Harnessing Nth root gates for energy storage
We explore the use of fractional controlled-not gates in quantum thermodynamics. The Nth-root gate allows for a paced application of two-qubit operations. We apply it in quantum thermodynamic protocols for charging a quantum battery. Circuits for three (and two) qubits are analysed by considering th...
- Autores:
-
Herrera Trujillo, Alba Marcela
Fox, Elliot John
Schmidt-Kaler, Ferdinand
D’Amico, Irene
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/16228
- Acceso en línea:
- https://hdl.handle.net/10614/16228
https://red.uao.edu.co/
- Palabra clave:
- Quantum battery
Quantum thermodynamics
Ergotropy
Quantum computation
Quantum protocols
Batería cuántica
Termodinámica cuántica
Ergotropía
Computación cuántica
Protocolos cuánticos
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2024
| id |
REPOUAO2_ed108f8de49cc9b11f0d4414d35f8959 |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16228 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Harnessing Nth root gates for energy storage |
| dc.title.translated.spa.fl_str_mv |
Aprovechamiento de las puertas raíz N-ésima para el almacenamiento de energía |
| title |
Harnessing Nth root gates for energy storage |
| spellingShingle |
Harnessing Nth root gates for energy storage Quantum battery Quantum thermodynamics Ergotropy Quantum computation Quantum protocols Batería cuántica Termodinámica cuántica Ergotropía Computación cuántica Protocolos cuánticos |
| title_short |
Harnessing Nth root gates for energy storage |
| title_full |
Harnessing Nth root gates for energy storage |
| title_fullStr |
Harnessing Nth root gates for energy storage |
| title_full_unstemmed |
Harnessing Nth root gates for energy storage |
| title_sort |
Harnessing Nth root gates for energy storage |
| dc.creator.fl_str_mv |
Herrera Trujillo, Alba Marcela Fox, Elliot John Schmidt-Kaler, Ferdinand D’Amico, Irene |
| dc.contributor.author.none.fl_str_mv |
Herrera Trujillo, Alba Marcela Fox, Elliot John Schmidt-Kaler, Ferdinand D’Amico, Irene |
| dc.subject.proposal.eng.fl_str_mv |
Quantum battery Quantum thermodynamics Ergotropy Quantum computation Quantum protocols |
| topic |
Quantum battery Quantum thermodynamics Ergotropy Quantum computation Quantum protocols Batería cuántica Termodinámica cuántica Ergotropía Computación cuántica Protocolos cuánticos |
| dc.subject.proposal.spa.fl_str_mv |
Batería cuántica Termodinámica cuántica Ergotropía Computación cuántica Protocolos cuánticos |
| description |
We explore the use of fractional controlled-not gates in quantum thermodynamics. The Nth-root gate allows for a paced application of two-qubit operations. We apply it in quantum thermodynamic protocols for charging a quantum battery. Circuits for three (and two) qubits are analysed by considering the generated ergotropy and other measures of performance. We also perform an optimisation of initial system parameters, e.g.,the initial quantum coherence of one of the qubits strongly affects the efficiency of protocols and the system’s performance as a battery. Finally, we briefly discuss the feasibility for an experimental realization |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-28T14:41:26Z |
| dc.date.available.none.fl_str_mv |
2025-07-28T14:41:26Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.eng.fl_str_mv |
Fox, E. J.; Herrera Trujillo, A. M.; Schmidt-Kaler, F. y D’Amico, I. (2024). Harnessing Nth root gates for energy storage. Entropy. 26(11). https://doi.org/10.3390/e26110952 |
| dc.identifier.issn.spa.fl_str_mv |
