Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario

El mono Zocay (Plecturocebus ornatus) es un primate platirrino endémico que sólo se distribuye en los departamentos de Meta y parte de Cundinamarca en Colombia. Actualmente, se considera vulnerable a la extinción por pérdida de hábitat en su área de distribución y sus requerimientos ecológicos espec...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/23518
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/23518
https://doi.org/10.17151/bccm.2024.28.2.6
Palabra clave:
Primates
Modelo matemático
Paisaje agropecuario
Conservación
Metapoblación
Primates
Mathematical model
agricultural and cattle raising landscapes
Conservation
Metapopulation
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUCALDA_0a8a49802ff964632cab667256d2fc82
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/23518
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
Mathematical model of the presence of Zocay monkey’s (Plecturocebus ornatus) in an agriculture and cattle raising landscapes.
title Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
spellingShingle Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
Primates
Modelo matemático
Paisaje agropecuario
Conservación
Metapoblación
Primates
Mathematical model
agricultural and cattle raising landscapes
Conservation
Metapopulation
title_short Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
title_full Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
title_fullStr Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
title_full_unstemmed Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
title_sort Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuario
dc.subject.none.fl_str_mv Primates
Modelo matemático
Paisaje agropecuario
Conservación
Metapoblación
Primates
Mathematical model
agricultural and cattle raising landscapes
Conservation
Metapopulation
topic Primates
Modelo matemático
Paisaje agropecuario
Conservación
Metapoblación
Primates
Mathematical model
agricultural and cattle raising landscapes
Conservation
Metapopulation
description El mono Zocay (Plecturocebus ornatus) es un primate platirrino endémico que sólo se distribuye en los departamentos de Meta y parte de Cundinamarca en Colombia. Actualmente, se considera vulnerable a la extinción por pérdida de hábitat en su área de distribución y sus requerimientos ecológicos específicos. En la conservación de primates no se ha explorado ampliamente la modelación matemática para crear escenarios que permitan priorizar esfuerzos, en tanto que en otros grupos biológicos esta aproximación ha sido utilizada complementariamente en las estrategias de gestión de especies silvestres. El objetivo de este trabajo fue construir un modelo matemático de la dinámica de la presencia de P. ornatus en fragmentos de bosque dentro de un paisaje agropecuario, para contribuir a su conservación y la de su hábitat. Para ello, se analizó la cobertura boscosa en el municipio de San Martín (Meta) mediante digitalización en pantalla a escala 1:25.000 en ArcGIS 10.8 de imágenes satelitales Landsat entre 2013 y 2019, a su vez, la estructura del paisaje fue analizada con la extensión V-LATE 2.0. La presencia de P. ornatus fue monitoreada por observaciones focales en transectos dentro de fragmentos de bosque en un paisaje agropecuario influenciado por cultivos de ciclo corto, palma africana y ganadería extensiva. A partir de los datos se construyó un modelo matemático metapoblacional, dado que la especie puede establecer subpoblaciones en un paisaje fragmentado, su tasa de dispersión es baja y su dinámica podría estar definida por procesos locales de colonización y extinción. Dicha modelación, se realizó en Vensim PLE, asumiendo como supuestos que: 1) El aumento de la conectividad del paisaje incrementa la tasa de dispersión de primates; 2) El aumento del área y calidad de los fragmentos de bosque tienen un efecto positivo en la presencia de primates en un paisaje fragmentado. A partir del modelo se construyeron escenarios con diferentes grados de pérdida de área de cobertura forestal: escenario base o “business as usual”, es decir continúa con la tendencia actual; escenario de alta deforestación; escenario intermedio (conservación local, que involucra incrementos puntuales del área de cobertura forestal) y escenario pro-conservación (donde se aumenta la cantidad, calidad y conectividad del hábitat para la especie). A partir de las predicciones del modelo se puede evidenciar que en los escenarios base, intermedio y de alta deforestación, la persistencia de P. ornatus es baja por el efecto de la pérdida de hábitat disponible. Por ende, se concluye que P. ornatus tiene tendencia a desaparecer del paisaje agropecuario si la transformación del bosque en áreas de explotación agropecuaria se mantiene. Por tanto, es urgente aumentar la conectividad y cantidad de hábitat disponible con el fin de que P. ornatus pueda sobrevivir en el entorno antropizado.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-01T00:00:00Z
2024-07-01T00:00:00Z
2024-07-01
2025-10-08T21:06:49Z
2025-10-08T21:06:49Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
Text
info:eu-repo/semantics/article
Journal article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv 0123-3068
https://repositorio.ucaldas.edu.co/handle/ucaldas/23518
10.17151/bccm.2024.28.2.6
2462-8190
https://doi.org/10.17151/bccm.2024.28.2.6
identifier_str_mv 0123-3068
10.17151/bccm.2024.28.2.6
2462-8190
url https://repositorio.ucaldas.edu.co/handle/ucaldas/23518
https://doi.org/10.17151/bccm.2024.28.2.6
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 127
2
103
28
Boletín Científico Centro de Museos Museo de Historia Natural
