Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System

This article presents the development and execution of a Single-Ended Primary-Inductor Converter (SEPIC) multiplier within a Hardware-in-the-Loop (HIL) emulation environment tailored for photovoltaic (PV) applications. Utilizing the advanced capabilities of the dSPACE 1104 platform, this work establ...

Full description

Autores:
Posada Contreras, Johnny
Rosas-Caro, Julio C.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16229
Acceso en línea:
https://hdl.handle.net/10614/16229
https://doi.org/10.3390/electricity5030022
https://red.uao.edu.co/
Palabra clave:
Pulse-width-modulated (PWM) converter
SEPIC multiplier converter
Power electronics
Hardware-in-the-loop emulation
Photovoltaic system
Convertidor modulado por ancho de pulso (PWM)
Convertidor multiplicador SEPIC
Electrónica de potencia
Emulación de hardware en el bucle
Sistema fotovoltaico
Rights
openAccess
License
Derechos reservados - MDPI, 202
id REPOUAO2_c667d87705c35091d99b9e5e72197c0e
oai_identifier_str oai:red.uao.edu.co:10614/16229
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
dc.title.translated.spa.fl_str_mv Emulación de hardware en el bucle de un convertidor multiplicador SEPIC en un sistema fotovoltaico
title Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
spellingShingle Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
Pulse-width-modulated (PWM) converter
SEPIC multiplier converter
Power electronics
Hardware-in-the-loop emulation
Photovoltaic system
Convertidor modulado por ancho de pulso (PWM)
Convertidor multiplicador SEPIC
Electrónica de potencia
Emulación de hardware en el bucle
Sistema fotovoltaico
title_short Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
title_full Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
title_fullStr Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
title_full_unstemmed Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
title_sort Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System
dc.creator.fl_str_mv Posada Contreras, Johnny
Rosas-Caro, Julio C.
dc.contributor.author.none.fl_str_mv Posada Contreras, Johnny
Rosas-Caro, Julio C.
dc.subject.proposal.eng.fl_str_mv Pulse-width-modulated (PWM) converter
SEPIC multiplier converter
Power electronics
Hardware-in-the-loop emulation
Photovoltaic system
topic Pulse-width-modulated (PWM) converter
SEPIC multiplier converter
Power electronics
Hardware-in-the-loop emulation
Photovoltaic system
Convertidor modulado por ancho de pulso (PWM)
Convertidor multiplicador SEPIC
Electrónica de potencia
Emulación de hardware en el bucle
Sistema fotovoltaico
dc.subject.proposal.spa.fl_str_mv Convertidor modulado por ancho de pulso (PWM)
Convertidor multiplicador SEPIC
Electrónica de potencia
Emulación de hardware en el bucle
Sistema fotovoltaico
description This article presents the development and execution of a Single-Ended Primary-Inductor Converter (SEPIC) multiplier within a Hardware-in-the-Loop (HIL) emulation environment tailored for photovoltaic (PV) applications. Utilizing the advanced capabilities of the dSPACE 1104 platform, this work establishes a dynamic data exchange mechanism between a variable voltage power supply and the SEPIC multiplier converter, enhancing the efficiency of solar energy harnessing. The proposed emulation model was crafted to simulate real-world solar energy capture, facilitating the evaluation of control strategies under laboratory conditions. By emulating realistic operational scenarios, this approach significantly accelerates the innovation cycle for PV system technologies, enabling faster validation and refinement of emerging solutions. The SEPIC multiplier converter is a new topology based on the traditional SEPIC with the capability of producing a larger output voltage in a scalable manner. This initiative sets a new benchmark for conducting PV system research, offering a blend of precision and flexibility in testing supervisory strategies, thereby streamlining the path toward technological advancements in solar energy utilization
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-28T16:04:56Z
dc.date.available.none.fl_str_mv 2025-07-28T16:04:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Posada Contreras, J. y Rosas-Caro, J. C. (2024). Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System. Electicity. 5(3). p.p. 426-448. https://doi.org/10.3390/electricity5030022
dc.identifier.issn.spa.fl_str_mv 26734826
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16229
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/electricity5030022