10994300 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16228 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Fox, E. J.; Herrera Trujillo, A. M.; Schmidt-Kaler, F. y D’Amico, I. (2024). Harnessing Nth root gates for energy storage. Entropy. 26(11). https://doi.org/10.3390/e26110952 10994300 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16228 https://red.uao.edu.co/ |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
20 |
| dc.relation.citationissue.spa.fl_str_mv |
11 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
26 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
Entropy |
| dc.relation.references.none.fl_str_mv |
1. Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [CrossRef] [PubMed] 2. Peterson, J.P.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine. Phys. Rev. Lett. 2019, 123, 240601. [CrossRef] [PubMed] 3. Klatzow, J.; Becker, J.N.; Ledingham, P.M.; Weinzetl, C.; Kaczmarek, K.T.; Saunders, D.J.; Nunn, J.; Walmsley, I.A.; Uzdin, R.; Poem, E. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. Phys. Rev. Lett. 2019, 122, 110601. [CrossRef] [PubMed] 4. von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Mitchison, M.T.; Goold, J.; Schmidt-Kaler, F.; Poschinger, U.G. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Phys. Rev. Lett. 2019, 123, 080602. [CrossRef] [PubMed] 5. Van Horne, N.; Yum, D.; Dutta, T.; Hänggi, P.; Gong, J.; Poletti, D.; Mukherjee, M. Single-atom energy-conversion device with a quantum load. NPJ Quantum Inf. 2020, 6, 37. [CrossRef] 6. Bouton, Q.; Nettersheim, J.; Burgardt, S.; Adam, D.; Lutz, E.; Widera, A. A quantum heat engine driven by atomic collisions. Nat. Commun. 2021, 12, 2063. [CrossRef] 7. Lisboa, V.F.; Dieguez, P.R.; Guimarães, J.R.; Santos, J.F.G.; Serra, R.M. Experimental investigation of a quantum heat engine powered by generalized measurements. Phys. Rev. A 2022, 106, 022436. [CrossRef] 8. Herrera, M.; Reina, J.H.; D’Amico, I.; Serra, R.M. Correlation-boosted quantum engine: A proof-of-principle demonstration. Phys. Rev. Res. 2023, 5, 043104. [CrossRef] 9. Dillenschneider, R.; Lutz, E. Energetics of quantum correlations. Europhys. Lett. 2009, 88, 50003. [CrossRef] 10. Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [CrossRef] 11. Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [CrossRef] 12. Bera, M.N.; Riera, A.; Lewenstein, M.; Winter, A. Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 2017, 8, 2180. [CrossRef] [PubMed] 13. Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [CrossRef] [PubMed] 14. Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [CrossRef] [PubMed] 15. Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [CrossRef] 16. Zhang, Y.Y.; Yang, T.R.; Fu, L.; Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 2019, 99, 052106. [CrossRef] 17. Joshi, J.; Mahesh, T.S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 2022, 106, 042601. [CrossRef] 18. Yao, Y.; Shao, X.Q. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E 2022, 106, 014138. [CrossRef] 19. Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015, 17, 075015. [CrossRef] 20. Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Quantum Batteries. In Thermodynamics in the Quantum Regime. Fundamental Theories of Physics; Springer: Cham, Switzerland, 2018. [CrossRef] 21. Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2013, 87, 042123. [CrossRef] 22. Pijn, D.; Onishchenko, O.; Hilder, J.; Poschinger, U.G.; Schmidt-Kaler, F.; Uzdin, R. Detecting Heat Leaks with Trapped Ion Qubits. Phys. Rev. Lett. 2022, 128, 110601. [CrossRef] [PubMed] 23. Wu, X.; Liang, X.; Tian, Y.; Yang, F.; Chen, C.; Liu, Y.C.; Tey, M.K.; You, L. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 2021, 30, 020305. [CrossRef] 24. Abdelhafez, M.; Baker, B.; Gyenis, A.; Mundada, P.; Houck, A.A.; Schuster, D.; Koch, J. Universal gates for protected superconducting qubits using optimal control. Phys. Rev. A 2020, 101, 022321. [CrossRef] 25. Giorgi, G.L.; Campbell, S. Correlation approach to work extraction from finite quantum systems. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 035501. [CrossRef] 26. Perarnau-Llobet, M.; Hovhannisyan, K.V.; Huber, M.; Skrzypczyk, P.; Tura, J.; Acín, A. Most energetic passive states. Phys. Rev. E 2015, 92, 042147. [CrossRef] 27. Shaghaghi, V.; Singh, V.; Benenti, G.; Rosa, D. Micromasers as quantum batteries. Quantum Sci. Technol. 2022, 7, 04LT01. [CrossRef] 28. Miller, H.J.D.; Scandi, M.; Anders, J.; Perarnau-Llobet, M. Work Fluctuations in Slow Processes: Quantum Signatures and Optimal Control. Phys. Rev. Lett. 2019, 123, 230603. [CrossRef] 29. Scandi, M.; Miller, H.J.D.; Anders, J.; Perarnau-Llobet, M. Quantum work statistics close to equilibrium. Phys. Rev. Res. 2020, 2, 023377. [CrossRef] 30. Onishchenko, O.; Guarnieri, G.; Rosillo-Rodes, P.; Pijn, D.; Hilder, J.; Poschinger, U.G.; Perarnau-Llobet, M.; Eisert, J.; Schmidt- Kaler, F. Probing coherent quantum thermodynamics using a trapped ion. Nat. Commun. 2024, 15, 6974. [CrossRef] 31. Morrone, D.; Rossi, M.A.C.; Smirne, A.; Genoni, M.G. Charging a quantum battery in a non-Markovian environment: A collisional model approach. Quantum Sci. Technol. 2023, 8, 035007. [CrossRef] 32. Landi, G.T. Battery Charging in Collision Models with Bayesian Risk Strategies. Entropy 2021, 23, 1627. [CrossRef] 33. Barra, F. Efficiency Fluctuations in a Quantum Battery Charged by a Repeated Interaction Process. Entropy 2022, 24, 820. [CrossRef] 34. Lenard, A. Thermodynamical Proof of the Gibbs Formula for Elementary Quantum Systems. J. Stat. Phys. 1978, 19, 575–586. [CrossRef] 35. Gyhm, J.Y.; Fischer, U.R. Beneficial and detrimental entanglement for quantum battery charging. AVS Quantum Sci. 2024, 6, 012001. [CrossRef] 36. Nikolov, P. Controlled nth root of X gate on a real quantum computer. AIP Conf. Proc. 2019, 2172, 090006. [CrossRef] 37. Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565–571. [CrossRef] 38. Pusz, W.; Woronowicz, S.L. Passive States and KMS States for General Quantum Systems. Commun. Math. Phys 1978, 58, 273–290. [CrossRef] 39. Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [CrossRef] 40. Stahl, A.; Kewming, M.; Goold, J.; Hilder, J.; Poschinger, U.G.; Schmidt-Kaler, F. Demonstration of energy extraction gain from non-classical correlations. arXiv 2024, arXiv:2404.14838. 41. Martinez, E.A.; Muschik, C.A.; Schindler, P.; Nigg, D.; Erhard, A.; Heyl, M.; Hauke, P.; Dalmonte, M.; Monz, T.; Zoller, P.; et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 2016, 534, 516. [CrossRef] 42. Francica, G.; Binder, F.C.; Guarnieri, G.; Mitchison, M.T.; Goold, J.; Plastina, F. Quantum Coherence and Ergotropy. Phys. Rev. Lett. 2020, 125, 180603. [CrossRef] [PubMed] 43. Francica, G. Class of quasiprobability distributions of work with initial quantum coherence. Phys. Rev. E 2022, 105, 014101. [CrossRef] [PubMed] 44. Tacchino, F.; Santos, T.F.; Gerace, D.; Campisi, M.; Santos, M.F. Charging a quantum battery via nonequilibrium heat current. Phys. Rev. E 2020, 102, 062133. [CrossRef] [PubMed] 45. Julia-Farre, S.; Salamon, T.; Riera, A.; Bera, M.N.; Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2018, 2, 023113. [CrossRef] 46. Son, J.; Talkner, P.; Thingna, J. Charging quantum batteries via Otto machines: Influence of monitoring. Phys. Rev. A 2022, 106, 052202. [CrossRef] 47. Ahmadi, B.; Mazurek, P.; Horodecki, P.; Barzanjeh, S. Nonreciprocal Quantum Batteries. Phys. Rev. Lett. 2024, 132, 210402. [CrossRef] 48. Gyhm, J.Y.; Šafránek, D.; Rosa, D. Quantum Charging Advantage Cannot Be Extensive without Global Operations. Phys. Rev. Lett. 2022, 128, 140501. [CrossRef] |