Agarwal, M. y Pathak, R. (2015). Conservation of forestry biomass and wildlife population: a mathematical model. Asian Journal of Mathematics and Computer Research, 4(1), 1-15. https://lc.cx/eOXoE3
Aliaga-Samanez, A., Real, R., Vermeer, J. y Olivero, J. (2020). Modelling species distributions limited by geographical barriers: A case study with African and American primates. Global ecology and biogeography, 29(3), 444-453. https://doi.org/10.1111/geb.13041
Arasa-Gisbert, R., Arroyo-Rodríguez, V. y Andresen, E. (2021). El debate sobre los efectos de la fragmentación del hábitat: causas y consecuencias. Ecosistemas, 30(3), 2156-2156. https://doi.org/10.7818/ECOS.2156
Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., ... y Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology letters, 23(9), 1404-1420. https://publons. com/publon/10.1111/ele.13535
Arroyo-Rodríguez, V., Martínez-Ruiz, M., Bezerra, J. S., Galán-Acedo, C., San-José, M. y Fahrig, L. (2023). Does a Species’ Mobility Determine the Scale at Which It Is Influenced by the Surrounding Landscape Pattern? Current Landscape Ecology Reports, 1-11. https://doi.org/10.1007/s40823-022-00082-7
Battisti, C. y Cerfolli, F. (2021). From Citizen Science to Citizen Management: Suggestions for a pervasive fine-grained and operational approach to biodiversity conservation. Israel Journal of Ecology and Evolution, 68(1-4), 8-12. https://doi.org/10.1163/22244662-bja10029
Bezanson, M., Franquesa-Soler, M., Kowalewski, M., McNamara, A., Oktaviani, R. y Rodrigues, M. A. (2022). Best practices are never best: evaluating primate conservation education programs (PCEPs) with a decolonial perspective. American Journal of Primatology, e23424. https://doi.org/10.1002/ajp.23424
Bezanson, M. y McNamara, A. (2019). The what and where of primate field research may be failing primate conservation. Evolutionary Anthropology: Issues, News, and Reviews, 28(4), 166-178. https://doi.org/10.1002/evan.21790
Bogaert, J., Myneni, R. B. y Knyazikhin, Y. (2002). A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology, 17, 87-90. https://shre.ink/b1hl
Bueno, A. y Llambí, L. D. (2015). Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean Forest line. Applied Vegetation Science, 18(4), 613-623. https://doi.org/10.1111/avsc.12186
Carretero-Pinzón, X. y Defler, T. R. (2016). Callicebus ornatus, an endemic Colombian species: Demography, Behavior and
Conservation. En M. Ruíz-García y J. M. Shostell (Eds.), Phylogeny, molecular population genetics, evolutionary biology and Conservation of the Neotropical Primates. Nova Science Publisher Inc.
Carretero-Pinzón, X., Defler, T. R. y Ruíz-García, M. (2017). The influence of landscape relative to site and patch variables on primate distributions in the Colombian Llanos. Lands. Ecol., 32, 883-896. https://doi.org/10.1007/s10980-017-0493-z
Carretero-Pinzón, X., Guzmán-Caro, D., Palacios, E. y Stevenson, P. R. (2020). Plecturocebus ornatus. The IUCN Red List of Threatened Species 2020: e.T39928A17974735. https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39928A17974735.en.
Cavada, N., Tenan, S., Barelli, C. y Rovero, F. (2019). Effects of anthropogenic disturbance on primate density at the landscape scale. Conservation Biology, 33(4), 873-882. https://doi.org/10.1111/cobi.13269
Cerullo, G. R. y Edwards, D. P. (2019). Actively restoring resilience in selectively logged tropical forests. Journal of Applied Ecology, 56(1), 107-118. https://doi.org/10.1111/1365-2664.13262
Chapman, C. A., Bonnell, T. R., Gogarten, J. F., Lambert, J. E., Omeja, P. A., Twinomugisha, D., ... y Rothman, J. M. (2013). Are primates ecosystem engineers? International Journal of Primatology, 34, 1-14. https://doi.org/10.1007/s10764-012-9645-9
Chapman, C. A. y Peres, C. A. (2021). Primate conservation: Lessons learned in the last 20 years can guide future efforts. Evolutionary Anthropology: Issues, News, and Reviews, 30(5), 345-361. https://doi.org/10.1002/evan.21920
Chicangana-Montón, G., Bocanegra-Gómez, A., Pardo-Mayorga, J., Salcedo-Hurtado, E. D. J., Gómez-Capera, A. y Vargas-Jiménez, C. A. (2022). Seismicity and seismotectonics for the Northern sector of the Algeciras Fault System, Eastern Cordillera, Colombia. Boletín de Geología, 44(1), 111-134. http://www.scielo.org.co/pdf/boge/v44n1/0120-0283-boge-44-01-111.pdf
Colchero, F., Aburto, J. M., Archie, E. A., Boesch, C., Breuer, T., Campos, F. A., ... y Alberts, S. C. (2021). The long lives of primates and the ‘invariant rate of ageing’ hypothesis. Nature communications, 12(1), 3666. https://doi.org/10.1038/s41467-021-23894-3
Colombia, MinAmbiente. (2024). Resolución 0126 del 06 de febrero de 2024. Por la cual se establece el listado oficial de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera. https://www.minambiente.gov.co/wp-content/uploads/2024/02/Resolucion-0126-de-2024.pdf
Condro, A. A., Prasetyo, L. B., Rushayati, S. B., Santikayasa, I. P. e Iskandar, E. (2021). Predicting hotspots and prioritizing protected areas for endangered primate species in Indonesia under changing climate. Biology, 10(2), 154. https://doi.org/10.3390/biology10020154
Cudney-Valenzuela, S. J., Arroyo-Rodríguez, V., Andresen, E. y Toledo-Aceves, T. (2022). What determines the scale of landscape effect on tropical arboreal mammals? Landscape Ecology, 37(6), 1497-1507. https://doi.org/10.1007/s10980-022-01440-w
De Gabriel, M., Roa, I., Fernández-Gil, J., Juan, J., Fuertes, B., Reguera, B. y Revilla, E. (2022). Trends in weather conditions favor generalist over specialist species in rear-edge alpine bird communities. Ecosphere, 13(4), e3953. https://doi.org/10.1002/ecs2.3953
Defler, T. R. (2010). Historia Natural de los Primates Colombianos (2ª. Ed.). Universidad Nacional de Colombia.
