Air flow monitoring in a bubble column using ultrasonic spectrometry

Este trabajo demuestra el uso de una metodología ultrasónica para monitorear la densidad de burbujas en una columna de agua. Se estudió un régimen de flujo con una distribución del tamaño de gota entre 0,2 y 2 mm. Este rango es de particular interés debido a su frecuente aparición en flujos industri...

Full description

Autores:
Franco Guzmán, Ediguer Enrique
Cabrera López, John Jairo
Laín Beatove, Santiago
Henao Santa, Sebastián
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16144
Acceso en línea:
https://hdl.handle.net/10614/16144
https://doi.org/10.3390/fluids9070163
https://red.uao.edu.co/
Palabra clave:
Bubble column
Ultrasonic spectrometry
Digital image processing
Heterogeneous flow monitoring
Rights
openAccess
License
Derechos reservados - MDPI, 2024
id REPOUAO2_cd94d40f5c2d4c5f589ac08d99b230ef
oai_identifier_str oai:red.uao.edu.co:10614/16144
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Air flow monitoring in a bubble column using ultrasonic spectrometry
title Air flow monitoring in a bubble column using ultrasonic spectrometry
spellingShingle Air flow monitoring in a bubble column using ultrasonic spectrometry
Bubble column
Ultrasonic spectrometry
Digital image processing
Heterogeneous flow monitoring
title_short Air flow monitoring in a bubble column using ultrasonic spectrometry
title_full Air flow monitoring in a bubble column using ultrasonic spectrometry
title_fullStr Air flow monitoring in a bubble column using ultrasonic spectrometry
title_full_unstemmed Air flow monitoring in a bubble column using ultrasonic spectrometry
title_sort Air flow monitoring in a bubble column using ultrasonic spectrometry
dc.creator.fl_str_mv Franco Guzmán, Ediguer Enrique
Cabrera López, John Jairo
Laín Beatove, Santiago
Henao Santa, Sebastián
dc.contributor.author.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Cabrera López, John Jairo
Laín Beatove, Santiago
Henao Santa, Sebastián
dc.subject.proposal.eng.fl_str_mv Bubble column
Ultrasonic spectrometry
Digital image processing
Heterogeneous flow monitoring
topic Bubble column
Ultrasonic spectrometry
Digital image processing
Heterogeneous flow monitoring
description Este trabajo demuestra el uso de una metodología ultrasónica para monitorear la densidad de burbujas en una columna de agua. Se estudió un régimen de flujo con una distribución del tamaño de gota entre 0,2 y 2 mm. Este rango es de particular interés debido a su frecuente aparición en flujos industriales. El ultrasonido se utiliza típicamente cuando el tamaño de las burbujas es mucho mayor que la longitud de onda (límite de baja frecuencia). En este estudio, el radio de las burbujas oscila entre 0,6 y 6,8 veces la longitud de onda, donde la propagación de las ondas se convierte en un fenómeno complejo, lo que dificulta la aplicación de los métodos analíticos existentes. Se realizaron mediciones en modo transmisión-recepción con transductores ultrasónicos que operan a frecuencias de 2,25 y 5,0 MHz para diferentes velocidades superficiales. Los resultados mostraron que es necesario un esquema de promediado temporal y que los parámetros de las ondas, como la velocidad de propagación y la pendiente del espectro de fase, están relacionados con el número de burbujas en la columna. La metodología propuesta tiene potencial de aplicación en entornos industriales
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-06-06T16:51:28Z
dc.date.available.none.fl_str_mv 2025-06-06T16:51:28Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Franco Guzmán, E. E.; Cabrera López; J. J.; Laín Beatove, S. y Henao Santa, S. (2024). Air flow monitoring in a bubble column using ultrasonic spectrometry. Fluids. 9 (7). https://doi.org/10.3390/fluids9070163
