and bla OXA–181 from the same patient. Frontiers in Microbiology, 10, 3095. Marconi, R. T., Liveris, D., & Schwartz, I. (1995). Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. Journal of Clinical Microbiology, 33(11), 2427-2434. Margos, G., Vollmer, S., Cornet, M., Garnier, M., Fingerle, V., Wilske, B., ... & Kurtenbach, K. (2009). A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genes. Applied and Environmental Microbiology, 75, 5410-5416. Margos, G., Piesman, J., Lane, R. S., Ogden, N. H., Sing, A., Straubinger, R. K., & Fingerle, V. (2014). Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. International Journal of Systematic and Evolutionary Microbiology, 64, 128-130. Margos, G., Chu, C. Y., Takano, A., Jiang, B. G., Liu, W., Kurtenbach, K., ... & Kawabata, H. (2015). Borrelia yangtzensis sp. nov., a rodent-associated species in Asia, is related to Borrelia valaisiana. International Journal of Systematic and Evolutionary Microbiology, 65, 3836-3840. Margos, G., Lane, R. S., Fedorova, N., Koloczek, J., Piesman, J., Hojgaard, A., ... & Fingerle, V. (2016). Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. International Journal of Systematic and Evolutionary Microbiology, 66, 1447-1452. Margos, G., Marosevic, D., Cutler, S., Derdakova, M., Diuk-Wasser, M., Emler, S., ... & Kurtenbach, K. (2017a). There is inadequate evidence to support the division of the genus Borrelia. International Journal of Systematic and Evolutionary Microbiology, 67, 1081–1084. Margos, G., Fedorova, N., Kleinjan, J. E., Hartberger, C., Schwan, T. G., Sing, A., ... & Fingerle, V. (2017b). Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. International Journal of Systematic and Evolutionary Microbiology, 67, 3872-3876. Margos, G., Gofton, A., Wibberg, D., Dangel, A., Marosevic, D., Loh, S. M., ... & Fingerle, V. (2018). The genus Borrelia reloaded. PloS one, 13(12), e0208432. Margos, G., Fedorova, N., Becker, N. S., Kleinjan, J. E., Marosevic, D., Krebs, S., ... & Fingerle, V. (2020). Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. International Journal of Systematic and Evolutionary Microbiology, 70, 849- 856. Marinkelle, C. J., & Grose, E. S. (1968). Species of Borrelia from a Colombian bat (Natalus tumidirostris). Nature, 218(5140), 487-487. Masuzawa, T., Takada, N., Kudeken, M., Fukui, T., Yano, Y., Ishiguro, F., ... & Ezaki, T. (2001). Borrelia sinica sp. nov., a Lyme disease-related Borrelia species isolated in China. International Journal of Systematic and Evolutionary Microbiology, 51, 1817- 1824. Mendoza-Roldan, J. A., Colella, V., Lia, R. P., Nguyen, V. L., Barros-Battesti, D. M., Iatta, R., ... & Otranto, D. (2019). Borrelia burgdorferi (sensu lato) in ectoparasites and reptiles in southern Italy. Parasites & vectors, 12(1), 1-9. Miller, J. C., Bono, J. L., Babb, K., El-Hage, N., Casjens, S., & Stevenson, B. (2000). A second allele of eppA in Borrelia burgdorferi strain B31 is located on the previously undetected circular plasmid cp9-2. Journal of Bacteriology, 182(21), 6254-6258. Miller, S. C., Porcella, S. F., Raffel, S. J., Schwan, T. G., & Barbour, A. G. (2013). Large linear plasmids of Borrelia species that cause relapsing fever. Journal of Bacteriology, 195(16), 3629-3639. Muñoz‐Leal, S., Faccini‐Martínez, Á. A., Pérez‐Torres, J., Chala‐Quintero, S. M., Herrera‐Sepúlveda, M. T., Cuervo, C., & Labruna, M. B. (2021). Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses and Public Health, 68(1), 12-18. Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., ... & Ehrlich, S. D. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature biotechnology, 32(8), 822-828. Norris, S. J. (2015). vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity. In Mobile DNA III, 471-489. Oliveira, G. M. B., Munoz-Leal, S., Santodomingo, A., Weck, B. C., Faccini-Martinez, A. A., Horta, M. C., & Labruna, M. B. (2023). A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga. Microorganisms, 11(1), 0. Palacios, R., Osorio, L. E., Giraldo, L. E., Torres, A. J., Philipp, M. T., & Ochoa, M. T. (1999). Positive IgG western blot for Borrelia burgdorferi in Colombia. Memórias do Instituto Oswaldo Cruz, 94, 499-503. Pasternak, A. R., & Palli, S. R. (2022). Mapping distributions of the Lyme disease vector, Ixodes scapularis, and spirochete, Borrelia burgdorferi, in Kentucky using passive and active surveillance. Ticks and Tick-borne Diseases, 13(2), 101885. Pérez-Duque, A., Gonzalez-Muñoz, A., Arboleda-Valencia, J., Vivas-Aguas, L. J., Córdoba-Meza, T., Rodriguez-Rey, G. T., ... & Wiesner-Reyes, M. (2021). Comparative Genomics of Clinical and Environmental Isolates of Vibrio spp. of Colombia: Implications of Traits Associated with Virulence and Resistance. Pathogens, 10(12), 1605. Postic, D., Ras, N. M., Lane, R. S., Hendson, M., & Baranton, G. (1998). Expanded diversity among Californian Borrelia isolates and description of Borrelia bissettii sp. nov.(formerly Borrelia group DN127). Journal of clinical microbiology, 36(12), 3497- 3504. Pritt, B. S., Respicio-Kingry, L. B., Sloan, L. M., Schriefer, M. E., Replogle, A. J., Bjork, J., ... & Neitzel, D. F. (2016). Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. International Journal of Systematic and Evolutionary Microbiology, 66, 4878-4880. Qiu, Y., Nakao, R., Hang'ombe, B. M., Sato, K., Kajihara, M., Kanchela, S., ... & Fukushi, H. (2019). Human Borreliosis Caused by a New World Relapsing Fever Borrelia-like Organism in the Old World. Clinical Infectious Diseases, 69, 107-112. Qiu, W. G., & Martin, C. L. (2014). Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infection, Genetics and Evolution, 27, 576-593. Rambaut, A. (2010). FigTree v1. 3. Institute of Evolutionary Biology, University of Edinburgh. Ravin, A. W. (1963). Experimental approaches to the study of bacterial phylogeny. The American Naturalist, 97(896), 307-318. Rebman, A. W., & Aucott, J. N. (2020). Post-treatment Lyme disease as a model for persistent symptoms in Lyme disease. Frontiers in medicine, 7, 57. Robertson, J., & Nash, J. H. (2018). MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microbial Genomics, 4(11). Robledo, E. (1907). Fiebre recurrente en Manizales. Bol Med, 1, 113-8. Roca-García, M. (1934). Contribución al estudio de la fiebre espiroquetal en Colombia. Bogotá: Universidad Nacional, Facultad de Medicina. Rosa, P. (1997). Microbiology of Borrelia burgdorferi. Seminars in Neurology, 17(01), 5– 10. https://doi.org/10 055/s-2008-1040906 Rudenko, N., Golovchenko, M., Grubhoffer, L., & Oliver, J. H. Jr. (2011). Borrelia carolinensis sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA. International Journal of Systematic and Evolutionary Microbiology, 61, 381-383. Rudenko, N., Golovchenko, M., Lin, T., Gao, L., Grubhoffer, L., & Oliver, J. H. Jr. (2009). Delineation of a new species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov. Journal of Clinical Microbiology, 47, 3875-3880. Sabitova, Y., Rar, V., Tikunov, A., Yakimenko, V., Korallo-Vinarskaya, N., Livanova, N., & Tikunova, N. (2023). Detection and genetic characterization of a putative novel Borrelia genospecies in Ixodes apronophorus/Ixodes persulcatus/Ixodes trianguliceps sympatric areas in Western Siberia. Ticks and Tick-borne Diseases, 14(1), 102075. Sarwar, M. (2015). Insect Borne Diseases Transmitted by Some Important Vectors of Class Insecta Hurtling Public Health. International Journal of Bioinformatics and Biomedical Engineering, 1, 311-317. Saylor, T. C., Casselli, T., Lethbridge, K. G., Moore, J. P., Owens, K. M., Brissette, C. A., ... & Stevenson, B. (2022). Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. Plos one, 17(9), e0274125. Scott, J. D., Clark, K. L., Foley, J. E., Anderson, J. F., Bierman, B. C., & Durden, L. A. (2018, November). Extensive distribution of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, in multiple tick species parasitizing avian and mammalian hosts across Canada. In Healthcare, 6(4), 131. MDPI. https://doi.org/10.3390/healthcare6040131. Schüler, W., Bunikis, I., Weber-Lehman, J., Comstedt, P., Kutschan-Bunikis, S., Stanek, G., ... & Lundberg, U. (2015). Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One, 10(3), e0120548. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. Steinbrink, A., Brugger, K., Margos, G., Kraiczy, P., & Klimpel, S. (2022). The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 121(3), 781-803. Steinhaus, E. A. (1946). Insect Microbiology. Comstock Publishing Co., Ithaca, New York. Stevenson, B., Zuckert, W. R., & Akins, D. R. (2000). Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. Journal of Molecular Microbiology and Biotechnology, 2(4), 411-422 Strother, K. O., & de Silva, A. (2005). Role of Borrelia burgdorferi linear plasmid 25 in infection of Ixodes scapularis ticks. Journal of Bacteriology, 187(16), 5776-5781. https://doi.org/10 128/JB 87 6.5776-5781.2005 Summers, D. (2009). The biology of plasmids. John Wiley & Sons. The Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W345–W351, doi:10 093/nar/gkac247 Tilly, K., Casjens, S., Stevenson, B., Bono, J. L., Samuels, D. S., Hogan, D., & Rosa, P. (1997). The Borrelia burgdorferi circular plasmid cp26: conservation of plasmid structure and targeted inactivation of the ospC gene. Molecular Microbiology, 25(2), 361-373. Toledo, A., Anda, P., Escudero, R., Larsson, C., Bergstrom, S., & Benach, J. L. (2010). Phylogenetic analysis of a virulent Borrelia species isolated from patients with relapsing fever. Journal of Clinical Microbiology, 48(7), 2484-2489. Trevisan, G., Cinco, M., Trevisini, S., di Meo, N., Chersi, K., Ruscio, M., ... & Bonin, S. (2021). Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology, 10(11), 1036. Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. (2016). Nucl. Acids Res. 44 (W1): W232-W235. https://doi.org/10 093/nar/gkw256 Wang, G., van Dam, A. P., Le Fleche, A., Postic, D., Peter, O., Baranton, G., ... & Dankert, J. (1997). Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). International Journal of Systematic Bacteriology, 47(3), 926-932. Wang, D., Botkin, D. J., & Norris, S. J. (2003). Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Molecular Microbiology, 47(5), 1407-1417. Wang, R., Lu, J., Zhou, Q., Chen, L., Huang, Y., Yu, Y., & Yang, Z. (2019). A murine monoclonal antibody with potent neutralization ability against human adenovirus 7. Frontiers in Cellular and Infection Microbiology, 9, 417. Weiner, Z. P., Crew, R. M., Brandt, K. S., Ullmann, A. J., Schriefer, M. E., Molins, C. R., & Gilmore, R. D. (2015). Evaluation of selected Borrelia burgdorferi lp54 plasmidencoded gene products expressed during mammalian infection as antigens to improve serodiagnostic testing for early Lyme disease. Clinical and Vaccine Immunology, 22(11), 1176-1186. World Health Organization, WHO. (2020). Vector-borne diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/ vector-borne-diseases. (accessed 07.05.2021) Xu, Y., Kodner, C., Coleman, L., & Johnson, R. C. (1996). Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infection and Immunity, 64(9), 3870-3876. Zein-Eddine, R., Refrégier, G., Cervantes, J., & Yokobori, N. K. (2023). The future of CRISPR in Mycobacterium tuberculosis infection. Journal of Biomedical Science, 30(1), 34. Zheng, F., Shao, Z. Q., Hao, X., Wu, Q., Li, C., Hou, H., ... & Pan, X. (2018). Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis, 118, 322-329. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145063698104320 |