Devia, C. Y. y Piñeros, R. (2021). Dinámica territorial del extractivismo agrícola y petrolero a comienzos del siglo XXI en el departamento del Meta, Colombia. Perspectiva Geográfica, 26(1), 37-62. https://doi.org/10.19053/01233769.11106
Eppley, T. M., Hoeks, S., Chapman, C. A., Ganzhorn, J. U., Hall, K., Owen, M. A., ... y Santini, L. (2022). Factors influencing terrestriality in primates of the Americas and Madagascar. Proceedings of the National Academy of Sciences, 119(42), e2121105119. https://doi.org/10.1073/pnas.212110511
Escobedo-Morales, L. y Mandujano, S. (2007). Conservación del mono aullador en la reserva de la biosfera Los Tuxtlas, Veracruz: un enfoque metapoblacional. En G. Halffter, S. Guevara y A. Melic (Eds.), Hacia una cultura de conservación de la diversidad biológica (pp. 131-140). m3m: Monografías Tercer Milenio Vol. 6, S.E.A.
Estrada, A., Garber, P. A. y Chaudhary, A. (2020). Current and future trends in socio-economic, demographic and governance factors affecting global primate conservation. PeerJ, 8, e9816. https://doi.org/10.7717/peerj.9816
Estrada, A., Raboy, B. E. y Oliveira, L. C. (2012). Agroecosystems and primate conservation in the tropics: a review. American journal of primatology, 74(8), 696-711. https://doi.org/10.1002/ajp.22033
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
Fahrig, L., Baudry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C., Siriwardena, G.M. and Martin, J.L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology letters, 14(2), 101-112. https://doi.org/10.1111/j.1461-0248.2010.01559.x
Ferrie, G. M. (2017). Ex situ primate conservation. En The International Encyclopedia of Primatology, 1-3. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119179313.wbprim0100
Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System Dynamics Review, 10(2-3), 245-256. https://doi.org/10.1002/sdr.42601 00211
Galán-Acedo, C., Arroyo-Rodríguez, V., Cudney-Valenzuela, S. J. y Fahrig, L. (2019). A global assessment of primate responses to landscape structure. Biological Reviews, 94(5), 1605-1618. https://doi.org/10.1111/brv.12517
García-Restrepo, S. y Gómez-Sánchez, D. A. (2021). Registros ocasionales de Alouatta seniculus (Primates: Atelidae) en sabanas de la Orinoquia colombiana, San Martín de los Llanos, Meta, Colombia. Mammalogy Notes, 7(1), 212-212. https://doi.org/10.47603/mano.v7n1.212
Gilpin, M. y Hanski, I. (1991). Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press.
Gutiérrez, D. F. M. (2014). La economía y la estructura empresarial del departamento del Meta frente al TLC con Europa. Revista GEON (Gestión, Organizaciones y Negocios), 1(2), 6-12. https://revistageon.unillanos.edu.co/index.php/geon/article/download/124/106
Hames, R. S., Rosenberg, K. V., Lowe, J. D. y Dhondt, A. A. (2001). Site reoccupation in fragmented landscapes: testing predictions of metapopulation theory. Journal of Animal Ecology, 70, 182-190.
Hanski, I. (1999). Metapopulation ecology. Oxford University Press, Osney Mead.
Henao-Díaz, F., Stevenson, P. R., Carretero-Pinzón, X. et al. (2020). Atlas de la biodiversidad de Colombia. Primates. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Krause, T., Nielsen, T., Guia-Diaz, L., Lehsten, V., Olsson, O. y Zelli, F. (2019). What future for primates? Conservation struggles in the forests of Cross River State, Nigeria. Sustainability Science, 14, 1515-1529. https://doi.org/10.1007/s11625-019-00667-y
Lata, K., Misra, A. K. y Shukla, J. B. (2018). Modeling the effect of deforestation caused by human population pressure on wildlife species. Nonlinear Analysis: Modelling and Control, 23(3), 303-320. https://www.zurnalai.vu.lt/nonlinear-analysis/article/download/13187/12056
Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R. U., Tischendorf, L. y Walz, U. (2015). Understanding and quantifying landscape structure–A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31-41. https://doi.org/10.1016/j.ecolmodel.2014.08.018
Lawes, M. J., Mealin, P. E. y Piper, S. E. (2000). Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented afromontane forest in South Africa. Conservation biology, 14(4), 1088-1098. https://doi.org/10.1046/j.1523-1739.2000.99120.x
Li, L., Teng, S. N., Zhang, Y., Li, Y., Wang, H., Santana, J., Reino, L., Abades, S. Y Svenning, J.-Ch. (2023). Neighbourhood landscape context shapes local species richness patterns across continents. Global Ecology and Biogeography, 32(6), 867-880. https://doi.org/10.1111/geb.13668
Linero, D., Cuervo-Robayo, A. P. y Etter, A. (2020). Assessing the future conservation potential of the Amazon and Andes Protected Areas: Using the woolly monkey (Lagothrix lagothricha) as an umbrella species. Journal for Nature Conservation, 58, 125926. https://doi.org/10.1016/j.jnc.2020.125926
Löbmann, M. T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A. y Helming, K. (2022). Systems knowledge for sustainable soil and land management. Science of the Total Environment, 822, 153389. https://doi.org/10.1016/j.scitotenv.2022.153389
Mairota, P., Cafarelli, B., Boccaccio, L., Leronni, V., Labadessa, R., Kosmidou, V. y Nagendra, H. (2013). Using landscape structure to develop quantitative baselines for protected area monitoring. Ecological indicators, 33, 82-95. http://dx.doi.org/10.1016/j.ecolind.2012.08.017
Malagón, D. (2003). Ensayo sobre tipología de suelos colombianos - Énfasis en génesis y aspectos ambientales. Rev. Acad. Colomb. Cienc, 27(104), 319-341. https://repositorio.accefyn.org.co/bitstream/001/593/1/104.pdf
Mandujano, S. y Escobedo-Morales, L. A. (2008). Population viability analysis of howler monkeys (Alouatta palliata mexicana) in a highly fragmented landscape in Los Tuxtlas, México. Tropical Conservation Science, 1(1), 43-62. https://doi.org/10.1177/194008290800100104
Ortiz-Moreno, M. L., Rojas, N., Aguilar, L., Elsinor, L., Ferreira, P. A., Carretero-Pinzón, X. y Salatiel, J. (2022). Presence of an endemic primate in an everchanging landscape in the Eastern Plains of Colombia. Acta Biol. Colom., 27(2), 269-281. https://doi.org/10.15446/abc.v27n2.91023
Palacios-Silva, R. y Mandujano, S. (2008). Modelando la dinámica de ocupación de parches de selva por primates en un paisaje fragmentado de Los Tuxtlas, México. En C. Lorenzo, E. Espinoza y J. Ortega (Eds.), Avances en el Estudio de los Mamíferos de México II (pp. 493-509).