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16144
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/fluids9070163
dc.identifier.eissn.none.fl_str_mv 23115521
dc.identifier.instname.none.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.none.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Franco Guzmán, E. E.; Cabrera López; J. J.; Laín Beatove, S. y Henao Santa, S. (2024). Air flow monitoring in a bubble column using ultrasonic spectrometry. Fluids. 9 (7). https://doi.org/10.3390/fluids9070163
23115521
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16144
https://doi.org/10.3390/fluids9070163
https://red.uao.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 14
dc.relation.citationissue.none.fl_str_mv 7
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.ispartofjournal.none.fl_str_mv Fluids
dc.relation.references.none.fl_str_mv 1. Sokolichin, A.; Eigenberger, G.; Lapin, A. Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 2004, 50, 24–45. [CrossRef] 2. Lain, S.; Bröder, D.; Sommerfeld, M. Experimental and numerical studies of the hydrodynamics in a bubble column. Chem. Eng. Sci. 1999, 54, 4913–4920. [CrossRef] 3. Göz, M.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [CrossRef] 4. Krishna, R.; van Baten, J. Mass transfer in bubble columns. Catal. Today 2003, 79–80, 67–75. [CrossRef] 5. Laín, S.; Bröder, D.; Sommerfeld, M.; Göz, M. Modelling hydrodynamics and turbulence in a bubble column using the Euler–Lagrange procedure. Int. J. Multiph. Flow 2002, 28, 1381–1407. [CrossRef] 6. Ambrose, S.; Hargreaves, D.M.; Lowndes, I.S. Numerical modeling of oscillating Taylor bubbles. Eng. Appl. Comput. Fluid Mech. 2016, 10, 578–598. [CrossRef] 7. Etminan, A.; Muzychka, Y.S.; Pope, K. A Review on the Hydrodynamics of Taylor Flow in Microchannels: Experimental and Computational Studies. Processes 2021, 9, 870. [CrossRef] 8. Asiagbe, K.S.; Fairweather, M.; Njobuenwu, D.O.; Colombo, M. Large Eddy Simulation of Microbubble Transport in Vertical Channel Flows. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 40, pp. 73–78. [CrossRef] 9. Dabiri, S.; Tryggvason, G. Heat transfer in turbulent bubbly flow in vertical channels. Chem. Eng. Sci. 2015, 122, 106–113. [CrossRef] 10. Takimoto, R.Y.; Matuda, M.Y.; Oliveira, T.F.; Adamowski, J.C.; Sato, A.K.; Martins, T.C.; Tsuzuki, M.S. Comparison of Optical and Ultrasonic Methods for Quantification of Underwater Gas Leaks. IFAC-PapersOnLine 2020, 53, 16721–16726. [CrossRef] 11. Abbaszadeh, M.; Alishahi, M.M.; Emdad, H. A new bubbly flow detection and quantification procedure based on optical laser-beam scattering behavior. Meas. Sci. Technol. 2020, 32, 025202. [CrossRef] 12. Alméras, E.; Cazin, S.; Roig, V.; Risso, F.; Augier, F.; Plais, C. Time-resolved measurement of concentration fluctuations in a confined bubbly flow by LIF. Int. J. Multiph. Flow 2016, 83, 153–161. [CrossRef] 13. Ma, Y.; Muilwijk, C.; Yan, Y.; Zhang, X.; Li, H.; Xie, T.; Qin, Z.; Sun, W.; Lewis, E. Measurement of Bubble Flow Frequency in Chemical Processes Using an Optical Fiber Sensor. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [CrossRef] 14. Bröder, D.; Sommerfeld, M. Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol. 2007, 18, 2513. [CrossRef] 15. Shamoun, B.; Beshbeeshy, M.E.; Bonazza, R. Light extinction technique for void fraction measurements in bubbly flow. Exp. Fluids 1999, 26, 16–26. [CrossRef] 16. Fu, Y.; Liu, Y. Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel. Int. J. Multiph. Flow 2016, 84, 217–228. [CrossRef] 17. Karn, A.; Ellis, C.; Arndt, R.; Hong, J. An integrative image measurement technique for dense bubbly flows with a wide size distribution. Chem. Eng. Sci. 2015, 122, 240–249. [CrossRef] 18. Lau, Y.; Möller, F.; Hampel, U.; Schubert, M. Ultrafast X-ray tomographic imaging of multiphase flow in bubble columns—Part 2: Characterisation of bubbles in the dense regime. Int. J. Multiph. Flow 2018, 104, 272–285. [CrossRef] 19. Cabrera-López, J.J.; Velasco-Medina, J. Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues. IEEE Trans. Instrum. Meas. 2020, 69, 469–478. [CrossRef] 20. George, D.L.; Iyer, C.O.; Ceccio, S.L. Measurement of the Bubbly Flow Beneath Partial Attached Cavities Using Electrical Impedance Probes. J. Fluids Eng. 1999, 122, 151–155. [CrossRef] 21. Huang, C.; Lee, J.; Schultz,W.W.; Ceccio, S.L. Singularity image method for electrical impedance tomography of bubbly flows. Inverse Probl. 2003, 19, 919. [CrossRef] 22. de Moura, B.F.; Martins, M.F.; Palma, F.H.S.; da Silva,W.B.; Cabello, J.A.; Ramos, R. Nonstationary bubble shape determination in Electrical Impedance Tomography combining Gauss–Newton Optimization with particle filter. Measurement 2021, 186, 110216. [CrossRef] 23. Zhu, Z.; Li, G.; Luo, M.; Zhang, P.; Gao, Z. Electrical Impedance Tomography of Industrial Two-Phase Flow Based on Radial Basis Function Neural Network Optimized by the Artificial Bee Colony Algorithm. Sensors 2023, 23, 7645. [CrossRef] [PubMed] 24. Prasser, H.M.; Böttger, A.; Zschau, J. A new electrode-mesh tomograph for gas–liquid flows. Flow Meas. Instrum. 1998, 9, 111–119. [CrossRef] 25. Hampel, U.; Babout, L.; Banasiak, R.; Schleicher, E.; Soleimani, M.; Wondrak, T.; Vauhkonen, M.; Lähivaara, T.; Tan, C.; Hoyle, B.; et al. A Review on Fast Tomographic Imaging Techniques and Their Potential Application in Industrial Process Control. Sensors 2022, 22, 2309. [CrossRef] [PubMed] 26. Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088. [CrossRef] [PubMed] 27. Allegra, J.R.; Hawley, S.A. Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments. J. Acoust. Soc. Am. 1972, 51, 1545–1564. [CrossRef] 28. Wu, X.; Chahine, G.L. Development of an acoustic instrument for bubble size distribution measurement. J. Hydrodyn. Ser. B 2010, 22, 330–336. [CrossRef] 29. Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55. [CrossRef] 30. de Jong, N.; Emmer, M.; vanWamel, A.; Versluis, M. Ultrasonic characterization of ultrasound contrast agents. Med. Biol. Eng. Comput. 2009, 47, 861–873. [CrossRef] [PubMed] 31. Kremkau, F.W.; Gramiak, R.; Carstensen, E.L.; Shah, P.M.; Kramer, D.H. Ultrasonic detection of cavitation at catheter tips. Am. J. Roentgenol. 1970, 110, 177–183. [CrossRef] 32. Nishi, R. Ultrasonic detection of bubbles with doppler flow transducers. Ultrasonics 1972, 10, 173–179. [CrossRef] 33. Baroni, D.B.; Filho, J.S.C.; Lamy, C.A.; Bittencourt, M.S.Q.; Pereira, C.M.N.A.; Motta, M.S. Determination of size distribution of bubbles in a ubbly column two-phase flows by ultrasound and neural networks. In Proceedings of the 2011 International Nuclear Atlantic Conference—INAC 2011, Brazzilian Asiciation of Nuclear Engineering—ABEN, Belo Horizonte, MG, Brazil, 24–28 October 2011. 34. Cents, A.H.G. Mass Transfer and Hydrodynamics in Stirred Gas-Liquid-Liquid Contactors. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2003. 35. Djekoune, A.O.; Messaoudi, K.; Amara, K. Incremental circle hough transform: An improved method for circle detection. Optik 2017, 133, 17–31. [CrossRef] 36. Lubbers, J.; Graaff, R. A simple and accurate formula for the sound velocity in water. Ultrasound Med. Biol. 1998, 24, 1065–1068. [CrossRef] [PubMed] 37. Del Grosso, V.A.; Mader, C.W. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 1972, 52, 1442–1446. [CrossRef] 38. Reyna, C.A.; Franco, E.E.; Tsuzuki, M.S.; Buiochi, F. Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics 2023, 134, 107081. [CrossRef] 39. Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of theWater Content in ConcentratedWater–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors 2022, 22, 7236. [CrossRef]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