spelling |
Identificación y análisis in silico de la dinámica plasmídica y filogenética en Borrelia s.l.Borrelia s.l.Enfermedades transmitidas por vectores,GenomasPlásmidosPredicciónAnálisis filogenéticoBiologíaGráficasEn la actualidad, las enfermedades transmitidas por vectores presentan especial atención por su aumento en la incidencia y tasa de infección en animales y humanos. Entre estas enfermedades, las causadas por bacterias patógenas del género Borrelia s. l. se destacan, siendo transmitidas por vectores como garrapatas blandas, duras y piojos a reservorios como aves, reptiles y mamíferos. El objetivo de este estudio fue realizar un análisis genómico, con el fin de predecir e identificar plásmidos con relevancia por su diversidad funcional, virulencia y resistencia antibiótica. Así mismo, se llevó a cabo una reconstrucción filogenética a partir de tres marcadores moleculares (16S ARNr, gyrB y flaB) con el fin de esclarecer las relaciones entre las genoespecies. Se ensamblaron genomas de 16 especies pertenecientes al género Borrelia s. l. A partir de los contings y empleando un algoritmo de predicción e identificación plasmídica se recuperaron un total de 98 plásmidos. Dentro de estos, 27 plásmidos se destacan por su importancia funcional, 39 corresponden a nuevos reportes para las especies y se registraron 8 nuevas predicciones para el género. Finalmente, en el análisis filogenético de 45 especies se recuperó el grupo monofilético Lyme. Este estudio se suma a la comprensión de las características genómicas y plasmídicas de las especies del género Borrelia s. l., evaluando potenciales determinantes de factores de virulencia y diversidad funcional.Currently, vector-borne diseases are receiving special attention due to their increased incidence and infection rate in animals and humans. Among these diseases, those caused by pathogenic bacteria of the genus Borrelia s. l. stand out, being transmitted by vectors such as soft and hard ticks and lice to reservoirs such as birds, reptiles and mammals. The objective of this study was to perform a genomic analysis in order to predict and identify plasmids with relevance for their functional diversity, virulence and antibiotic resistance. Likewise, a phylogenetic reconstruction was carried out based on three molecular markers (16S rRNA, gyrB and flaB) in order to clarify the relationships between genospecies. Genomes of 16 species belonging to the genus Borrelia s. l. were assembled. A total of 98 plasmids were recovered from the contings using a plasmid prediction and identification algorithm. Among these, 27 plasmids stand out for their functional importance, 39 correspond to new reports for the species and 8 new predictions were recorded for the genus. Finally, in the phylogenetic analysis of 45 species, the monophyletic group Lyme was recovered. This study adds to the understanding of the genomic and plasmid characteristics of the species of the genus Borrelia s. l., evaluating potential determinants of virulence factors and functional diversity.1. Introducción / 2. Metodología / 2 Elección de genoespecies, obtención de secuencias y ensamblaje / 2.2 Predicción plasmídica en Borrelia s. l / 2.3 Análisis filogenéticos / 3. Resultados / 3 Características de los genomas ensamblados de Borrelia s. l. / 3.2 Predicción plasmídica en Borrelia s. l / 3.3 Análisis filogenético / 4. Discusión / 4 Aspectos plasmídicos / 4.2 Análisis filogenético / 5. Conclusiones y recomendaciones / 6. Anexos / Anexo 1: Plásmidos consolidados por su interés para Borrelia s. l. / 7. ReferenciasUniversitarioBiólogo(a)Facultad de Ciencias Exactas y NaturalesManizalesBiologíaRodríguez-Rey, Ghennie TGiraldo Badillo, Isabela2024-01-22T20:44:36Z2024-01-22T20:44:36Z2024-01-22Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19754Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAdeolu, M., & Gupta, R. S. (2014). A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek, 105, 1049-1072.Alozie-Chidi, V. C. (2022). Why Do Some Human Associated Escherichia coli Strains Lack Antibiotic Resistance? (Doctoral dissertation, The Australian National University (Australia)).Andrews, S. (2017). FastQC: A Quality Control Tool for High Throughput Sequence Data.Angel, T. E., Luft, B. J., Yang, X., Nicora, C. D., Camp, D. G., Jacobs, J. M., & Smith, R. D. (2010). Proteome analysis of Borrelia burgdorferi response to environmental change. PloS one, 5(11), e13800.Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455- 477.Baranton, G. U. Y., Postic, D., Saint Girons, I., Boerlin, P., Piffaretti, J. C., Assous, M., & Grimont, P. A. (1992). Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. International Journal of Systematic and Evolutionary Microbiology, 42(3), 378-383.Barbour, A. G., Maupin, G. O., Teltow, G. J., Carter, C. J., & Piesman, J. (1996). