Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos
Objetivo: Determinar las especies de la familia Culicidae que habitan en la bromelia Tillandsia elongata en un agroecosistema de los Andes Colombianos con base en métodos taxonómicos y moleculares. Alcance: Aunque la agricultura es una de las causas de la pérdida de biodiversidad, los agroecosistema...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/23475
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/23475
https://doi.org/10.17151/bccm.2023.27.1.12
- Palabra clave:
- Arboles de mango
fitotelmata
Toxorhynchitini
Sabethini
Mango tree
phytotelma
Sabethini
Toxorhynchitini
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
REPOUCALDA_0ef55289132741e4b5a0c3259713a91b |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/23475 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos Mosquitoes (Diptera:Culicidae) Associated with Tillandsia elongata (Bromeliaceae) in an Agroecosystem of the Colombian Andes |
| title |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| spellingShingle |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos Arboles de mango fitotelmata Toxorhynchitini Sabethini Mango tree phytotelma Sabethini Toxorhynchitini |
| title_short |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| title_full |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| title_fullStr |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| title_full_unstemmed |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| title_sort |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos |
| dc.subject.none.fl_str_mv |
Arboles de mango fitotelmata Toxorhynchitini Sabethini Mango tree phytotelma Sabethini Toxorhynchitini |
| topic |
Arboles de mango fitotelmata Toxorhynchitini Sabethini Mango tree phytotelma Sabethini Toxorhynchitini |
| description |
Objetivo: Determinar las especies de la familia Culicidae que habitan en la bromelia Tillandsia elongata en un agroecosistema de los Andes Colombianos con base en métodos taxonómicos y moleculares. Alcance: Aunque la agricultura es una de las causas de la pérdida de biodiversidad, los agroecosistemas pueden mantener la biodiversidad de invertebrados, incluidas las especies de mosquitos. Metodología: Se recolectaron los estados inmaduros de mosquitos de 48 bromelias del agroecosistema “Montelindo” de la Universidad de Caldas en Santágueda (Palestina, Caldas, Colombia). Para recolectar los mosquitos inmaduros, se filtró el agua del tanque de cada bromelia usando un tamiz de malla de 150 µm; luego, cada hoja de bromelia se limpió con un pincel. Las especies de mosquitos, fueron identificadas por medio de claves taxonómicas y pruebas moleculares. Principales resultados: Este estudio proporciona el primer reporte de mosquitos inmaduros de los géneros Toxorhynchites y Wyeomyia que habitan en la bromelia Tillandsia elongata en los agroecosistemas. La identificación morfológica permitió establecer dos especies Tx. bambusicola y Tx. haemorrhoidalis. Las secuencias de ADN permitieron identificar dos especies Wy. mitchelli y Wy. pertinans. Nuestros resultados amplían la distribución de especies deToxorhynchites species, y las especies de bromelias que son sitios de oviposición para Tx. bambusicola and Tx. haemorrhoidalis. La presencia de las bromelias tanque en los agroecosistemas podrían contribuir a mantener la biodiversidad de Culicidae. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-01-01 2023-01-01T00:00:00Z 2023-01-01T00:00:00Z 2025-10-08T21:06:29Z 2025-10-08T21:06:29Z |
| dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 Text info:eu-repo/semantics/article Journal article info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
0123-3068 https://repositorio.ucaldas.edu.co/handle/ucaldas/23475 10.17151/bccm.2023.27.1.12 2462-8190 https://doi.org/10.17151/bccm.2023.27.1.12 |
| identifier_str_mv |
0123-3068 10.17151/bccm.2023.27.1.12 2462-8190 |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/23475 https://doi.org/10.17151/bccm.2023.27.1.12 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