| dc.rights.eng.fl_str_mv |
Derechos reservados - MDPI, 2024 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
Derechos reservados - MDPI, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
20 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
MDPI |
| dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/76dea9c8-c311-4ccd-bba5-64ec65b2024d/download https://red.uao.edu.co/bitstreams/625a4bf8-0bb7-461c-b802-e163c30f477d/download https://red.uao.edu.co/bitstreams/0f5012da-b7fe-44b3-90c9-32dfcf76329a/download https://red.uao.edu.co/bitstreams/ee4eb88c-e810-4461-b91e-745295610aa1/download |
| bitstream.checksum.fl_str_mv |
e07f30864ea98ca9495f2a0f939021e5 6987b791264a2b5525252450f99b10d1 3b4469f225bba1f5f5fc7d60c98d612a 4b7ca52c6f98432fc0e07a57b159289a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053131331272704 |
| spelling |
Herrera Trujillo, Alba Marcelavirtual::6198-1Fox, Elliot JohnSchmidt-Kaler, FerdinandD’Amico, Irene2025-07-28T14:41:26Z2025-07-28T14:41:26Z2024Fox, E. J.; Herrera Trujillo, A. M.; Schmidt-Kaler, F. y D’Amico, I. (2024). Harnessing Nth root gates for energy storage. Entropy. 26(11). https://doi.org/10.3390/e2611095210994300https://hdl.handle.net/10614/16228Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/We explore the use of fractional controlled-not gates in quantum thermodynamics. The Nth-root gate allows for a paced application of two-qubit operations. We apply it in quantum thermodynamic protocols for charging a quantum battery. Circuits for three (and two) qubits are analysed by considering the generated ergotropy and other measures of performance. We also perform an optimisation of initial system parameters, e.g.,the initial quantum coherence of one of the qubits strongly affects the efficiency of protocols and the system’s performance as a battery. Finally, we briefly discuss the feasibility for an experimental realizationExploramos el uso de puertas no controladas fraccionarias en termodinámica cuántica. La puerta de raíz enésima permite la aplicación gradual de operaciones de dos cúbits. La aplicamos en protocolos de termodinámica cuántica para la carga de una batería cuántica. Se analizan circuitos para tres (y dos) cúbits considerando la ergotropía generada y otras medidas de rendimiento. También optimizamos los parámetros iniciales del sistema; por ejemplo, la coherencia cuántica inicial de uno de los cúbits afecta significativamente la eficiencia de los protocolos y el rendimiento del sistema como batería. Finalmente, analizamos brevemente la viabilidad de una implementación experimental20 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Harnessing Nth root gates for energy storageAprovechamiento de las puertas raíz N-ésima para el almacenamiento de energíaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a852011126Entropy1. Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [CrossRef] [PubMed]2. Peterson, J.P.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine. Phys. Rev. Lett. 2019, 123, 240601. [CrossRef] [PubMed]3. Klatzow, J.; Becker, J.N.; Ledingham, P.M.; Weinzetl, C.; Kaczmarek, K.T.; Saunders, D.J.; Nunn, J.; Walmsley, I.A.; Uzdin, R.; Poem, E. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. Phys. Rev. Lett. 2019, 122, 110601. [CrossRef] [PubMed]4. von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Mitchison, M.T.; Goold, J.; Schmidt-Kaler, F.; Poschinger, U.G. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Phys. Rev. Lett. 2019, 123, 080602. [CrossRef] [PubMed]5. Van Horne, N.; Yum, D.; Dutta, T.; Hänggi, P.; Gong, J.; Poletti, D.; Mukherjee, M. Single-atom energy-conversion device with a quantum load. NPJ Quantum Inf. 2020, 6, 37. [CrossRef]6. Bouton, Q.; Nettersheim, J.; Burgardt, S.; Adam, D.; Lutz, E.; Widera, A. A quantum heat engine driven by atomic collisions. Nat. Commun. 