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. Journal of Infectious Diseases, 173(2), 403-409.Barbour, A. G. (2016). Multiple and diverse vsp and vlp sequences in Borrelia miyamotoi, a hard tick-borne zoonotic pathogen. PLoS One, 11(1), e0146283.Barbour, A. G., Adeolu, M., & Gupta, R. S. (2017). Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al.(2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10 099/ijsem. 0.001717). International journal of systematic and evolutionary microbiology, 67(6), 2058-2067.Baril, C., Richaud, C., Baranton, G., & Saint Girons, I. (1989). Linear chromosome of Borrelia burgdorferi. Research in microbiology, 140(7), 507-516.Benz, F., & Hall, A. R. (2023). Host-specific plasmid evolution explains the variable spread of clinical antibiotic-resistance plasmids. Proceedings of the National Academy of Sciences, 120(15), e2212147120.Berende, A., Oosting, M., Kullberg, B. J., Netea, M. G., & Joosten, L. A. (2010). Activation of innate host defense mechanisms by Borrelia. European cytokine network, 21(1), 7- 18.Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W., & Huntoon, F. M. (1925). Bergey's Manual of Determinative Bacteriology (2nd ed.). The Williams & Wilkins Co.Bermudez, S. E., Armstrong, B. A., Dominguez, L., Krishnavajhala, A., Kneubehl, A. R., Gunter, S. M., ... Lopez, J. E. (2021). Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Neglected Tropical Diseases, 15(12), e0009642. https://doi.org/10 371/journal.pntd.0009642Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10 093/bioinformatics/btu170Borremans, B., Hobman, J. L., Provoost, A., Brown, N. L., & van Der Lelie, D. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651-5658. https://doi.org/10 128/JB 83 9.5651-5658.2001Bowen, H. G., Kenedy, M. R., Johnson, D. K., MacKerell, A. D., & Akins, D. R. (2023). Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathogens and Disease, 81.Brandt, M. E., Riley, B. S., Radolf, J. D., & Norgard, M. V. (1990). Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infection and Immunity, 58, 983–991.Brisson, D., Zhou, W., Jutras, B. L., Casjens, S., & Stevenson, B. (2013). Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Applied and Environmental Microbiology, 79(13), 4115-4128. https://doi.org/10 128/AEM.00518-13Brumpt, E. (1922). Les Spirochetoses. In G. H. Roger, F. Widal, & P. J. Teissier (Eds.), Nouveau Traité de Médecine (pp. 491-531). Masson.Burman, N., Shamaei-Tousi, A., & Bergström, S. (1998). The Spirochete Borrelia crocidurae Causes Erythrocyte Rosetting during Relapsing Fever. Infection and Immunity, 66, 815-819. https://doi.org/10 128/IAI.66.2.815-819 998Caimano, M. J., Yang, X., Popova, T. G., Clawson, M. L., Akins, D. R., Norgard, M. V., & Radolf, J. D. (2000). Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Infection and Immunity, 68(3), 1574-1586. https://doi.org/10 128/IAI.68.3 574-1586.2000Cairns, V., & Godwin, J. (2005). Post-Lyme borreliosis syndrome: a meta-analysis of reported symptoms. International journal of epidemiology, 34(6), 1340-1345.Calva, E., Silva, C., Zaidi, M. B., Sanchez-Flores, A., Estrada, K., Silva, G. G., ... & Vinuesa, P. (2015). Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype. Genome Announcements, 3(3), 10-1128. https://doi.org/10 128/genomeA.00663-15Canica, M. M., Nato, F., du Merle, L., Mazie, J. C., Baranton, G., & Postic, D. (1993). Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scandinavian Journal of Infectious Diseases, 25, 441-448.Casjens, S. R., Fraser-Liggett, C. M., Mongodin, E. F., Qiu, W. G., Dunn, J. J., Luft, B. J., ... Schutzer, S. E. (2011). Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. Journal of Bacteriology, 193, 1489-1490. https://doi.org/10 128/JB.01506-10Casjens, S. R., Gilcrease, E. B., Vujadinovic, M., Mongodin, E. F., Luft, B. J., Schutzer, S. E., ... & Qiu, W. G. (2017). Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics, 18(1), 1-18. https://doi.org/10 186/s12864-016-3441-yCasjens, S. R., Di, L., Akther, S., Mongodin, E. F., Luft, B. J., Schutzer, S. E., ... & Qiu, W. G. (2018). Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics, 19, 1-24. https://doi.org/10 186/s12864-017-4425-4Casselli, T., Tourand, Y., Bankhead, T. (2012). Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infection and Immunity, 80(5), 1773-1782. https://doi.org/10 128/IAI.05984-11Casselli, T., Tourand, Y., Gura, K., Stevenson, B., Zückert, W. R., & Brissette, C. A. (2023). Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii. Infection and Immunity, 91(3), e00061-23. https://doi.org/10 128/IAI.00061-23Chanda, E., Govere, M. J., Macdonald, B. M., Lako, L. R., Haque, U., Baba, P. S., ... Mnzava, A. (2013). Integrated vector management: A critical strategy for combating vectorborne diseases in South Sudan. Malaria Journal, 12, 1-9. https://doi.org/10 186/1475-2875-12-1Chang, Y. F. (2012). U.S. Patent Application No. 12/679,643.Charon, N., Nyles, A., Goldstein, S. F., Marko, M., Hsieh, C. E., Gebhardt, L. L., ... & Rowe, N. (2009). The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology. Journal of Bacteriology, 191(2), 600-607. https://doi.org/10 128/JB.01288-08Chenail, A. M., Jutras, B. L., Adams, C. A., Burns, L. H., Bowman, A., Verma, A., & Stevenson, B. (2012). Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein. Journal of Bacteriology, 194(17), 4570-4578. https://doi.org/10 128/JB.00732-12Conlan, S., Lau, A. F., NISC Comparative Sequencing Program, Palmore, T. N., Frank, K. M., & Segre, J. A. (2016). Complete genome sequence of a Klebsiella pneumoniae strain carrying bla NDM-1 on a Multidrug resistance plasmid. Genome Announcements, 4(4), 10-1128. https://doi.org/10 128/genomeA.00663-15Čorak, N., Anniko, S., Daschkin-Steinborn, C., Krey, V., Koska, S., Futo, M., ... & Domazet-Lošo, T. (2023). Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. International Journal of Molecular Sciences, 24(6), 5594.Criswell, D. C. (2004). Characterization of antibiotic resistance mutations in Borrelia burgdorferi. (Order No. 9482). Retrieved from University of Montana ScholarWorks: https://scholarworks.umt.edu/etd/9482Cutler, S. J., Scott, J. C., & Wright, D. J. (2008). Phylogenetic origins of Borrelia recurrentis. International Journal of Medical Microbiology, 298, 193-202.Ehounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., et al. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Cote d'Ivoire. PLoS Neglected Tropical Diseases, 10(1), e0004367. https://doi.org/10 371/journal.pntd.0004367Ehounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., et al. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Cote d'Ivoire. PLoS Neglected Tropical Diseases, 10(1), e0004367. https://doi.org/10 371/journal.pntd.0004367Davis, G. E. (1957). Order IX. Spirochaetales Buchanan 1918. In R. S. Breed, E. G. D. Murray, & N. R. Smith (Eds.), Bergey's Manual of Determinative Bacteriology, seventh edition (pp. 892-907). The Williams & Wilkins Co.Delihas, N. (2009). Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs. BMC Genomics, 10, 101. https://doi.org/10 186/1471-2164-10-101Dulebohn, D. P., Bestor, A., Rego, R. O., Stewart, P. E., & Rosa, P. A. (2011). Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Infection and Immunity, 79(9), 3510-3517.Dykhuizen, D. E., & Baranton, G. (2001). The implications of a low rate of horizontal transfer in Borrelia. Trends in Microbiology, 9(7), 344-350.Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.Elbir, H., Abi-Rached, L., Pontarotti, P., Yoosuf, N., & Drancourt, M. (2014). African Relapsing Fever Borreliae Genomospecies Revealed by Comparative Genomics. Frontiers in Public Health, 2. https://doi.org/10.3389/fpubh.2014.00043Faccini-Martínez, Á. A., Silva-Ramos, C. R., Santodomingo, A. M., Ramírez-Hernández, A., Costa, F. B., Labruna, M. B., & Muñoz-Leal, S. (2022). Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites & Vectors, 15(1), 1-20.Ferdows, M. S., & Barbour, A. G. (1989). Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proceedings of the National Academy of Sciences of the United States of America, 86, 5969-5973.Fikrig, E., Barthold, S. W., Sun, W., Feng, W., Telford, S. R., & Flavell, R. A. (1997). Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity, 6(5), 531-539.Franco, R., Toro, G., & Martinez, J. (1911). Fiebre amarilla y fiebre espiroquetal. Sesiones Científicas del Centenario. Acad Nac Med Bogota, 1, 169-227.Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., ... & Venter, J. C. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390(6660), 580-586.Ford, L., & Tufts, D. M. (2021). Lyme neuroborreliosis: Mechanisms of B. burgdorferi infection of the nervous system. Brain Sciences, 11(6), 789.Fukunaga, M., Takahashi, Y., Tsuruta, Y., Matsushita, O., Ralph, D., McClelland, M., & Nakao, M. (1995). Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. International Journal of Systematic and Evolutionary Microbiology, 45, 804-810.Fukunaga, M., Hamase, A., Okada, K., Nakao, M. (1996a). Borrelia tanukii sp. nov. and Borrelia turdae sp. nov. found from ixodid ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. Microbiology and Immunology, 40, 877- 881.Fukunaga, M., Okada, K., Nakao, M., Konishi, T., & Sato, Y. (1996b). Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. International Journal of Systematic and Evolutionary Microbiology, 46(4), 898-905.Gilmore, R. D., Kneubehl, A. R., Lopez, J. E., Armstrong, B. A., Brandt, K. S., & Van Gundy, T. J. (2022). Modification of the multiplex plasmid PCR assay for Borrelia miyamotoi strain LB-2001 based on the complete genome sequence reflecting genomic rearrangements differing from strain CT13–2396. Ticks and Tick-borne Diseases, 13(1), 101843.Giuseppe, P. O., Neves, F. O., Nascimento, A. L. T., & Guimarães, B. G. (2008). The leptospiral antigen Lp49 is a two-domain protein with putative protein binding function. Journal of Structural Biology, 163(1), 53-60.Glöckner, G., Lehmann, R., Romualdi, A., Pradella, S., Schulte-Spechtel, U., Schilhabel, M., ... & Platzer, M. (2004). Comparative analysis of the Borrelia garinii genome. Nucleic acids research, 32(20), 6038-6046.González-Domínguez, M. S., Villegas, J. P., Carmona, S., & Castañeda, H. (2014). First report of canine borreliosis seroprevalence in a middle-altitude tropical urban area (Medellín-Colombia). CES Medicina Veterinaria y Zootecnia, 9(2), 348-354.Goren, A., Mysterud, A., Jore, S., Viljugrein, H., Bakka, H., & Vindenes, Y. (2023). Demographic patterns in Lyme borreliosis seasonality over 25 years. Zoonoses and Public Health, 70(7), 647-655.Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA. (2004). Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun, 72(10), 5938-5946. https://doi.org/10 128/IAI.72 0.5938-5946.2004Guner ES, Watanabe M, Hashimoto N, Kadosaka T, Kawamura Y, Ezaki T, Kawabata H, Imai Y, Kaneda K, Masuzawa T. (2004). Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int J Syst Evol Microbiol, 54, 1649-1652Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072-1075.Hinnebusch, J., & Barbour, A. G. (1991). Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. Journal of bacteriology, 173(22), 7233-7239.Hooton, S. P., Timms, A. R., Cummings, N. J., Moreton, J., Wilson, R., & Connerton, I. F. (2014). The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288. Plasmid, 76, 32-39.Hördt A, Lopez MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Goker M. (2020). Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol, 11, 468.Iriarte A, Giner-Lamia J, Silva C, Betancor L, Astocondor L, Cestero JJ, Ochoa T, García C, Puente JL, Chabalgoity JA; SalmoIber CYTED Network; García-Del Portillo F. (2017). Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection. Genome Announc, 5(29), e00679-17. https://doi.org/10128/genomeA.00679-17Ivanova LB, Tomova A, Gonzalez-Acuna D, Murua R, Moreno CX, Hernandez C, Cabello J, Cabello C, Daniels TJ, Godfrey HP, et al. (2014). Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol, 16, 1069-1080.Johnson, R. C., Schmid, G. P., Hyde, F. W., Steigerwalt, A. G., & Brenner, D. J. (1984). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. International Journal of Systematic Bacteriology, 34(4), 496-497.Johnson, R. C., Burgdorfer, W., Lane, R. S., Barbour, A. G., Hayes, S. F., & Hyde, F. W. (1987). Borrelia coriaceae sp. nov.: putative agent of epizootic bovine abortion. International Journal of Systematic Bacteriology, 37(1), 72-74.Jewett, M. W., Lawrence, K., Bestor, A. C., Tilly, K., Grimm, D., Shaw, P., ... & Rosa, P. A. (2007). The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Molecular microbiology, 64(5), 1358-1374.Kalmar, Z., Cozma, V., Sprong, H., Jahfari, S., D’Amico, G., Mărcuțan, D. I., ... & Mihalca, A. D. (2015). Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS One, 10(2), e0115520.Kasumba, I. N., Bestor, A., Tilly, K., & Rosa, P. A. (2015). Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi. Applied and Environmental Microbiology, 81(3), 1038-1046.Kawabata H, Masuzawa T, Yanagihara Y. (1993). Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiology and Immunology, 37, 843-848.Kim, C. M., Yun, N. R., & Kim, D. M. (2022). Case report: The first Borrelia yangtzensis infection in a human in Korea. The American Journal of Tropical Medicine and Hygiene, 106(1), 45.Kingry, L. C., Batra, D., Replogle, A., Rowe, L. A., Pritt, B. S., & Petersen, J. M. (2016). Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PloS one, 11(12), e0168994.Kogan, K., Haapasalo, K., Kotila, T., Moore, R., Lappalainen, P., Goldman, A., & Meri, T. (2022). Mechanism of Borrelia immune evasion by FhbA-related proteins. PLoS Pathogens, 18(3), e1010338.LaFrance, M. E., Pierce, J. V., Antonara, S., & Coburn, J. (2011). The Borrelia burgdorferi integrin ligand P66 affects gene expression by human cells in culture. Infection and Immunity, 79(8), 3249-3261.Le Fleche A, Postic D, Girardet K, Peter O, Baranton G. (1997). Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. International Journal of Systematic Bacteriology, 47, 921-925.Lemieux, J. E., Huang, W., Hill, N., Cerar, T., Freimark, L., Hernandez, S., ... & Strle, K. (2023). Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathogens, 19(8), e1011243.Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M. (2008). The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genetics, 4(9), e1000185.Li, Z. M., Xiao, X., Zhou, C. M., Liu, J. X., Gu, X. L., Fang, L. Z., ... & Han, H. J. (2021). Human-pathogenic relapsing fever Borrelia found in bats from Central China phylogenetically clustered together with relapsing fever borreliae reported in the New World. PLoS Neglected Tropical Diseases, 15(3), e0009113.Lischer, H. E., & Shimizu, K. K. (2017). Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics, 18(1), 1- 12.Loh, S. M., Gillett, A., Ryan, U., Irwin, P., & Oskam, C. (2017). Molecular characterization of 'Candidatus Borrelia tachyglossi' (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. International Journal of Systematic and Evolutionary Microbiology, 67, 1075-1080.Maddison, W., & Maddison, D. (2011). Mesquite: A Modular System for Evolutionary Analysis. Versión 2.74 Available online at: http://www.mesquiteproject.org.Marchetti, V. M., Bitar, I., Mercato, A., Nucleo, E., Bonomini, A., Pedroni, P., ... & Migliavacca, R. (2020). Complete nucleotide sequence of plasmids of two Escherichia coli strains carrying bla NDM–5 and bla NDM–5 and bla OXA–181 from the same patient. Frontiers in Microbiology, 10, 3095.Marconi, R. T., Liveris, D., & Schwartz, I. (1995). Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. Journal of Clinical Microbiology, 33(11), 2427-2434.Margos, G., Vollmer, S., Cornet, M., Garnier, M., Fingerle, V., Wilske, B., ... & Kurtenbach, K. (2009). A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genes. Applied and Environmental Microbiology, 75, 5410-5416.Margos, G., Piesman, J., Lane, R. S., Ogden, N. H., Sing, A., Straubinger, R. K., & Fingerle, V. (2014). Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. International Journal of Systematic and Evolutionary Microbiology, 64, 128-130.Margos, G., Chu, C. Y., Takano, A., Jiang, B. G., Liu, W., Kurtenbach, K., ... & Kawabata, H. (2015). Borrelia yangtzensis sp. nov., a rodent-associated species in Asia, is related to Borrelia valaisiana. International Journal of Systematic and Evolutionary Microbiology, 65, 3836-3840.Margos, G., Lane, R. S., Fedorova, N., Koloczek, J., Piesman, J., Hojgaard, A., ... & Fingerle, V. (2016). Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. International Journal of Systematic and Evolutionary Microbiology, 66, 1447-1452.Margos, G., Marosevic, D., Cutler, S., Derdakova, M., Diuk-Wasser, M., Emler, S., ... & Kurtenbach, K. (2017a). There is inadequate evidence to support the division of the genus Borrelia. International Journal of Systematic and Evolutionary Microbiology, 67, 1081–1084.Margos, G., Fedorova, N., Kleinjan, J. E., Hartberger, C., Schwan, T. G., Sing, A., ... & Fingerle, V. (2017b). Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. International Journal of Systematic and Evolutionary Microbiology, 67, 3872-3876.Margos, G., Gofton, A., Wibberg, D., Dangel, A., Marosevic, D., Loh, S. M., ... & Fingerle, V. (2018). The genus Borrelia reloaded. PloS one, 13(12), e0208432.Margos, G., Fedorova, N., Becker, N. S., Kleinjan, J. E., Marosevic, D., Krebs, S., ... & Fingerle, V. (2020). Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. International Journal of Systematic and Evolutionary Microbiology, 70, 849- 856.Marinkelle, C. J., & Grose, E. S. (1968). Species of Borrelia from a Colombian bat (Natalus tumidirostris). Nature, 218(5140), 487-487.Masuzawa, T., Takada, N., Kudeken, M., Fukui, T., Yano, Y., Ishiguro, F., ... & Ezaki, T. (2001). Borrelia sinica sp. nov., a Lyme disease-related Borrelia species isolated in China. International Journal of Systematic and Evolutionary Microbiology, 51, 1817- 1824.Mendoza-Roldan, J. A., Colella, V., Lia, R. P., Nguyen, V. L., Barros-Battesti, D. M., Iatta, R., ... & Otranto, D. (2019). Borrelia burgdorferi (sensu lato) in ectoparasites and reptiles in southern Italy. Parasites & vectors, 12(1), 1-9.Miller, J. C., Bono, J. L., Babb, K., El-Hage, N., Casjens, S., & Stevenson, B. (2000). A second allele of eppA in Borrelia burgdorferi strain B31 is located on the previously undetected circular plasmid cp9-2. Journal of Bacteriology, 182(21), 6254-6258.Miller, S. C., Porcella, S. F., Raffel, S. J., Schwan, T. G., & Barbour, A. G. (2013). Large linear plasmids of Borrelia species that cause relapsing fever. Journal of Bacteriology, 195(16), 3629-3639.Muñoz‐Leal, S., Faccini‐Martínez, Á. A., Pérez‐Torres, J., Chala‐Quintero, S. M., Herrera‐Sepúlveda, M. T., Cuervo, C., & Labruna, M. B. (2021). Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses and Public Health, 68(1), 12-18.Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., ... & Ehrlich, S. D. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature biotechnology, 32(8), 822-828.Norris, S. J. (2015). vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity. In Mobile DNA III, 471-489.Oliveira, G. M. B., Munoz-Leal, S., Santodomingo, A., Weck, B. C., Faccini-Martinez, A. A., Horta, M. C., & Labruna, M. B. (2023). A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga. Microorganisms, 11(1), 0.Palacios, R., Osorio, L. E., Giraldo, L. E., Torres, A. J., Philipp, M. T., & Ochoa, M. T. (1999). Positive IgG western blot for Borrelia burgdorferi in Colombia. Memórias do Instituto Oswaldo Cruz, 94, 499-503.Pasternak, A. R., & Palli, S. R. (2022). Mapping distributions of the Lyme disease vector, Ixodes scapularis, and spirochete, Borrelia burgdorferi, in Kentucky using passive and active surveillance. Ticks and Tick-borne Diseases, 13(2), 101885.Pérez-Duque, A., Gonzalez-Muñoz, A., Arboleda-Valencia, J., Vivas-Aguas, L. J., Córdoba-Meza, T., Rodriguez-Rey, G. T., ... & Wiesner-Reyes, M. (2021). Comparative Genomics of Clinical and Environmental Isolates of Vibrio spp. of Colombia: Implications of Traits Associated with Virulence and Resistance. Pathogens, 10(12), 1605.Postic, D., Ras, N. M., Lane, R. S., Hendson, M., & Baranton, G. (1998). Expanded diversity among Californian Borrelia isolates and description of Borrelia bissettii sp. nov.(formerly Borrelia group DN127). Journal of clinical microbiology, 36(12), 3497- 3504.Pritt, B. S., Respicio-Kingry, L. B., Sloan, L. M., Schriefer, M. E., Replogle, A. J., Bjork, J., ... & Neitzel, D. F. (2016). Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. International Journal of Systematic and Evolutionary Microbiology, 66, 4878-4880.Qiu, Y., Nakao, R., Hang'ombe, B. M., Sato, K., Kajihara, M., Kanchela, S., ... & Fukushi, H. (2019). Human Borreliosis Caused by a New World Relapsing Fever Borrelia-like Organism in the Old World. Clinical Infectious Diseases, 69, 107-112.Qiu, W. G., & Martin, C. L. (2014). Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infection, Genetics and Evolution, 27, 576-593.Rambaut, A. (2010). FigTree v1. 