Pathak, R. (2018). Depletion of forest resources and wildlife population with habitat complexity: A mathematical model. Open Journal of Ecology, 8(11), 579. https://doi.org/10.4236/oje.2018.811034
Qureshi, S. y Yusuf, A. (2019). Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator. Chaos, Solitons & Fractals, 126, 32-40. https://doi.org/10.1016/j.chaos.2019.05.037
Rausch, J. M. (2007). From frontier town to metropolis: A history of Villavicencio, Colombia, since 1842. Rowman & Littlefield Publishers, Inc.
Rockwood, L. L. (2015). Introduction to population ecology (2nd ed.). John Wiley & Sons Ltd.
Romero-Ruiz, M. H., Flantua, S. G. A., Tansey, K. y Berrio, J. C. (2012). Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766-776. https://doi.org/10.1016/j.apgeog.2011.08.010
Rooker, K. y Gavrilets, S. (2020). On the evolution of sexual receptivity in female primates. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-68338-y
Ruiz-Garcia, M. y Shostell, J. M. (Eds.). (2016). Phylogeny, molecular population genetics, evolutionary biology and Conservation of the Neotropical Primates. Nova Science Publisher Inc.
RUNAP. (2020). Áreas protegidas del Departamento del Meta. https://runap.parquesnacionales.gov.co/departamento/947
Rylands, A. B., Mittermeier, R. A. y Williamson, E. A. (2020). Primate conservation—new reports from the field. Oryx, 54(6), 751-752. https://doi.org/10.1017/S0030605320000939
Schreier, A. L., Voss, K. A. y Bolt, L. M. (2022). A mathematical modelling approach to functionally defining forest edge and its utility for primate behavioural edge effects. International Journal of Primatology, 43(3), 460-479. https://doi.org/10.1007/s10764-022-00289-9
Sengupta, A., McConkey, K. R. y Radhakrishna, S. (2015). Primates, provisioning and plants: Impacts of human cultural behaviours on primate ecological functions. PLoS One, 10(11), e0140961. https://doi.org/10.1371/journal.pone.0140961
Stevenson, P. R. y Aldana, A. M. (2008). Potential effects of ateline extinction and forest fragmentation on plant diversity and composition in the western Orinoco Basin, Colombia. International Journal of Primatology, 29, 365-377. https://doi.org/10.1007/s10764-007-9177-x
Strona, G., Stringer, S. D., Vieilledent, G., Szantoi, Z., Garcia-Ulloa, J. y Wich, S. (2018). Small room for compromise between oil palm cultivation and primate conservation in Africa. Proceedings of the National Academy of Sciences, 115(35), 8811-8816. https://doi.org/10.1073/pnas.1804775115
Swart, J. y Lawes, M. J. (1996). The effect of habitat patch connectivity on samango monkey (Cercopithecus mitis) metapopulation persistence. Ecological Modelling, 93(1-3), 57-74. https://doi.org/10.1016/0304-3800(95)00211-1
Ventana Systems Inc. (2019). Vensim PLE. https://vensim.com/
Yanai, A. M., De Alencastro Graça, P. M. L., Ziccardi, L. G., Escada, M. I. S. y Fearnside, P. M. (2022). Brazil’s Amazonian deforestation: the role of landholdings in undesignated public lands. Regional Environmental Change, 22(1), 30. https://doi.org/10.1007/s10113-022-01897-0
Núm. 2 , Año 2024 : Julio - Diciembre
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/10361/7880
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletín Científico
publisher.none.fl_str_mv Boletín Científico
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/10361
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532532352679936
spelling Modelo matemático de la presencia del mono Zocay (Plecturocebus ornatus) en un paisaje agropecuarioMathematical model of the presence of Zocay monkey’s (Plecturocebus ornatus) in an agriculture and cattle raising landscapes.PrimatesModelo matemáticoPaisaje agropecuarioConservaciónMetapoblaciónPrimatesMathematical modelagricultural and cattle raising landscapesConservationMetapopulationEl mono Zocay (Plecturocebus ornatus) es un primate platirrino endémico que sólo se distribuye en los departamentos de Meta y parte de Cundinamarca en Colombia. Actualmente, se considera vulnerable a la extinción por pérdida de hábitat en su área de distribución y sus requerimientos ecológicos específicos. En la conservación de primates no se ha explorado ampliamente la modelación matemática para crear escenarios que permitan priorizar esfuerzos, en tanto que en otros grupos biológicos esta aproximación ha sido utilizada complementariamente en las estrategias de gestión de especies silvestres. El objetivo de este trabajo fue construir un modelo matemático de la dinámica de la presencia de P. ornatus en fragmentos de bosque dentro de un paisaje agropecuario, para contribuir a su conservación y la de su hábitat. Para ello, se analizó la cobertura boscosa en el municipio de San Martín (Meta) mediante digitalización en pantalla a escala 1:25.000 en ArcGIS 10.8 de imágenes satelitales Landsat entre 2013 y 2019, a su vez, la estructura del paisaje fue analizada con la extensión V-LATE 2.0. La presencia de P. ornatus fue monitoreada por observaciones focales en transectos dentro de fragmentos de bosque en un paisaje agropecuario influenciado por cultivos de ciclo corto, palma