177 1 167 27 Boletín Científico Centro de Museos Museo de Historia Natural Agyekum, T. P., Arko-Mensah, J., Botwe, P. K., Hogarh, J. N., Issah, I., Dwomoh, D., Billah, M. K., Dadzie, S. K., Robins, T. G., & Fobil, J. N. (2022). Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Tropical Medicine International Health, 27(4), 338-346. https://doi.org/10.1111/tmi.13732 Amundrud, S. L., & Srivastava, D. S. (2015). Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology, 96, 1957-1965. Araújo, V. A., Melo, S. K., Araújo, A. P. A., Gomes, M. L. M., & Carneiro, M. A. A. (2007). Relationship between invertebrate fauna and bromeliad size. Brazilian Journal of Biology, 67, 611-617. https://doi.org/10.1590/S1519-69842007000400004 Barreto, P., & Lee, V. H. (1969). Artrópodos hematófagos del rio Raposo, Valle, Colombia: II—CULICIDAE. Caldasia, 407-440 https://www.jstor.org/stable/23641201 Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control. Springer. Betancur, J. & Garcia, N. (2006). Las bromelias. En N. Garcia y G.Galeanao (Eds.) Libro rojo de plantas de Colombia. Volumen 3: Las bromelias, las labiadas y las pasifloras. Serie. Campos, R. E., & Lounibos, L. P. (2000). Life tables of Toxorhynchites rutilus (Diptera: Culicidae) in nature in southern Florida. Journal of Medical Entomology, 37(3), 385-392. https://doi.org/10.1093/jmedent/37.3.385 Campos, R. E. (2011). Expanding the distribution of two species of mosquitoes (Diptera:Culicidae) in Argentina and notes on their bionomics. Revista de la Sociedad Entomológica Argentina,70(3-4),379-381. Cardoso, C. A. A., Lourenço-de-Oliveira, R., Codeço, C. T., & Motta, M. A. (2015). Mosquitoes in bromeliads at ground level of the Brazilian Atlantic Forest: The relationship between mosquitoes, bromeliads and habitat. Annals of Tropical Medicine and Parasitology, 109(5), 431-442. https://pubmed.ncbi.nlm.nih.gov/27418695/ Ceretti-Junior, W., de Oliveira Christe, R., Rizzo, M., Strobel, R. C., de Matos Junior, M. O., De Mello, M. H. S. H., ... & Marrelli, M. T. (2016). Species composition and ecological aspects of immature mosquitoes (Diptera: Culicidae) in bromeliads in urban parks in the city of São Paulo, Brazil. Journal of arthropod-borne diseases, 10(1), 102. https://pubmed.ncbi.nlm.nih.gov/27047978/ Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M., & Kramer, L. D. (2014). The effect of temperature on life history traits of Culex mosquitoes. Journal of Medical Entomology, 51(1), 55-62. https://doi.org/10.1603/ME13003 Collins, L. E., & Blackwell, A. (2000). The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News and Information, 21(4), 105N-116N. https://www.cabi.org/bni/FullTextPDF/2000/20003030873.pdf Cruz-Angon, A., & Greenberg, R. (2005). Are epiphytes important for birds in coffee plantations? An experimental assessment. Journal of Applied Ecology, 42, 150-159. https://www.jstor.org/stable/3505948 DaRocha, W. D., Ribeiro, S. P., Neves, F. S., Fernandes, G. W., Leponce, M., & Delabie, J. H. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem. Myrmecological News, 21, 83-92. https://doi.org/10.25849/myrmecol.news_021:083 De Hoyos, P. M., Barreto, M., & Guhl, F. (2000). Hematophagous insect fauna in the southern part of Chiribiquete National Natural Park, Caquetá, Colombia. Biomédica, 20, 314-326. https://pesquisa.bvsalud.org/portal/resource/pt/lil-278206 Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. (2015), Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliad-Dwelling Predator. Biotropica, 47, 569-578. https://doi.org/10.1111/btp.12249 Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2017). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62, 229-242. https://doi.org/10.1111/fwb.12862 Docile, T. N., Figueiro, R., Honorio, N. A., Baptista, D. F., Pereira, G., Dos Santos, J. A. A., & Codeco, C. T. (2017). Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and associated entomofauna in bromeliads from a forest patch within a densely urbanized area. Neotropical entomology, 46(6), 613-621. https://doi.org/10.1007/s13744-017-0498-y Drummond, A., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., Wilson, A. (2009) Geneious v5.3. http://www.geneious.com/ Ferrari, M.C.O., Messier, F. & Chivers, D.P. (2008). Threat-sensitive learning of predatorsby larval mosquitoes Culex restuans. Behavioral Ecology Sociobiology 62, 1079–1083 https://doi.org/10.1007/s00265-007-0535-7 Fischer, S., Byttebier, B., Campos, R. (2016). Predadores de mosquitos. In C. Berón, R. Campos, R. Gleiser, L. Díaz-Nieto, O. Salomón & N. Schweigmann. (Eds.), Investigaciones Sobre Mosquitos Argentina (pp. 284-311). Universidad Nacional de Mar del Plata. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–9. Frank, J. H., & Lounibos, L. P. (2009). Insects and allies associated with bromeliads: a review. Terrestrial arthropod reviews, 1(2), 125-153. https://doi.org/10.1163/187498308X414742 Foster, W. A., Walker, E. D. (2019) Mosquitoes (Culicidae). In G. Mullen, L. Durden (Eds.), Medical and veterinary entomology (pp. 261-325). Academic press Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C, Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772 Gómez, G. F., Bickersmith, S. A., González, R., Conn, J. E., & Correa, M. M. (2015). Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia series. PLoS One, 10(3), e0119488. https://doi.org/10.1371/journal.pone.0119488 Grech, M. G., Sartor, P. D., Almirón, W. R., & Ludueña-Almeida, F. F. (2015). Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina. Acta Tropica, 146, 1-6. Haq, S., Kumar, G., & Dhiman, R. C. (2019). Interspecific competition between larval stages of Aedes aegypti and Anopheles stephensi. Journal of Vector Borne Diseases, 56(4), 303-307. https://doi.org/10.4103/0972-9062.302032 Heard, S. B. (1994). Pitcher-plant midges and mosquitoes: a processing chain commensalism. Ecology, 75(6), 1647-1660. https://doi.org/10.2307/1939625 Hietz, P. (2005). Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology, 19(2), 391-399. https://doi.org/10.1111/j.1523-1739.2005.00145.x Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122(1), 113-130. https://doi.org/10.1016/j.biocon.2004.07.018 Hutchings, R. S. G. (1994). Palm bract breeding sites and their exploitation by Toxorhynchites (Lynchiella) haemorrhoidalis haemorrhoidalis (Diptera: Culicidae) in an upland forest of the central Amazon. Journal of Medical Entomology, 31(2), 186- 191. https://doi.org/10.1093/jmedent/31.2.186 Ibañez-Bernal, S. (2011). Mosquitoes (Insecta: Diptera: Culicidae). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Government of Veracruz, Veracruz University, Institute of Ecology, A.C., Mexico. Instituto Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2006). Red Books of Threatened Species of Colombia. Jabiol, J., Corbara, B., Dejean, A., & Céréghino, R. (2009). Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management, 257(1), 351-360. https://doi.org/10.1016/j.foreco.2008.09.010 Jaramillo, A., Ramírez, V. H., & Arcila, J. (2011). Patrones de distribución de la lluvia en la zona cafetera. Centro Nacional de Investigaciones de Café (Cenicafé). https://biblioteca.cenicafe.org/bitstream/10778/328/1/avt0410.pdf Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096 Lane, J. (1953). Neotropical Culioidae. Volumes I & II. Neotropical Culioidae. Volumes I & II. León, T., Toro, J., Martínez, F., & Cleves, A. (2018). The main agroecological structure (MAS) of the agroecosystems: concept, methodology and applications. Sustainability. 10(3131),1–21. https://doi.org/10.3390/su10093131 Lester P.J. & Pike A.J. (2003). Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. Journal Vector Ecology, 28(2),267-74. https://pubmed.ncbi.nlm.nih.gov/14714676/ Linley, J. R., & Duzak, D. (1989). Egg cannibalism and carnivory among three species of Toxorhynchites. Journal of the American Mosquito Control Association, 5(3), 359-362. https://pubmed.ncbi.nlm.nih.gov/2573688/ Linton, Y.-M., Pecor, J. E., Porter, C. H., Mitchell, L. B., Garzon-Moreno, A., Foley, D. H., Pecor, D. B., & Wilkerson, R. C. (2013). Mosquitoes of eastern Amazonian Ecuador: Biodiversity, bionomics and barcodes. Memórias do Instituto Oswaldo Cruz, 108(suppl 1), 100-109. https://doi.org/10.1590/0074-0276130440 Lounibos, L. P., Frank, J. H., Machado-Allison, C. E., Ocanto, P., & Navarro, J. C. (1987). Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology, 3(3), 221-242. https://www.jstor.org/stable/2559589 Marcano, R., Stern, V. M., & Sances, F. V. (1986). Physiological response of cotton plants to feeding of three Tetranychus spider mite species (Acari: Tetranychidae). Journal of Economic Entomology, 79(5), 1217-1220. https://doi.org/10.1093/jee/79.5.1217 Marques, G. R., & Forattini, O. P. (2008). Culicídeos em bromélias: diversidade de fauna segundo influência antrópica, litoral de São Paulo. Revista de Saúde Pública, 42, 979-985. https://doi.org/10.1590/S0034-89102008000600001 Medeiros-Sousa, A. R., de Oliveira-Christe, R., Alves Camargo, A., Araujo Scinachi, C., Milani, G. M., Urbinatti, P. R., CerettiJunior, D.N.W. & Marrelli, M.T. (2020). Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Tropica, 205, 105394. https://doi.org/10.1016/j.actatropica.2020.105394 Mocellin, M. G., Simões, T. C., Nascimento, T. F. S. D., Teixeira, M. L. F., Lounibos, L. P., & Oliveira, R.L.D. (2009). Bromeliadinhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro-Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Memórias do Instituto Oswaldo Cruz, 104, 1171-1176. https://doi.org/10.1590/S0074-02762009000800015 Montes de Oca, E., Ball, G. E., & Spence, J. R. (2014). Diversity of Carabidae (Insecta, Coleoptera) in epiphytic bromeliaceae in central Veracruz, Mexico. Environmental entomology, 36(3), 560-568. https://doi.org/10.1603/0046-225X(2007)36[560:DOCICI]2.0.CO;2 Muturi, E. J., Shililu, J., Jacob, B., Gu, W., Githure, J., & Novak, R. (2006). Mosquito speciesdiversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 31(1), 129-137. https://doi.org/10.3376/1081-1710(2006)31[129:MSDAAI]2.0.CO;2. Myers, N., Mittermeier, R.A., Mittermeier, C.G, Da