3. Institute of Evolutionary Biology, University of Edinburgh.Ravin, A. W. (1963). Experimental approaches to the study of bacterial phylogeny. The American Naturalist, 97(896), 307-318.Rebman, A. W., & Aucott, J. N. (2020). Post-treatment Lyme disease as a model for persistent symptoms in Lyme disease. Frontiers in medicine, 7, 57.Robertson, J., & Nash, J. H. (2018). MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microbial Genomics, 4(11).Robledo, E. (1907). Fiebre recurrente en Manizales. Bol Med, 1, 113-8.Roca-García, M. (1934). Contribución al estudio de la fiebre espiroquetal en Colombia. Bogotá: Universidad Nacional, Facultad de Medicina.Rosa, P. (1997). Microbiology of Borrelia burgdorferi. Seminars in Neurology, 17(01), 5– 10. https://doi.org/10 055/s-2008-1040906Rudenko, N., Golovchenko, M., Grubhoffer, L., & Oliver, J. H. Jr. (2011). Borrelia carolinensis sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA. International Journal of Systematic and Evolutionary Microbiology, 61, 381-383.Rudenko, N., Golovchenko, M., Lin, T., Gao, L., Grubhoffer, L., & Oliver, J. H. Jr. (2009). Delineation of a new species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov. Journal of Clinical Microbiology, 47, 3875-3880.Sabitova, Y., Rar, V., Tikunov, A., Yakimenko, V., Korallo-Vinarskaya, N., Livanova, N., & Tikunova, N. (2023). Detection and genetic characterization of a putative novel Borrelia genospecies in Ixodes apronophorus/Ixodes persulcatus/Ixodes trianguliceps sympatric areas in Western Siberia. Ticks and Tick-borne Diseases, 14(1), 102075.Sarwar, M. (2015). Insect Borne Diseases Transmitted by Some Important Vectors of Class Insecta Hurtling Public Health. International Journal of Bioinformatics and Biomedical Engineering, 1, 311-317.Saylor, T. C., Casselli, T., Lethbridge, K. G., Moore, J. P., Owens, K. M., Brissette, C. A., ... & Stevenson, B. (2022). Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. Plos one, 17(9), e0274125.Scott, J. D., Clark, K. L., Foley, J. E., Anderson, J. F., Bierman, B. C., & Durden, L. A. (2018, November). Extensive distribution of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, in multiple tick species parasitizing avian and mammalian hosts across Canada. In Healthcare, 6(4), 131. MDPI. https://doi.org/10.3390/healthcare6040131.Schüler, W., Bunikis, I., Weber-Lehman, J., Comstedt, P., Kutschan-Bunikis, S., Stanek, G., ... & Lundberg, U. (2015). Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One, 10(3), e0120548.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212.Steinbrink, A., Brugger, K., Margos, G., Kraiczy, P., & Klimpel, S. (2022). The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 121(3), 781-803.Steinhaus, E. A. (1946). Insect Microbiology. Comstock Publishing Co., Ithaca, New York.Stevenson, B., Zuckert, W. R., & Akins, D. R. (2000). Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. Journal of Molecular Microbiology and Biotechnology, 2(4), 411-422Strother, K. O., & de Silva, A. (2005). Role of Borrelia burgdorferi linear plasmid 25 in infection of Ixodes scapularis ticks. Journal of Bacteriology, 187(16), 5776-5781. https://doi.org/10 128/JB 87 6.5776-5781.2005Summers, D. (2009). The biology of plasmids. John Wiley & Sons.The Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W345–W351, doi:10 093/nar/gkac247Tilly, K., Casjens, S., Stevenson, B., Bono, J. L., Samuels, D. S., Hogan, D., & Rosa, P. (1997). The Borrelia burgdorferi circular plasmid cp26: conservation of plasmid structure and targeted inactivation of the ospC gene. Molecular Microbiology, 25(2), 361-373.Toledo, A., Anda, P., Escudero, R., Larsson, C., Bergstrom, S., & Benach, J. L. (2010). Phylogenetic analysis of a virulent Borrelia species isolated from patients with relapsing fever. Journal of Clinical Microbiology, 48(7), 2484-2489.Trevisan, G., Cinco, M., Trevisini, S., di Meo, N., Chersi, K., Ruscio, M., ... & Bonin, S. (2021). Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology, 10(11), 1036.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. (2016). Nucl. Acids Res. 44 (W1): W232-W235. https://doi.org/10 093/nar/gkw256Wang, G., van Dam, A. P., Le Fleche, A., Postic, D., Peter, O., Baranton, G., ... & Dankert, J. (1997). Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). International Journal of Systematic Bacteriology, 47(3), 926-932.Wang, D., Botkin, D. J., & Norris, S. J. (2003). Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Molecular Microbiology, 47(5), 1407-1417.Wang, R., Lu, J., Zhou, Q., Chen, L., Huang, Y., Yu, Y., & Yang, Z. (2019). A murine monoclonal antibody with potent neutralization ability against human adenovirus 7. Frontiers in Cellular and Infection Microbiology, 9, 417.Weiner, Z. P., Crew, R. M., Brandt, K. S., Ullmann, A. J., Schriefer, M. E., Molins, C. R., & Gilmore, R. D. (2015). Evaluation of selected Borrelia burgdorferi lp54 plasmidencoded gene products expressed during mammalian infection as antigens to improve serodiagnostic testing for early Lyme disease. Clinical and Vaccine Immunology, 22(11), 1176-1186.World Health Organization, WHO. (2020). Vector-borne diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/ vector-borne-diseases. (accessed 07.05.2021)Xu, Y., Kodner, C., Coleman, L., & Johnson, R. C. (1996). Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infection and Immunity, 64(9), 3870-3876.Zein-Eddine, R., Refrégier, G., Cervantes, J., & Yokobori, N. K. (2023). The future of CRISPR in Mycobacterium tuberculosis infection. Journal of Biomedical Science, 30(1), 34.Zheng, F., Shao, Z. Q., Hao, X., Wu, Q., Li, C., Hou, H., ... & Pan, X. (2018). Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis, 118, 322-329.info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/197542024-07-22T20:48:51Z |