africana y ganadería extensiva. A partir de los datos se construyó un modelo matemático metapoblacional, dado que la especie puede establecer subpoblaciones en un paisaje fragmentado, su tasa de dispersión es baja y su dinámica podría estar definida por procesos locales de colonización y extinción. Dicha modelación, se realizó en Vensim PLE, asumiendo como supuestos que: 1) El aumento de la conectividad del paisaje incrementa la tasa de dispersión de primates; 2) El aumento del área y calidad de los fragmentos de bosque tienen un efecto positivo en la presencia de primates en un paisaje fragmentado. A partir del modelo se construyeron escenarios con diferentes grados de pérdida de área de cobertura forestal: escenario base o “business as usual”, es decir continúa con la tendencia actual; escenario de alta deforestación; escenario intermedio (conservación local, que involucra incrementos puntuales del área de cobertura forestal) y escenario pro-conservación (donde se aumenta la cantidad, calidad y conectividad del hábitat para la especie). A partir de las predicciones del modelo se puede evidenciar que en los escenarios base, intermedio y de alta deforestación, la persistencia de P. ornatus es baja por el efecto de la pérdida de hábitat disponible. Por ende, se concluye que P. ornatus tiene tendencia a desaparecer del paisaje agropecuario si la transformación del bosque en áreas de explotación agropecuaria se mantiene. Por tanto, es urgente aumentar la conectividad y cantidad de hábitat disponible con el fin de que P. ornatus pueda sobrevivir en el entorno antropizado.The Zocay monkey (Plecturocebus ornatus) is a platyrrhine primate endemic to the Colombian departments of Meta and Cundinamarca. It is considered vulnerable to extinction due to habitat loss and its specific ecological requirements. In the realm of primate conservation, mathematical modeling has not been extensively explored to create scenarios that allow for prioritizing efforts, despite its use in other biological groups as a complementary tool in wildlife management strategies. The objective of this work was to construct a mathematical model of the dynamics of the presence of P. ornatus in forest fragments within an agricultural landscape, with the aim of contributing to its conservation and that of its habitat. To this end, the forest cover within the municipality of San Martín (Meta) was examined through on-screen digitization at a scale of 1:25,000 in ArcGIS 10.8, employing Landsat satellite images captured between 2013 and 2019. Concurrently, the landscape structure was analyzed using the V-LATE 2.0 extension. The presence of P. ornatus was monitored through focal observations in transects within forest fragments in an agricultural landscape influenced by short-cycle crops, African palm, and extensive cattle ranching. A mathematical metapopulation model was constructed from the data, given that the species can establish subpopulations in a fragmented landscape, its dispersal rate is low, and its dynamics could be defined by local colonization and extinction processes. This modeling was executed in Vensim PLE, operating under the following assumptions: 1) An augmentation in landscape connectivity is directly correlated with an increased dispersal rate of primates; and 2) An enhancement in both the area and quality of forest fragments exerts a favorable influence on primate population presence within a fragmented landscape. The model was then used to construct scenarios with varying degrees of forest cover area loss. These scenarios included a base scenario, representing the continuation of current trends (i.e., "business as usual"), a high deforestation scenario, an intermediate scenario (involving local conservation with occasional increases in forest cover area), and a pro-conservation scenario (where the quantity, quality, and connectivity of habitat for the species is increased). The model predictions indicate that P. ornatus exhibits a low probability of persistence in the base, intermediate, and high deforestation scenarios, attributable to the impact of habitat loss. Consequently, it is deduced that P. ornatus exhibits a propensity for extinction from the agricultural landscape in the event of the perpetuation of the conversion of forest areas into agricultural zones. It is imperative to prioritize the enhancement of connectivity and the augmentation of available habitat to ensure the survival of P. ornatus in the anthropized environment.Boletín Científico2024-07-01T00:00:00Z2025-10-08T21:06:49Z2024-07-01T00:00:00Z2025-10-08T21:06:49Z2024-07-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf0123-3068https://repositorio.ucaldas.edu.co/handle/ucaldas/2351810.17151/bccm.2024.28.2.62462-8190https://doi.org/10.17151/bccm.2024.28.2.6https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/10361spa127210328Boletín Científico Centro de Museos Museo de Historia NaturalAgarwal, M. y Pathak, R. (2015). Conservation of forestry biomass and wildlife population: a mathematical model. Asian Journal of Mathematics and Computer