Fonseca, G.A., & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853. https://doi.org/10.1038/35002501 Navarro, J. C., Liria, J., Pinango, H., & Barrera, R. (2007). Biogeographic area relationships in Venezuela: A Parsimony analysis of Culicidae-Phytotelmata distribution in National Parks. Zootaxa, 1547(1), 1-19. Navarro, J. C., Duque, P. L., Liria, J., Enríquez, S., Vaca-Moyano, F., & Salazar, J. G. (2018). A new phytotelm plant for ecuador, ananas comosus l. Merr. (Bromeliaceae)A its wyeomyia species inhabitant(Diptera, culicidae). CienciAmérica, 7(2), 71-85. https://doi.org/10.33210/ca.v7i2.182 Ohba, S., Van Soai, N., Van Anh, D. T., Nguyen, Y. T., & Takagi, M. (2015). Study of mosquito fauna in rice ecosystems around Hanoi, Northern Vietnam. Acta Tropica, 142, 89-95. https://doi.org/10.1016/j.actatropica.2014.11.002 Ospina-Bautista, F., Estévez-Varón, J. V., Betancur, J., & Realpe-Rebolledo, E. (2004). Estructura y composición de la comunidad de macroinvertebrados acuáticos asociados a Tillandsiaturneri Baker (Bromeliaceae) en un bosque alto andino colombiano. Acta Zoológica Mexicana, 20(1), 153-166. Ospina-Bautista, F., Varón, J. V. E., Realpe, E., & Gast, F. (2008). Diversity of aquatic invertebrates associated to Bromeliaceae in the mountain cloud forest. Revista Colombiana de Entomología, 34(2), 224. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882008000200016 O’Meara, G. F., Cutwa, M. M., & Evans, L. F. (2003). Bromeliad-inhabiting mosquitoes in south Florida: native and exotic plants differ in species composition. Journal of Vector Ecology, 28, 37-46. https://pubmed.ncbi.nlm.nih.gov/12831127/ Perfecto, I., Rice, R. A., Greenberg, R., & Van der Voort, M. E. (1996). Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience, 46(8), 598-608. https://doi.org/10.2307/1312989 Perfecto, I., Mas, A., Dietsch, T., & Vandermeer, J. (2003). Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiversity & Conservation,12(6),1239-1252. https://doi.org/10.1023/A:1023039921916 Peyton, E. L., Roberts, D. R., Pinheiro, F. P., Vargas, R., & Balderama, F. (1983). Mosquito collections from a remote unstudied area of southeastern Bolivia. Mosquito Systematics,15(2),61-89. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2959-2971. https://doi.org/10.1098/rstb.2010.0143 Rost-Komiya, B., Smith, M.A., Rogy, P., & Srivastava, D. S. (2022). Do bromeliads affect the arboreal ant communities on orange trees in northwestern Costa Rica? PLoS ONE 17(7), e0271040. https://doi.org/10.1371/journal.pone.0271040 Roux, O., Diabaté, A. & Simard, F. (2014), Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. Journal Animal Ecology, 83,702-711. https://doi.org/10.1111/1365-2656.12163 Rozo-Lopez, P., & Mengual, X. (2015). Updated list of the mosquitoes of Colombia (Diptera:Culicidae). Biodiversity Data Journal, (3). https://doi.org/10.3897/BDJ.3.e4567 Sauvadet, M., Van den Meersche, K., Allinne, C., Gay, F., de Melo Virginio Filho, E., Chauvat,M., Becquer, T., Tixier, P., & Harmand, J. M. (2019). Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Science of the Total Environment, 649, 1065-1074. https://doi.org/10.1016/j.scitotenv.2018.08.291 Schroth, G., & Harvey, C. A. (2007). Biodiversity conservation in cocoa production landscapes: an overview. Biodiversity and Conservation, 16(8), 2237-2244. Souza, R.S.; Diaz-Albiter, H.M.; Dillon, V.M.; Dillon, R.J.; Genta, F.A. (2016). Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS ONE , 11, e0151403. Talaga, S., Dézerald, O., Carteron, A., Leroy, C., Carrias, J. F., Céréghino, R., & Dejean, A. (2017). Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city. Urban Ecosystems, 20(5),1001-1009. https://doi.org/10.1007/s11252-017-0653-6 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876 Travanty, N.V., Apperson, C.S., & Ponnusamy, L. A. (2019). Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae). Journal Medical Entomology, 56, 632–640. Trimble, R. M., & Lund, C. T. (1983). Intra-and interpopulation variation in the thermal characteristics of preadult development of two latitudinally diverse populations of Toxorhynchites rutilus septentrionalis (Diptera: Culicidae). The Canadian Entomologist,115(6), 659-662. https://doi.org/10.4039/Ent115659-6 Walker, E.D., Olds, E.J., & Merritt, R.W. (1988). Gut Content Analysis of Mosquito Larvae (Diptera: Culicidae) Using Dapi Stain and Epifluorescence Microscopy. Journal Medical Entomology, 25, 551–554. Núm. 1 , Año 2023 : Enero - Junio https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/8119/6866 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Boletín Científico |
| publisher.none.fl_str_mv |