2021, 12, 2063. [CrossRef]7. Lisboa, V.F.; Dieguez, P.R.; Guimarães, J.R.; Santos, J.F.G.; Serra, R.M. Experimental investigation of a quantum heat engine powered by generalized measurements. Phys. Rev. A 2022, 106, 022436. [CrossRef]8. Herrera, M.; Reina, J.H.; D’Amico, I.; Serra, R.M. Correlation-boosted quantum engine: A proof-of-principle demonstration. Phys. Rev. Res. 2023, 5, 043104. [CrossRef]9. Dillenschneider, R.; Lutz, E. Energetics of quantum correlations. Europhys. Lett. 2009, 88, 50003. [CrossRef]10. Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [CrossRef]11. Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [CrossRef]12. Bera, M.N.; Riera, A.; Lewenstein, M.; Winter, A. Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 2017, 8, 2180. [CrossRef] [PubMed]13. Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [CrossRef] [PubMed]14. Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [CrossRef] [PubMed]15. Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [CrossRef]16. Zhang, Y.Y.; Yang, T.R.; Fu, L.; Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 2019, 99, 052106. [CrossRef]17. Joshi, J.; Mahesh, T.S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 2022, 106, 042601. [CrossRef]18. Yao, Y.; Shao, X.Q. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E 2022, 106, 014138. [CrossRef]19. Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015, 17, 075015. [CrossRef]20. Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Quantum Batteries. In Thermodynamics in the Quantum Regime. Fundamental Theories of Physics; Springer: Cham, Switzerland, 2018. [CrossRef]21. Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2013, 87, 042123. [CrossRef]22. Pijn, D.; Onishchenko, O.; Hilder, J.; Poschinger, U.G.; Schmidt-Kaler, F.; Uzdin, R. Detecting Heat Leaks with Trapped Ion Qubits. Phys. Rev. Lett. 2022, 128, 110601. [CrossRef] [PubMed]23. Wu, X.; Liang, X.; Tian, Y.; Yang, F.; Chen, C.; Liu, Y.C.; Tey, M.K.; You, L. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 2021, 30, 020305. [CrossRef]24. Abdelhafez, M.; Baker, B.; Gyenis, A.; Mundada, P.; Houck, A.A.; Schuster, D.; Koch, J. Universal gates for protected superconducting qubits using optimal control. Phys. Rev. A 2020, 101, 022321. [CrossRef]25. Giorgi, G.L.; Campbell, S. Correlation approach to work extraction from finite quantum systems. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 035501. [CrossRef]26. Perarnau-Llobet, M.; Hovhannisyan, K.V.; Huber, M.; Skrzypczyk, P.; Tura, J.; Acín, A. Most energetic passive states. Phys. Rev. E 2015, 92, 042147. [CrossRef]27. Shaghaghi, V.; Singh, V.; Benenti, G.; Rosa, D. Micromasers as quantum batteries. Quantum Sci. Technol. 2022, 7, 04LT01. [CrossRef]28. Miller, H.J.D.; Scandi, M.; Anders, J.; Perarnau-Llobet, M. Work Fluctuations in Slow Processes: Quantum Signatures and Optimal Control. Phys. Rev. Lett. 2019, 123, 230603. [CrossRef]29. Scandi, M.; Miller, H.J.D.; Anders, J.; Perarnau-Llobet, M. Quantum work statistics close to equilibrium. Phys. Rev. Res. 2020, 2, 023377. [CrossRef]30. Onishchenko, O.; Guarnieri, G.; Rosillo-Rodes, P.; Pijn, D.; Hilder, J.; Poschinger, U.G.; Perarnau-Llobet, M.; Eisert, J.; Schmidt- Kaler, F. Probing coherent quantum thermodynamics using a trapped ion. Nat. Commun. 2024, 15, 6974. [CrossRef]31. Morrone, D.; Rossi, M.A.C.; Smirne, A.; Genoni, M.G. Charging a quantum battery in a non-Markovian environment: A collisional model approach. Quantum Sci. Technol. 