Research, 4(1), 1-15. https://lc.cx/eOXoE3Aliaga-Samanez, A., Real, R., Vermeer, J. y Olivero, J. (2020). Modelling species distributions limited by geographical barriers: A case study with African and American primates. Global ecology and biogeography, 29(3), 444-453. https://doi.org/10.1111/geb.13041Arasa-Gisbert, R., Arroyo-Rodríguez, V. y Andresen, E. (2021). El debate sobre los efectos de la fragmentación del hábitat: causas y consecuencias. Ecosistemas, 30(3), 2156-2156. https://doi.org/10.7818/ECOS.2156Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., ... y Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology letters, 23(9), 1404-1420. https://publons. com/publon/10.1111/ele.13535Arroyo-Rodríguez, V., Martínez-Ruiz, M., Bezerra, J. S., Galán-Acedo, C., San-José, M. y Fahrig, L. (2023). Does a Species’ Mobility Determine the Scale at Which It Is Influenced by the Surrounding Landscape Pattern? Current Landscape Ecology Reports, 1-11. https://doi.org/10.1007/s40823-022-00082-7Battisti, C. y Cerfolli, F. (2021). From Citizen Science to Citizen Management: Suggestions for a pervasive fine-grained and operational approach to biodiversity conservation. Israel Journal of Ecology and Evolution, 68(1-4), 8-12. https://doi.org/10.1163/22244662-bja10029Bezanson, M., Franquesa-Soler, M., Kowalewski, M., McNamara, A., Oktaviani, R. y Rodrigues, M. A. (2022). Best practices are never best: evaluating primate conservation education programs (PCEPs) with a decolonial perspective. American Journal of Primatology, e23424. https://doi.org/10.1002/ajp.23424Bezanson, M. y McNamara, A. (2019). The what and where of primate field research may be failing primate conservation. Evolutionary Anthropology: Issues, News, and Reviews, 28(4), 166-178. https://doi.org/10.1002/evan.21790Bogaert, J., Myneni, R. B. y Knyazikhin, Y. (2002). A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology, 17, 87-90. https://shre.ink/b1hlBueno, A. y Llambí, L. D. (2015). Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean Forest line. Applied Vegetation Science, 18(4), 613-623. https://doi.org/10.1111/avsc.12186Carretero-Pinzón, X. y Defler, T. R. (2016). Callicebus ornatus, an endemic Colombian species: Demography, Behavior andConservation. En M. Ruíz-García y J. M. Shostell (Eds.), Phylogeny, molecular population genetics, evolutionary biology and Conservation of the Neotropical Primates. Nova Science Publisher Inc.Carretero-Pinzón, X., Defler, T. R. y Ruíz-García, M. (2017). The influence of landscape relative to site and patch variables on primate distributions in the Colombian Llanos. Lands. Ecol., 32, 883-896. https://doi.org/10.1007/s10980-017-0493-zCarretero-Pinzón, X., Guzmán-Caro, D., Palacios, E. y Stevenson, P. R. (2020). Plecturocebus ornatus. The IUCN Red List of Threatened Species 2020: e.T39928A17974735. https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39928A17974735.en.Cavada, N., Tenan, S., Barelli, C. y Rovero, F. (2019). Effects of anthropogenic disturbance on primate density at the landscape scale. Conservation Biology, 33(4), 873-882. https://doi.org/10.1111/cobi.13269Cerullo, G. R. y Edwards, D. P. (2019). Actively restoring resilience in selectively logged tropical forests. Journal of Applied Ecology, 56(1), 107-118. https://doi.org/10.1111/1365-2664.13262Chapman, C. A., Bonnell, T. R., Gogarten, J. F., Lambert, J. E., Omeja, P. A., Twinomugisha, D., ... y Rothman, J. M. (2013). Are primates ecosystem engineers? International Journal of Primatology, 34, 1-14. https://doi.org/10.1007/s10764-012-9645-9Chapman, C. A. y Peres, C. A. (2021). Primate conservation: Lessons learned in the last 20 years can guide future efforts. Evolutionary Anthropology: Issues, News, and Reviews, 30(5), 345-361. https://doi.org/10.1002/evan.21920Chicangana-Montón, G., Bocanegra-Gómez, A., Pardo-Mayorga, J., Salcedo-Hurtado, E. D. J., Gómez-Capera, A. y Vargas-Jiménez, C. A. (2022). Seismicity and seismotectonics for the Northern sector of the Algeciras Fault System, Eastern Cordillera, Colombia. Boletín de Geología, 44(1), 111-134. http://www.scielo.org.co/pdf/boge/v44n1/0120-0283-boge-44-01-111.pdfColchero, F., Aburto, J. M., Archie, E. A., Boesch, C., Breuer, T., Campos, F. A., ... y Alberts, S. C. (2021). The long lives of primates and the ‘invariant rate of ageing’ hypothesis. Nature communications, 12(1), 3666. https://doi.org/10.1038/s41467-021-23894-3Colombia, MinAmbiente. (2024). Resolución 0126 del 06 de febrero de 2024. Por la cual se establece el listado oficial de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera. https://www.minambiente.gov.co/wp-content/uploads/2024/02/Resolucion-0126-de-2024.pdfCondro, A. A., Prasetyo, L. B., Rushayati, S. B., Santikayasa, I. P. e Iskandar, E. (2021). Predicting hotspots and prioritizing protected areas for endangered primate species in Indonesia under changing climate. Biology, 10(2), 154. https://doi.org/10.3390/biology10020154Cudney-Valenzuela, S. J., Arroyo-Rodríguez, V., Andresen, E. y Toledo-Aceves, T. (2022). What determines the scale of