Boletín Científico |
| dc.source.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/8119 |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532627509903360 |
| spelling |
Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes ColombianosMosquitoes (Diptera:Culicidae) Associated with Tillandsia elongata (Bromeliaceae) in an Agroecosystem of the Colombian AndesArboles de mangofitotelmataToxorhynchitiniSabethiniMango treephytotelmaSabethiniToxorhynchitiniObjetivo: Determinar las especies de la familia Culicidae que habitan en la bromelia Tillandsia elongata en un agroecosistema de los Andes Colombianos con base en métodos taxonómicos y moleculares. Alcance: Aunque la agricultura es una de las causas de la pérdida de biodiversidad, los agroecosistemas pueden mantener la biodiversidad de invertebrados, incluidas las especies de mosquitos. Metodología: Se recolectaron los estados inmaduros de mosquitos de 48 bromelias del agroecosistema “Montelindo” de la Universidad de Caldas en Santágueda (Palestina, Caldas, Colombia). Para recolectar los mosquitos inmaduros, se filtró el agua del tanque de cada bromelia usando un tamiz de malla de 150 µm; luego, cada hoja de bromelia se limpió con un pincel. Las especies de mosquitos, fueron identificadas por medio de claves taxonómicas y pruebas moleculares. Principales resultados: Este estudio proporciona el primer reporte de mosquitos inmaduros de los géneros Toxorhynchites y Wyeomyia que habitan en la bromelia Tillandsia elongata en los agroecosistemas. La identificación morfológica permitió establecer dos especies Tx. bambusicola y Tx. haemorrhoidalis. Las secuencias de ADN permitieron identificar dos especies Wy. mitchelli y Wy. pertinans. Nuestros resultados amplían la distribución de especies deToxorhynchites species, y las especies de bromelias que son sitios de oviposición para Tx. bambusicola and Tx. haemorrhoidalis. La presencia de las bromelias tanque en los agroecosistemas podrían contribuir a mantener la biodiversidad de Culicidae.Objective: We aimed to determine the species of the Culicidae family inhabiting the tank bromeliad Tillandsia elongata in an agroecosystem of the Colombian Andes, utilizing taxonomic and molecular methods. Scope: While Agriculture is recognized as one of the causes of biodiversity loss, agroecosystems have the potential to maintain the invertebrate biodiversity, including mosquito species. Methodology: We collected immature mosquitoes from 48 bromeliads in the agroecosystem “Montelindo” of Universidad de Caldas in Santágueda (Palestina, Caldas, Colombia). To collect the immature mosquitoes within each bromeliad, we filtered the water in the tank using a 150 µm-mesh sieve, and subsequently cleaned each bromeliad leaf with a brush. Taxonomic and molecular approaches were employed for mosquito species identification. Main results: This study presents the first report of immature mosquitoes from the genera Toxorhynchites and Wyeomyia inhabiting the bromeliad Tillandsia elongata in agroecosystems. Morphological identification led to establishing two species of Toxorhynchites, namely Toxorhynchites bambusicola (Lutz and Neiva) and Toxorhynchites haemorrhoidalis (Fabricius). DNA sequencing confirmed the presence of two species Wy. mitchelli (Theobald) and Wy. pertinans (Williston). Our results expand the known distribution range of Toxorhynchites species, as well as the bromeliad species that serve as breeding sites for Tx. bambusicola and Tx. haemorrhoidalis. Agroecosystems have the potential to contribute to Culicidae biodiversity through the conservation of breeding water bodies as tank bromeliads.Boletín Científico2023-01-01T00:00:00Z2025-10-08T21:06:29Z2023-01-01T00:00:00Z2025-10-08T21:06:29Z2022-01-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf0123-3068https://repositorio.ucaldas.edu.co/handle/ucaldas/2347510.17151/bccm.2023.27.1.122462-8190https://doi.org/10.17151/bccm.2023.27.1.12https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/8119eng177116727Boletín Científico Centro de Museos Museo de Historia NaturalAgyekum, T. P., Arko-Mensah, J., Botwe, P. K., Hogarh, J. N., Issah, I., Dwomoh, D., Billah, M. K., Dadzie, S. K., Robins, T. G., & Fobil, J. N. (2022). Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Tropical Medicine International Health, 27(4), 338-346. https://doi.org/10.1111/tmi.13732Amundrud, S. L., & Srivastava, D. S. (2015). Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology, 96, 1957-1965.Araújo, V. A., Melo, S. K., Araújo, A. P. A., Gomes, M. L. M., & Carneiro, M. A. A. (2007). Relationship between invertebrate fauna and bromeliad size. Brazilian Journal of Biology, 67, 611-617. https://doi.org/10.1590/S1519-69842007000400004Barreto, P., & Lee, V. H. (1969). Artrópodos hematófagos del rio Raposo, Valle, Colombia: II—CULICIDAE. Caldasia, 407-440 https://www.jstor.org/stable/23641201Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control. Springer.Betancur, J. & Garcia, N. (2006). Las bromelias. En N. Garcia y G.Galeanao (Eds.) Libro rojo de plantas de Colombia. Volumen 3: Las bromelias, las labiadas y las pasifloras. Serie.Campos, R. E., & Lounibos, L. P. (2000). Life tables of Toxorhynchites rutilus (Diptera: Culicidae) in nature in southern Florida. Journal of Medical Entomology, 37(3), 385-392. https://doi.org/10.1093/jmedent/37.3.385Campos, R. E. (2011). Expanding the distribution of two species of mosquitoes (Diptera:Culicidae) in Argentina and notes on their bionomics. Revista de la Sociedad Entomológica Argentina,70(3-4),379-381.Cardoso, C. A. A., Lourenço-de-Oliveira, R., Codeço, C. T., & Motta, M. A. (2015). Mosquitoes in bromeliads at ground level of the Brazilian Atlantic Forest: The relationship between mosquitoes, bromeliads and habitat. Annals of Tropical Medicine and Parasitology, 109(5), 431-442. https://pubmed.ncbi.nlm.nih.gov/27418695/Ceretti-Junior, W., de Oliveira Christe, R., Rizzo, M., Strobel, R. C., de Matos Junior, M. O., De Mello, M. H. S. H., ... & Marrelli, M. T. (2016). Species composition and ecological aspects of immature mosquitoes (Diptera: Culicidae) in bromeliads in urban parks in the city of São Paulo, Brazil. Journal of arthropod-borne diseases, 10(1), 102. https://pubmed.ncbi.nlm.nih.gov/27047978/Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M., & Kramer, L. D. (2014). The effect of temperature on life history traits of Culex mosquitoes. Journal of Medical Entomology, 51(1), 55-62. https://doi.org/10.1603/ME13003Collins, L. E., & Blackwell, A. (2000). The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News and Information, 21(4), 105N-116N. https://www.cabi.org/bni/FullTextPDF/2000/20003030873.pdfCruz-Angon, A., & Greenberg, R. (2005). Are epiphytes important for birds in coffee plantations? An experimental assessment. Journal of Applied Ecology, 42, 150-159. https://www.jstor.org/stable/3505948DaRocha, W. D., Ribeiro, S. P., Neves, F. S., Fernandes, G. W., Leponce, M., & Delabie, J. H. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem. Myrmecological News, 21, 83-92. https://doi.org/10.25849/myrmecol.news_021:083De Hoyos, P. M., Barreto, M., & Guhl, F. (2000). Hematophagous insect fauna in the southern part of Chiribiquete National Natural Park, Caquetá, Colombia. Biomédica, 20, 314-326. https://pesquisa.bvsalud.org/portal/resource/pt/lil-278206Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. (2015), Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliad-Dwelling Predator. Biotropica, 47, 569-578. https://doi.org/10.1111/btp.12249Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2017). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62, 229-242. https://doi.org/10.1111/fwb.12862Docile, T. N., Figueiro, R., Honorio, N. A., Baptista, D. F., Pereira, G., Dos Santos, J. A. A., & Codeco, C. T. (2017). Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and associated entomofauna in bromeliads from a forest patch within a densely urbanized area. Neotropical entomology, 46(6), 613-621. https://doi.org/10.1007/s13744-017-0498-yDrummond, A., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., Wilson, A. (2009) Geneious v5.3. http://www.geneious.com/Ferrari, M.C.O., Messier, F. & Chivers, D.P. (2008). Threat-sensitive learning of predatorsby larval mosquitoes Culex restuans. Behavioral Ecology Sociobiology 62, 1079–1083 https://doi.org/10.1007/s00265-007-0535-7Fischer, S., Byttebier, B., Campos, R. (2016). Predadores de mosquitos. In C. Berón, R. Campos, R. Gleiser, L. Díaz-Nieto, O. Salomón & N. Schweigmann. (Eds.), Investigaciones Sobre Mosquitos Argentina (pp. 284-311). Universidad Nacional de Mar del Plata.Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–9.Frank, J. H., & Lounibos, L. P. (2009). Insects and allies associated with bromeliads: a review. Terrestrial arthropod reviews, 1(2), 125-153. https://doi.org/10.1163/187498308X414742Foster, W. A., Walker, E. D. (2019) Mosquitoes (Culicidae). In G. Mullen, L. Durden (Eds.), Medical and veterinary entomology (pp. 261-325). Academic pressFoley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C, Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772Gómez, G. F., Bickersmith, S. A., González, R., Conn, J. E., & Correa, M. M. (2015). Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia series. PLoS One, 10(3), e0119488. https://doi.org/10.1371/journal.pone.0119488Grech, M. G., Sartor, P. D., Almirón, W. R., & Ludueña-Almeida, F. F. (2015). Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina. Acta Tropica, 146, 1-6.Haq, S., Kumar, G., & Dhiman, R. C. (2019). Interspecific competition between larval stages of Aedes aegypti and Anopheles stephensi. Journal of Vector Borne Diseases, 56(4), 303-307. https://doi.org/10.4103/0972-9062.302032Heard, S. B. (1994). Pitcher-plant midges and mosquitoes: a processing chain commensalism. Ecology, 75(6), 1647-1660. https://doi.org/10.2307/1939625Hietz, P. (2005). Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology, 19(2), 391-399. https://doi.org/10.1111/j.1523-1739.2005.00145.xHole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122(1), 113-130. https://doi.org/10.1016/j.biocon.2004.07.018Hutchings, R. S. G. (1994). Palm bract breeding sites and their exploitation by Toxorhynchites (Lynchiella) haemorrhoidalis haemorrhoidalis (Diptera: Culicidae) in an upland forest of the central Amazon. Journal of Medical Entomology, 31(2), 186- 191. https://doi.org/10.1093/jmedent/31.2.186Ibañez-Bernal, S. (2011). Mosquitoes (Insecta: Diptera: Culicidae). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Government of Veracruz, Veracruz University, Institute of Ecology, A.C., Mexico.Instituto Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2006). Red Books of Threatened Species of Colombia.Jabiol, J., Corbara, B., Dejean, A., & Céréghino, R. (2009). Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management, 257(1), 351-360. https://doi.org/10.1016/j.foreco.2008.09.010Jaramillo, A., Ramírez, V. H., & Arcila, J. (2011). Patrones de distribución de la lluvia en la zona cafetera. Centro Nacional de Investigaciones de Café (Cenicafé). https://biblioteca.cenicafe.org/bitstream/10778/328/1/avt0410.pdfKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096Lane, J. (1953). Neotropical Culioidae. Volumes I & II. Neotropical Culioidae. Volumes I & II.León, T., Toro, J., Martínez, F., & Cleves, A. (2018). The main agroecological structure (MAS) of the agroecosystems: concept, methodology and applications. Sustainability. 10(3131),1–21. https://doi.org/10.3390/su10093131Lester P.J. & Pike A.J. (2003). Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. Journal Vector Ecology, 28(2),267-74. https://pubmed.ncbi.nlm.nih.gov/14714676/Linley, J. R., & Duzak, D. (1989). Egg cannibalism and carnivory among three species of Toxorhynchites. Journal of the American Mosquito Control Association, 5(3), 359-362. https://pubmed.ncbi.nlm.nih.gov/2573688/Linton, Y.-M., Pecor, J. E., Porter, C. H., Mitchell, L. B., Garzon-Moreno, A., Foley, D. H., Pecor, D. B., & Wilkerson, R. C. (2013). Mosquitoes of eastern Amazonian Ecuador: Biodiversity, bionomics and barcodes. Memórias do Instituto Oswaldo Cruz, 108(suppl 1), 100-109. https://doi.org/10.1590/0074-0276130440Lounibos, L. P., Frank, J. H., Machado-Allison, C. E., Ocanto, P., & Navarro, J. C. (1987). Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology, 3(3), 221-242. https://www.jstor.org/stable/2559589Marcano, R., Stern, V. M., & Sances, F. V. (1986). Physiological response of cotton plants to feeding of three Tetranychus spider mite species (Acari: Tetranychidae). Journal of Economic Entomology, 79(5), 1217-1220. https://doi.org/10.1093/jee/79.5.1217Marques, G. R., & Forattini, O. P. (2008). Culicídeos em bromélias: diversidade de fauna segundo influência antrópica, litoral de São Paulo. Revista de Saúde Pública, 42, 979-985. https://doi.org/10.1590/S0034-89102008000600001Medeiros-Sousa, A. R., de Oliveira-Christe, R., Alves Camargo, A., Araujo Scinachi, C., Milani, G. M., Urbinatti, P. R., CerettiJunior, D.N.W. & Marrelli, M.T. (2020). Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Tropica, 205, 105394. https://doi.org/10.1016/j.actatropica.2020.105394Mocellin, M. G., Simões, T. C., Nascimento, T. F. S. D., Teixeira, M. L. F., Lounibos, L. P., & Oliveira, R.L.D. (2009). Bromeliadinhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro-Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Memórias do Instituto Oswaldo Cruz, 104, 1171-1176. https://doi.org/10.1590/S0074-02762009000800015Montes de Oca, E., Ball, G. E., & Spence, J. R. (2014). Diversity of Carabidae (Insecta, Coleoptera) in epiphytic bromeliaceae in central Veracruz, Mexico. Environmental entomology, 36(3), 560-568. https://doi.org/10.1603/0046-225X(2007)36[560:DOCICI]2.0.CO;2Muturi, E. J., Shililu, J., Jacob, B., Gu, W., Githure, J., & Novak, R. (2006). Mosquito speciesdiversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 31(1), 129-137. https://doi.org/10.3376/1081-1710(2006)31[129:MSDAAI]2.0.CO;2.Myers, N., Mittermeier, R.A., Mittermeier, C.G, Da