2023, 8, 035007. [CrossRef]32. Landi, G.T. Battery Charging in Collision Models with Bayesian Risk Strategies. Entropy 2021, 23, 1627. [CrossRef]33. Barra, F. Efficiency Fluctuations in a Quantum Battery Charged by a Repeated Interaction Process. Entropy 2022, 24, 820. [CrossRef]34. Lenard, A. Thermodynamical Proof of the Gibbs Formula for Elementary Quantum Systems. J. Stat. Phys. 1978, 19, 575–586. [CrossRef]35. Gyhm, J.Y.; Fischer, U.R. Beneficial and detrimental entanglement for quantum battery charging. AVS Quantum Sci. 2024, 6, 012001. [CrossRef]36. Nikolov, P. Controlled nth root of X gate on a real quantum computer. AIP Conf. Proc. 2019, 2172, 090006. [CrossRef]37. Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565–571. [CrossRef]38. Pusz, W.; Woronowicz, S.L. Passive States and KMS States for General Quantum Systems. Commun. Math. Phys 1978, 58, 273–290. [CrossRef]39. Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [CrossRef]40. Stahl, A.; Kewming, M.; Goold, J.; Hilder, J.; Poschinger, U.G.; Schmidt-Kaler, F. Demonstration of energy extraction gain from non-classical correlations. arXiv 2024, arXiv:2404.14838.41. Martinez, E.A.; Muschik, C.A.; Schindler, P.; Nigg, D.; Erhard, A.; Heyl, M.; Hauke, P.; Dalmonte, M.; Monz, T.; Zoller, P.; et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 2016, 534, 516. [CrossRef]42. Francica, G.; Binder, F.C.; Guarnieri, G.; Mitchison, M.T.; Goold, J.; Plastina, F. Quantum Coherence and Ergotropy. Phys. Rev. Lett. 2020, 125, 180603. [CrossRef] [PubMed]43. Francica, G. Class of quasiprobability distributions of work with initial quantum coherence. Phys. Rev. E 2022, 105, 014101. [CrossRef] [PubMed]44. Tacchino, F.; Santos, T.F.; Gerace, D.; Campisi, M.; Santos, M.F. Charging a quantum battery via nonequilibrium heat current. Phys. Rev. E 2020, 102, 062133. [CrossRef] [PubMed]45. Julia-Farre, S.; Salamon, T.; Riera, A.; Bera, M.N.; Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2018, 2, 023113. [CrossRef]46. Son, J.; Talkner, P.; Thingna, J. Charging quantum batteries via Otto machines: Influence of monitoring. Phys. Rev. A 2022, 106, 052202. [CrossRef]47. Ahmadi, B.; Mazurek, P.; Horodecki, P.; Barzanjeh, S. Nonreciprocal Quantum Batteries. Phys. Rev. Lett. 2024, 132, 210402. [CrossRef]48. Gyhm, J.Y.; Šafránek, D.; Rosa, D. Quantum Charging Advantage Cannot Be Extensive without Global Operations. Phys. Rev. Lett. 2022, 128, 140501. [CrossRef]Quantum batteryQuantum thermodynamicsErgotropyQuantum computationQuantum protocolsBatería cuánticaTermodinámica cuánticaErgotropíaComputación cuánticaProtocolos cuánticosComunidad generalPublication540aafb8-df1e-4c14-9f67-021b1acf2310virtual::6198-1540aafb8-df1e-4c14-9f67-021b1acf2310virtual::6198-10000-0001-7894-9206virtual::6198-1https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001355996virtual::6198-1ORIGINALHarnessing_Nth_root_gates_for_energy_storage.pdfHarnessing_Nth_root_gates_for_energy_storage.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf1168006https://red.uao.edu.co/bitstreams/76dea9c8-c311-4ccd-bba5-64ec65b2024d/downloade07f30864ea98ca9495f2a0f939021e5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/625a4bf8-0bb7-461c-b802-e163c30f477d/download6987b791264a2b5525252450f99b10d1MD52TEXTHarnessing_Nth_root_gates_for_energy_storage.pdf.txtHarnessing_Nth_root_gates_for_energy_storage.pdf.txtExtracted texttext/plain56648https://red.uao.edu.co/bitstreams/0f5012da-b7fe-44b3-90c9-32dfcf76329a/download3b4469f225bba1f5f5fc7d60c98d612aMD53THUMBNAILHarnessing_Nth_root_gates_for_energy_storage.pdf.jpgHarnessing_Nth_root_gates_for_energy_storage.pdf.jpgGenerated Thumbnailimage/jpeg15140https://red.uao.edu.co/bitstreams/ee4eb88c-e810-4461-b91e-745295610aa1/download4b7ca52c6f98432fc0e07a57b159289aMD5410614/16228oai:red.uao.edu.co:10614/162282025-07-31 03:01:37.484https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