landscape effect on tropical arboreal mammals? Landscape Ecology, 37(6), 1497-1507. https://doi.org/10.1007/s10980-022-01440-wDe Gabriel, M., Roa, I., Fernández-Gil, J., Juan, J., Fuertes, B., Reguera, B. y Revilla, E. (2022). Trends in weather conditions favor generalist over specialist species in rear-edge alpine bird communities. Ecosphere, 13(4), e3953. https://doi.org/10.1002/ecs2.3953Defler, T. R. (2010). Historia Natural de los Primates Colombianos (2ª. Ed.). Universidad Nacional de Colombia.Devia, C. Y. y Piñeros, R. (2021). Dinámica territorial del extractivismo agrícola y petrolero a comienzos del siglo XXI en el departamento del Meta, Colombia. Perspectiva Geográfica, 26(1), 37-62. https://doi.org/10.19053/01233769.11106Eppley, T. M., Hoeks, S., Chapman, C. A., Ganzhorn, J. U., Hall, K., Owen, M. A., ... y Santini, L. (2022). Factors influencing terrestriality in primates of the Americas and Madagascar. Proceedings of the National Academy of Sciences, 119(42), e2121105119. https://doi.org/10.1073/pnas.212110511Escobedo-Morales, L. y Mandujano, S. (2007). Conservación del mono aullador en la reserva de la biosfera Los Tuxtlas, Veracruz: un enfoque metapoblacional. En G. Halffter, S. Guevara y A. Melic (Eds.), Hacia una cultura de conservación de la diversidad biológica (pp. 131-140). m3m: Monografías Tercer Milenio Vol. 6, S.E.A.Estrada, A., Garber, P. A. y Chaudhary, A. (2020). Current and future trends in socio-economic, demographic and governance factors affecting global primate conservation. PeerJ, 8, e9816. https://doi.org/10.7717/peerj.9816Estrada, A., Raboy, B. E. y Oliveira, L. C. (2012). Agroecosystems and primate conservation in the tropics: a review. American journal of primatology, 74(8), 696-711. https://doi.org/10.1002/ajp.22033Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.Fahrig, L., Baudry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C., Siriwardena, G.M. and Martin, J.L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology letters, 14(2), 101-112. https://doi.org/10.1111/j.1461-0248.2010.01559.xFerrie, G. M. (2017). Ex situ primate conservation. En The International Encyclopedia of Primatology, 1-3. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119179313.wbprim0100Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System Dynamics Review, 10(2-3), 245-256. https://doi.org/10.1002/sdr.42601 00211Galán-Acedo, C., Arroyo-Rodríguez, V., Cudney-Valenzuela, S. J. y Fahrig, L. (2019). A global assessment of primate responses to landscape structure. Biological Reviews, 94(5), 1605-1618. https://doi.org/10.1111/brv.12517García-Restrepo, S. y Gómez-Sánchez, D. A. (2021). Registros ocasionales de Alouatta seniculus (Primates: Atelidae) en sabanas de la Orinoquia colombiana, San Martín de los Llanos, Meta, Colombia. Mammalogy Notes, 7(1), 212-212. https://doi.org/10.47603/mano.v7n1.212Gilpin, M. y Hanski, I. (1991). Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press.Gutiérrez, D. F. M. (2014). La economía y la estructura empresarial del departamento del Meta frente al TLC con Europa. Revista GEON (Gestión, Organizaciones y Negocios), 1(2), 6-12. https://revistageon.unillanos.edu.co/index.php/geon/article/download/124/106Hames, R. S., Rosenberg, K. V., Lowe, J. D. y Dhondt, A. A. (2001). Site reoccupation in fragmented landscapes: testing predictions of metapopulation theory. Journal of Animal Ecology, 70, 182-190.Hanski, I. (1999). Metapopulation ecology. Oxford University Press, Osney Mead.Henao-Díaz, F., Stevenson, P. R., Carretero-Pinzón, X. et al. (2020). Atlas de la biodiversidad de Colombia. Primates. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Krause, T., Nielsen, T., Guia-Diaz, L., Lehsten, V., Olsson, O. y Zelli, F. (2019). What future for primates? Conservation struggles in the forests of Cross River State, Nigeria. Sustainability Science, 14, 1515-1529. https://doi.org/10.1007/s11625-019-00667-yLata, K., Misra, A. K. y Shukla, J. B. (2018). Modeling the effect of deforestation caused by human population pressure on wildlife species. Nonlinear Analysis: Modelling and Control, 23(3), 303-320. https://www.zurnalai.vu.lt/nonlinear-analysis/article/download/13187/12056Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R. U., Tischendorf, L. y Walz, U. (2015). Understanding and quantifying landscape structure–A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31-41. https://doi.org/10.1016/j.ecolmodel.2014.08.018Lawes, M. J., Mealin, P. E. y Piper, S. E. (2000). Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented afromontane forest in South Africa. Conservation biology, 14(4), 1088-1098. https://doi.org/10.1046/j.1523-1739.2000.99120.xLi, L., Teng, S. N., Zhang, Y., Li, Y., Wang, H., Santana, J., Reino, L., Abades, S. Y Svenning, J.