Fonseca, G.A., & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853. https://doi.org/10.1038/35002501Navarro, J. C., Liria, J., Pinango, H., & Barrera, R. (2007). Biogeographic area relationships in Venezuela: A Parsimony analysis of Culicidae-Phytotelmata distribution in National Parks. Zootaxa, 1547(1), 1-19.Navarro, J. C., Duque, P. L., Liria, J., Enríquez, S., Vaca-Moyano, F., & Salazar, J. G. (2018). A new phytotelm plant for ecuador, ananas comosus l. Merr. (Bromeliaceae)A its wyeomyia species inhabitant(Diptera, culicidae). CienciAmérica, 7(2), 71-85. https://doi.org/10.33210/ca.v7i2.182Ohba, S., Van Soai, N., Van Anh, D. T., Nguyen, Y. T., & Takagi, M. (2015). Study of mosquito fauna in rice ecosystems around Hanoi, Northern Vietnam. Acta Tropica, 142, 89-95. https://doi.org/10.1016/j.actatropica.2014.11.002Ospina-Bautista, F., Estévez-Varón, J. V., Betancur, J., & Realpe-Rebolledo, E. (2004). Estructura y composición de la comunidad de macroinvertebrados acuáticos asociados a Tillandsiaturneri Baker (Bromeliaceae) en un bosque alto andino colombiano. Acta Zoológica Mexicana, 20(1), 153-166.Ospina-Bautista, F., Varón, J. V. E., Realpe, E., & Gast, F. (2008). Diversity of aquatic invertebrates associated to Bromeliaceae in the mountain cloud forest. Revista Colombiana de Entomología, 34(2), 224. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882008000200016O’Meara, G. F., Cutwa, M. M., & Evans, L. F. (2003). Bromeliad-inhabiting mosquitoes in south Florida: native and exotic plants differ in species composition. Journal of Vector Ecology, 28, 37-46. https://pubmed.ncbi.nlm.nih.gov/12831127/Perfecto, I., Rice, R. A., Greenberg, R., & Van der Voort, M. E. (1996). Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience, 46(8), 598-608. https://doi.org/10.2307/1312989Perfecto, I., Mas, A., Dietsch, T., & Vandermeer, J. (2003). Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiversity & Conservation,12(6),1239-1252. https://doi.org/10.1023/A:1023039921916Peyton, E. L., Roberts, D. R., Pinheiro, F. P., Vargas, R., & Balderama, F. (1983). Mosquito collections from a remote unstudied area of southeastern Bolivia. Mosquito Systematics,15(2),61-89.Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2959-2971. https://doi.org/10.1098/rstb.2010.0143Rost-Komiya, B., Smith, M.A., Rogy, P., & Srivastava, D. S. (2022). Do bromeliads affect the arboreal ant communities on orange trees in northwestern Costa Rica? PLoS ONE 17(7), e0271040. https://doi.org/10.1371/journal.pone.0271040Roux, O., Diabaté, A. & Simard, F. (2014), Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. Journal Animal Ecology, 83,702-711. https://doi.org/10.1111/1365-2656.12163Rozo-Lopez, P., & Mengual, X. (2015). Updated list of the mosquitoes of Colombia (Diptera:Culicidae). Biodiversity Data Journal, (3). https://doi.org/10.3897/BDJ.3.e4567Sauvadet, M., Van den Meersche, K., Allinne, C., Gay, F., de Melo Virginio Filho, E., Chauvat,M., Becquer, T., Tixier, P., & Harmand, J. M. (2019). Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Science of the Total Environment, 649, 1065-1074. https://doi.org/10.1016/j.scitotenv.2018.08.291Schroth, G., & Harvey, C. A. (2007). Biodiversity conservation in cocoa production landscapes: an overview. Biodiversity and Conservation, 16(8), 2237-2244.Souza, R.S.; Diaz-Albiter, H.M.; Dillon, V.M.; Dillon, R.J.; Genta, F.A. (2016). Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS ONE , 11, e0151403.Talaga, S., Dézerald, O., Carteron, A., Leroy, C., Carrias, J. F., Céréghino, R., & Dejean, A. (2017). Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city. Urban Ecosystems, 20(5),1001-1009. https://doi.org/10.1007/s11252-017-0653-6Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876Travanty, N.V., Apperson, C.S., & Ponnusamy, L. A. (2019). Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae). Journal Medical Entomology, 56, 632–640.Trimble, R. M., & Lund, C. T. (1983). Intra-and interpopulation variation in the thermal characteristics of preadult development of two latitudinally diverse populations of Toxorhynchites rutilus septentrionalis (Diptera: Culicidae). The Canadian Entomologist,115(6), 659-662. https://doi.org/10.4039/Ent115659-6Walker, E.D., Olds, E.J., & Merritt, R.W. (1988). Gut Content Analysis of Mosquito Larvae (Diptera: Culicidae) Using Dapi Stain and Epifluorescence Microscopy. Journal Medical Entomology, 25, 551–554.Núm. 1 , Año 2023 : Enero - Juniohttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/8119/6866https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Andrés Morcillo, CamiloMartínez Sánchez, Estefani T.Ospina Bautista, FabiolaGonzález , RanulfoRivera Páez, Fredy A.Estévez Varón, Jaimeoai:repositorio.ucaldas.edu.co:ucaldas/234752025-10-08T21:06:29Z |