dc.publisher.place.none.fl_str_mv Basel, Switzerland
publisher.none.fl_str_mv MDPI
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/47f61c4c-a7ae-4c59-88bb-a2b7936a555c/download
https://red.uao.edu.co/bitstreams/41f1b4ed-92ab-4f48-befb-e4f8b837ceba/download
https://red.uao.edu.co/bitstreams/feec8fd0-6e0f-4697-b573-9c95d93e02df/download
https://red.uao.edu.co/bitstreams/6e268545-1279-4748-9b33-2fbbfc91cd3f/download
bitstream.checksum.fl_str_mv 43bc202955107a8c30db34ebdbe5ba24
6987b791264a2b5525252450f99b10d1
4b0b8da948baf8bbd59eb5ec35dcf377
fb976873fadd1e7c7f12429e6e6616c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1837098895272837120
spelling Franco Guzmán, Ediguer Enriquevirtual::6075-1Cabrera López, John Jairovirtual::6076-1Laín Beatove, Santiagovirtual::6077-1Henao Santa, Sebastián2025-06-06T16:51:28Z2025-06-06T16:51:28Z2024Franco Guzmán, E. E.; Cabrera López; J. J.; Laín Beatove, S. y Henao Santa, S. (2024). Air flow monitoring in a bubble column using ultrasonic spectrometry. Fluids. 9 (7). https://doi.org/10.3390/fluids9070163https://hdl.handle.net/10614/16144https://doi.org/10.3390/fluids907016323115521Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Este trabajo demuestra el uso de una metodología ultrasónica para monitorear la densidad de burbujas en una columna de agua. Se estudió un régimen de flujo con una distribución del tamaño de gota entre 0,2 y 2 mm. Este rango es de particular interés debido a su frecuente aparición en flujos industriales. El ultrasonido se utiliza típicamente cuando el tamaño de las burbujas es mucho mayor que la longitud de onda (límite de baja frecuencia). En este estudio, el radio de las burbujas oscila entre 0,6 y 6,8 veces la longitud de onda, donde la propagación de las ondas se convierte en un fenómeno complejo, lo que dificulta la aplicación de los métodos analíticos existentes. Se realizaron mediciones en modo transmisión-recepción con transductores ultrasónicos que operan a frecuencias de 2,25 y 5,0 MHz para diferentes velocidades superficiales. Los resultados mostraron que es necesario un esquema de promediado temporal y que los parámetros de las ondas, como la velocidad de propagación y la pendiente del espectro de fase, están relacionados con el número de burbujas en la columna. La metodología propuesta tiene potencial de aplicación en entornos industriales14 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Air flow monitoring in a bubble column using ultrasonic spectrometryArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8514719Fluids1. Sokolichin, A.; Eigenberger, G.; Lapin, A. Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 2004, 50, 24–45. [CrossRef] 2. Lain, S.; Bröder, D.; Sommerfeld, M. Experimental and numerical studies of the hydrodynamics in a bubble column. Chem. Eng. Sci. 1999, 54, 4913–4920. [CrossRef] 3. Göz, M.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [CrossRef] 4. Krishna, R.; van Baten, J. Mass transfer in bubble columns. Catal. Today 2003, 79–80, 67–75. [CrossRef] 5. Laín, S.; Bröder, D.; Sommerfeld, M.; Göz, M. Modelling hydrodynamics and turbulence in a bubble column using the Euler–Lagrange procedure. Int. J. Multiph. Flow 2002, 28, 1381–1407. [CrossRef] 6. Ambrose, S.; Hargreaves, D.M.; Lowndes, I.S. Numerical modeling of oscillating Taylor bubbles. Eng. Appl. Comput. Fluid Mech. 2016, 10, 578–598. [CrossRef] 7. Etminan, A.; Muzychka, Y.S.; Pope, K. A Review on the Hydrodynamics of Taylor Flow in Microchannels: Experimental and Computational Studies. Processes 2021, 9, 870. [CrossRef] 8. Asiagbe, K.S.; Fairweather, M.; Njobuenwu, D.O.; Colombo, M. Large Eddy Simulation of Microbubble Transport in Vertical Channel Flows. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 40, pp. 73–78. [CrossRef] 9. Dabiri, S.; Tryggvason, G. Heat transfer in turbulent bubbly flow in vertical channels. Chem. Eng. Sci. 2015, 122, 106–113. [CrossRef] 10. Takimoto, R.Y.; Matuda, M.Y.; Oliveira, T.F.; Adamowski, J.C.; Sato, A.K.; Martins, T.C.; Tsuzuki, M.S. Comparison of Optical and Ultrasonic Methods for Quantification of Underwater Gas Leaks. IFAC-PapersOnLine 2020, 53, 16721–16726. [CrossRef] 11. Abbaszadeh, M.; Alishahi, M.M.; Emdad, H. A new bubbly flow detection and quantification procedure based on optical laser-beam scattering behavior. Meas. Sci. Technol. 2020, 32, 025202. [CrossRef] 12. Alméras, E.; Cazin, S.; Roig, V.; Risso, F.; Augier, F.; Plais, C. Time-resolved measurement of concentration fluctuations in a confined bubbly flow by LIF. Int. J. Multiph. Flow 2016, 83, 153–161. [CrossRef] 13. Ma, Y.; Muilwijk, C.; Yan, Y.; Zhang, X.; Li, H.; Xie, T.; Qin, Z.; Sun, W.; Lewis, E. Measurement of Bubble Flow Frequency in Chemical Processes Using an Optical Fiber Sensor. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [CrossRef] 14. Bröder, D.; Sommerfeld, M. Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol. 2007, 18, 2513. [CrossRef] 15. Shamoun, B.; Beshbeeshy, M.E.; Bonazza, R. Light extinction technique for void fraction measurements in bubbly flow. Exp. Fluids 1999, 26, 16–26. [CrossRef] 16. Fu, Y.; Liu, Y. Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel. Int. J. Multiph. Flow 2016, 84, 217–228. [CrossRef] 17. Karn, A.; Ellis, C.; Arndt, R.; Hong, J. An integrative image measurement technique for dense bubbly flows with a wide size distribution. Chem. Eng. Sci. 2015, 122, 240–249. [CrossRef] 18. Lau, Y.; Möller, F.; Hampel, U.; Schubert, M. Ultrafast X-ray tomographic imaging of multiphase flow in bubble columns—Part 2: Characterisation of bubbles in the dense regime. Int. J. Multiph. Flow 2018, 104, 272–285. [CrossRef] 19. Cabrera-López, J.J.; Velasco-Medina, J. Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues. IEEE Trans. Instrum. Meas. 2020, 69, 469–478. [CrossRef] 20. George, D.L.; Iyer, C.O.; Ceccio, S.L. Measurement of the Bubbly Flow Beneath Partial Attached Cavities Using Electrical Impedance Probes. J. Fluids Eng. 1999, 122, 151–155. [CrossRef] 21. Huang, C.; Lee, J.; Schultz,W.W.; Ceccio, S.L. Singularity image method for electrical impedance tomography of bubbly flows. Inverse Probl. 2003, 19, 919. [CrossRef] 22. de Moura, B.F.; Martins, M.F.; Palma, F.H.S.; da Silva,W.B.; Cabello, J.A.; Ramos, R. Nonstationary bubble shape determination in Electrical Impedance Tomography combining Gauss–Newton Optimization with particle filter. Measurement 2021, 186, 110216. [CrossRef] 23. Zhu, Z.; Li, G.; Luo, M.; Zhang, P.; Gao, Z. Electrical Impedance Tomography of Industrial Two-Phase Flow Based on Radial Basis Function Neural Network Optimized by the Artificial Bee Colony Algorithm. Sensors 2023, 23, 7645. [CrossRef] [PubMed] 24. Prasser, H.M.; Böttger, A.; Zschau, J. A new electrode-mesh tomograph for gas–liquid flows. Flow Meas. Instrum. 1998, 9, 111–119. [CrossRef] 25. Hampel, U.; Babout, L.; Banasiak, R.; Schleicher, E.; Soleimani, M.; Wondrak, T.; Vauhkonen, M.; Lähivaara, T.; Tan, C.; Hoyle, B.; et al. A Review on Fast Tomographic Imaging Techniques and Their Potential Application in Industrial Process Control. Sensors 2022, 22, 2309. [CrossRef] [PubMed] 26. Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088. [CrossRef] [PubMed] 27. Allegra, J.R.; Hawley, S.A. Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments. J. Acoust. Soc. Am. 1972, 51, 1545–1564. [CrossRef] 28. Wu, X.; Chahine, G.L. Development of an acoustic instrument for bubble size distribution measurement. J. Hydrodyn. Ser. B 2010, 22, 330–336. [CrossRef] 29. Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55. [CrossRef] 30. de Jong, N.; Emmer, M.; vanWamel, A.; Versluis, M. Ultrasonic characterization of ultrasound contrast agents. Med. Biol. Eng. Comput. 2009, 47, 861–873. [CrossRef] [PubMed] 31. Kremkau, F.W.; Gramiak, R.; Carstensen, E.L.; Shah, P.M.; Kramer, D.H. Ultrasonic detection of cavitation at catheter tips. Am. J. Roentgenol. 1970, 110, 177–183. [CrossRef] 32. Nishi, R. Ultrasonic detection of bubbles with doppler flow transducers. Ultrasonics 1972, 10, 173–179. [CrossRef] 33. Baroni, D.B.; Filho, J.S.C.; Lamy, C.A.; Bittencourt, M.S.Q.; Pereira, C.M.N.A.; Motta, M.S. Determination of size distribution of bubbles in a ubbly column two-phase flows by ultrasound and neural networks. In Proceedings of the 2011 International Nuclear Atlantic Conference—INAC 2011, Brazzilian Asiciation of Nuclear Engineering—ABEN, Belo Horizonte, MG, Brazil, 24–28 October 2011. 34. Cents, A.H.G. Mass Transfer and Hydrodynamics in Stirred Gas-Liquid-Liquid Contactors. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2003. 35. Djekoune, A.O.; Messaoudi, K.; Amara, K. Incremental circle hough transform: An improved method for circle detection. Optik 2017, 133, 17–31. [CrossRef] 36. Lubbers, J.; Graaff, R. A simple and accurate formula for the sound velocity in water. Ultrasound Med. Biol. 1998, 24, 1065–1068. [CrossRef] [PubMed] 37. Del Grosso, V.A.; Mader, C.W. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 1972, 52, 1442–1446. [CrossRef] 38. Reyna, C.A.; Franco, E.E.; Tsuzuki, M.S.; Buiochi, F. Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics 2023, 134, 107081. [CrossRef] 39. Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of theWater Content in ConcentratedWater–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors 2022, 22, 7236. [CrossRef]Bubble columnUltrasonic spectrometryDigital image processingHeterogeneous flow monitoringComunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::6075-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::6076-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::6077-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::6075-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::6076-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::6077-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::6075-1https://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::6076-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::6077-10000-0001-7518-704Xvirtual::6075-10000-0002-2608-755Xvirtual::6076-10000-0002-0269-2608virtual::6077-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::6075-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::6076-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::6077-1ORIGINALAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdfAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2801811https://red.uao.edu.co/bitstreams/47f61c4c-a7ae-4c59-88bb-a2b7936a555c/download43bc202955107a8c30db34ebdbe5ba24MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/41f1b4ed-92ab-4f48-befb-e4f8b837ceba/download6987b791264a2b5525252450f99b10d1MD52TEXTAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdf.txtAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdf.txtExtracted texttext/plain44956https://red.uao.edu.co/bitstreams/feec8fd0-6e0f-4697-b573-9c95d93e02df/download4b0b8da948baf8bbd59eb5ec35dcf377MD53THUMBNAILAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdf.jpgAir_flow_monitoring_in_a_bubble_column_using_ultrasonic_spectrometry.pdf.jpgGenerated Thumbnailimage/jpeg15633https://red.uao.edu.co/bitstreams/6e268545-1279-4748-9b33-2fbbfc91cd3f/downloadfb976873fadd1e7c7f12429e6e6616c0MD5410614/16144oai:red.uao.edu.co:10614/161442025-06-15 03:02:36.386https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==