-Ch. (2023). Neighbourhood landscape context shapes local species richness patterns across continents. Global Ecology and Biogeography, 32(6), 867-880. https://doi.org/10.1111/geb.13668Linero, D., Cuervo-Robayo, A. P. y Etter, A. (2020). Assessing the future conservation potential of the Amazon and Andes Protected Areas: Using the woolly monkey (Lagothrix lagothricha) as an umbrella species. Journal for Nature Conservation, 58, 125926. https://doi.org/10.1016/j.jnc.2020.125926Löbmann, M. T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A. y Helming, K. (2022). Systems knowledge for sustainable soil and land management. Science of the Total Environment, 822, 153389. https://doi.org/10.1016/j.scitotenv.2022.153389Mairota, P., Cafarelli, B., Boccaccio, L., Leronni, V., Labadessa, R., Kosmidou, V. y Nagendra, H. (2013). Using landscape structure to develop quantitative baselines for protected area monitoring. Ecological indicators, 33, 82-95. http://dx.doi.org/10.1016/j.ecolind.2012.08.017Malagón, D. (2003). Ensayo sobre tipología de suelos colombianos - Énfasis en génesis y aspectos ambientales. Rev. Acad. Colomb. Cienc, 27(104), 319-341. https://repositorio.accefyn.org.co/bitstream/001/593/1/104.pdfMandujano, S. y Escobedo-Morales, L. A. (2008). Population viability analysis of howler monkeys (Alouatta palliata mexicana) in a highly fragmented landscape in Los Tuxtlas, México. Tropical Conservation Science, 1(1), 43-62. https://doi.org/10.1177/194008290800100104Ortiz-Moreno, M. L., Rojas, N., Aguilar, L., Elsinor, L., Ferreira, P. A., Carretero-Pinzón, X. y Salatiel, J. (2022). Presence of an endemic primate in an everchanging landscape in the Eastern Plains of Colombia. Acta Biol. Colom., 27(2), 269-281. https://doi.org/10.15446/abc.v27n2.91023Palacios-Silva, R. y Mandujano, S. (2008). Modelando la dinámica de ocupación de parches de selva por primates en un paisaje fragmentado de Los Tuxtlas, México. En C. Lorenzo, E. Espinoza y J. Ortega (Eds.), Avances en el Estudio de los Mamíferos de México II (pp. 493-509).Pathak, R. (2018). Depletion of forest resources and wildlife population with habitat complexity: A mathematical model. Open Journal of Ecology, 8(11), 579. https://doi.org/10.4236/oje.2018.811034Qureshi, S. y Yusuf, A. (2019). Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator. Chaos, Solitons & Fractals, 126, 32-40. https://doi.org/10.1016/j.chaos.2019.05.037Rausch, J. M. (2007). From frontier town to metropolis: A history of Villavicencio, Colombia, since 1842. Rowman & Littlefield Publishers, Inc.Rockwood, L. L. (2015). Introduction to population ecology (2nd ed.). John Wiley & Sons Ltd.Romero-Ruiz, M. H., Flantua, S. G. A., Tansey, K. y Berrio, J. C. (2012). Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766-776. https://doi.org/10.1016/j.apgeog.2011.08.010Rooker, K. y Gavrilets, S. (2020). On the evolution of sexual receptivity in female primates. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-68338-yRuiz-Garcia, M. y Shostell, J. M. (Eds.). (2016). Phylogeny, molecular population genetics, evolutionary biology and Conservation of the Neotropical Primates. Nova Science Publisher Inc.RUNAP. (2020). Áreas protegidas del Departamento del Meta. https://runap.parquesnacionales.gov.co/departamento/947Rylands, A. B., Mittermeier, R. A. y Williamson, E. A. (2020). Primate conservation—new reports from the field. Oryx, 54(6), 751-752. https://doi.org/10.1017/S0030605320000939Schreier, A. L., Voss, K. A. y Bolt, L. M. (2022). A mathematical modelling approach to functionally defining forest edge and its utility for primate behavioural edge effects. International Journal of Primatology, 43(3), 460-479. https://doi.org/10.1007/s10764-022-00289-9Sengupta, A., McConkey, K. R. y Radhakrishna, S. (2015). Primates, provisioning and plants: Impacts of human cultural behaviours on primate ecological functions. PLoS One, 10(11), e0140961. https://doi.org/10.1371/journal.pone.0140961Stevenson, P. R. y Aldana, A. M. (2008). Potential effects of ateline extinction and forest fragmentation on plant diversity and composition in the western Orinoco Basin, Colombia. International Journal of Primatology, 29, 365-377. https://doi.org/10.1007/s10764-007-9177-xStrona, G., Stringer, S. D., Vieilledent, G., Szantoi, Z., Garcia-Ulloa, J. y Wich, S. (2018). Small room for compromise between oil palm cultivation and primate conservation in Africa. Proceedings of the National Academy of Sciences, 115(35), 8811-8816. https://doi.org/10.1073/pnas.1804775115Swart, J. y Lawes, M. J. (1996). The effect of habitat patch connectivity on samango monkey (Cercopithecus mitis) metapopulation persistence. Ecological Modelling, 93(1-3), 57-74. https://doi.org/10.1016/0304-3800(95)00211-1Ventana Systems Inc. (2019). Vensim PLE. https://vensim.com/Yanai, A. M., De Alencastro Graça, P. M. L., Ziccardi, L. G., Escada, M. I. S. y Fearnside, P. M. (2022). Brazil’s Amazonian deforestation: the role of landholdings in undesignated public lands. Regional Environmental Change, 22(1), 30. https://doi.org/10.1007/s10113-022-01897-0Núm. 2 , Año 2024 : Julio - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/10361/7880https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ladino-Martínez, Lilia MercedesGuerrero, Sara CristinaOrtiz-Moreno, Martha Lucíaoai:repositorio.ucaldas.edu.co:ucaldas/235182025-10-08T21:06:49Z