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Posada Contreras, J. y Rosas-Caro, J. C. (2024). Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System. Electicity. 5(3). p.p. 426-448. https://doi.org/10.3390/electricity5030022
26734826
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16229
https://doi.org/10.3390/electricity5030022
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 448
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 426
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.ispartofjournal.eng.fl_str_mv Electricity
dc.relation.references.none.fl_str_mv 1. Subbulakshmy, R.; Palanisamy, R.; Alshahrani, S.; Saleel, C.A. Implementation of Non-Isolated High Gain Interleaved DC-DC Converter for Fuel Cell Electric Vehicle Using ANN-Based MPPT Controller. Sustainability 2024, 16, 1335. [CrossRef]
2. Khan, M.R.; Haider, Z.M.; Malik, F.H.; Almasoudi, F.M.; Alatawi, K.S.S.; Bhutta, M.S. A Comprehensive Review of Microgrid Energy Management Strategies Considering Electric Vehicles, Energy Storage Systems, and AI Techniques. Processes 2024, 12, 270. [CrossRef]
3. Daccò, E.; Falabretti, D.; Ilea, V.; Merlo, M.; Nebuloni, R.; Spiller, M. Decentralised Voltage Regulation through Optimal Reactive Power Flow in Distribution Networks with Dispersed Generation. Electricity 2024, 5, 134–153. [CrossRef]
4. Bordbari, M.J.; Nasiri, F. Networked Microgrids: A Review on Configuration, Operation, and Control Strategies. Energies 2024, 17, 715. [CrossRef]
5. Min, C.; Kim, H. A Practical Framework for Developing Net-Zero Electricity Mix Scenarios: A Case Study of South Korea. Energies 2024, 17, 926. [CrossRef]
6. Gayathri, R.; Chang, J.-Y.; Tsai, C.-C.; Hsu, T.-W. Wave Energy Conversion through Oscillating Water Columns: A Review. J. Mar. Sci. Eng. 2024, 12, 342. [CrossRef]
7. Mihaliˇc, F.; Truntiˇc, M.; Hren, A. Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges. Electronics 2022, 11, 2462. [CrossRef]
8. Yousefzadeh, M.; Hedayati Kia, S.; Hoseintabar Marzebali, M.; Arab Khaburi, D.; Razik, H. Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-BasedWind Turbines. Energies 2022, 15, 6896. [CrossRef]
9. Hermassi, M.; Krim, S.; Kraiem, Y.; Hajjaji, M.A.; Alshammari, B.M.; Alsaif, H.; Alshammari, A.S.; Guesmi, T. Design of Vector Control Strategies Based on Fuzzy Gain Scheduling PID Controllers for a Grid-Connected Wind Energy Conversion System: Hardware FPGA-in-the-Loop Verification. Electronics 2023, 12, 1419. [CrossRef]
10. Dini, P.; Saponara, S. Modeling and Control Simulation of Power Converters in Automotive Applications. Appl. Sci. 2024, 14, 1227. [CrossRef]
11. Lamo, P.; de Castro, A.; Sanchez, A.; Ruiz, G.A.; Azcondo, F.J.; Pigazo, A. Hardware-in-the-Loop and Digital Control Techniques Applied to Single-Phase PFC Converters. Electronics 2021, 10, 1563. [CrossRef]
12. Estrada, L.; Vázquez, N.; Vaquero, J.; de Castro, Á.; Arau, J. Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA. Energies 2020, 13, 373. [CrossRef]
13. Sanchez, A.; Todorovich, E.; De Castro, A. Exploring the Limits of Floating-Point Resolution for Hardware-In-the-Loop Implemented with FPGAs. Electronics 2018, 7, 219. [CrossRef]
14. De Souza, I.D.T.; Silva, S.N.; Teles, R.M.; Fernandes, M.A.C. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms. Sensors 2014, 14, 19176–19199. [CrossRef] [PubMed]
15. Regatron Programmable Power Supplies. Available online: https://www.regatron.com/programmable-power-supplies/en/ #hardware-in-the-loop (accessed on 16 June 2024).
16. Chroma Solar Array Simulator Model 62000H-S Series. Available online: https://www.chromaate.com/en/product/solar_ array_simulator_62000h_s_series_205 (accessed on 16 June 2024).
17. Martínez, J.R.; Rengifo, H.R.; Córdoba, J.S.; Palacios, J.; Posada, J. Design and Implementation of a Multiplier SEPIC Converter to Emulate a Photovoltaic System Using Power HIL. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; pp. 1–7.
18. Olayiwola, T.N.; Hyun, S.-H.; Choi, S.-J. Photovoltaic Modeling: A Comprehensive Analysis of the I–V Characteristic Curve. Sustainability 2024, 16, 432. [CrossRef]
19. Pan, W.; Zhang, Y.; Jin, W.; Liang, Z.; Wang, M.; Li, Q. Photovoltaic-Based Residential Direct-Current Microgrid and Its Comprehensive Performance Evaluation. Appl. Sci. 2023, 13, 12890. [CrossRef]
20. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, Photovoltaics and Wind; Wiley: New York, NY, USA, 1991; pp. 762–772.
21. Rashid, M.H. Power Electronics: Circuits, Devices, and Applications, 3rd ed.; Pearson Education: Hoboken, NJ, USA, 2009; pp. 289–292.
22. Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics in Converters, Applications, and Design, 3rd ed.; Whiley: Hoboken, NJ, USA, 2002.
23. Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 3rd ed.; Springer: New York, NY, USA, 2020.
24. Valdez-Resendiz, J.E.; Mayo-Maldonado, J.C.; Alejo-Reyes, A.; Rosas-Caro, J.C. Double-Dual DC-DC Conversion: A Survey of Contributions, Generalization, and Systematic Generation of New Topologies. IEEE Access 2023, 11, 38913–38928. [CrossRef]
25. Rosas-Caro, J.C.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; Alejo-Reyes, A.; Beltran-Carbajal, F.; López-Santos, O. An Overview of Non-Isolated Hybrid Switched-Capacitor Step-Up DC–DC Converters. Appl. Sci. 2022, 12, 8554. [CrossRef]
26. Rosas-Caro, J.C.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; Salas-Cabrera, R.; Gonzalez-Rodriguez, A.; Salas-Cabrera, E.N.; Cisneros-Villegas, H.; Gonzalez-Hernandez, J.G. Multiplier SEPIC converter. In Proceedings of the CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers, Cholula, Puebla, Mexico, 28 February–2 March 2011; pp. 232–238.
27. Rosas-Caro, J.C.; Sanchez, V.M.; Vazquez-Bautista, R.F.; Morales-Mendoza, L.J.; Mayo-Maldonado, J.C.; Garcia-Vite, P.M.; Barbosa, R. A novel DC-DC multilevel SEPIC converter for PEMFC systems. Int. J. Hydrogren Energy 2016, 41, 23401–23408. [CrossRef]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 202
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 202
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basilea, Suiza
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/ee505b11-6fb6-43c4-a356-b90db2217cd0/download
https://red.uao.edu.co/bitstreams/63986ec6-11f0-4855-b83f-f1bd70453558/download
https://red.uao.edu.co/bitstreams/7ebcbe6f-c660-44bd-8c9b-b2fe06ab9957/download
https://red.uao.edu.co/bitstreams/579b9b3e-25d6-4718-988e-eb3382aa8833/download
bitstream.checksum.fl_str_mv 2b643447c01bff020d1a4c4260058981
6987b791264a2b5525252450f99b10d1
352ddfccdd59c22da393b86988a6b6d6
b91509c48bd2c51d04710984515b0e70
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053234002591744
spelling Posada Contreras, Johnnyvirtual::6197-1Rosas-Caro, Julio C.2025-07-28T16:04:56Z2025-07-28T16:04:56Z2024Posada Contreras, J. y Rosas-Caro, J. C. (2024). Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic System. Electicity. 5(3). p.p. 426-448. https://doi.org/10.3390/electricity503002226734826https://hdl.handle.net/10614/16229https://doi.org/10.3390/electricity5030022Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This article presents the development and execution of a Single-Ended Primary-Inductor Converter (SEPIC) multiplier within a Hardware-in-the-Loop (HIL) emulation environment tailored for photovoltaic (PV) applications. Utilizing the advanced capabilities of the dSPACE 1104 platform, this work establishes a dynamic data exchange mechanism between a variable voltage power supply and the SEPIC multiplier converter, enhancing the efficiency of solar energy harnessing. The proposed emulation model was crafted to simulate real-world solar energy capture, facilitating the evaluation of control strategies under laboratory conditions. By emulating realistic operational scenarios, this approach significantly accelerates the innovation cycle for PV system technologies, enabling faster validation and refinement of emerging solutions. The SEPIC multiplier converter is a new topology based on the traditional SEPIC with the capability of producing a larger output voltage in a scalable manner. This initiative sets a new benchmark for conducting PV system research, offering a blend of precision and flexibility in testing supervisory strategies, thereby streamlining the path toward technological advancements in solar energy utilizationEste artículo presenta el desarrollo y la ejecución de un multiplicador de Convertidor Primario-Inductor de Extremo Único (SEPIC) dentro de un entorno de emulación de Hardware-in-the-Loop (HIL) diseñado para aplicaciones fotovoltaicas (FV). Utilizando las capacidades avanzadas de la plataforma dSPACE 1104, este trabajo establece un mecanismo dinámico de intercambio de datos entre una fuente de alimentación de voltaje variable y el multiplicador SEPIC, mejorando la eficiencia del aprovechamiento de la energía solar. El modelo de emulación propuesto se diseñó para simular la captura de energía solar en condiciones reales, facilitando la evaluación de estrategias de control en condiciones de laboratorio. Al emular escenarios operativos realistas, este enfoque acelera significativamente el ciclo de innovación de las tecnologías de sistemas fotovoltaicos, permitiendo una validación y un perfeccionamiento más rápidos de las soluciones emergentes. El multiplicador SEPIC es una nueva topología basada en el SEPIC tradicional, capaz de producir un mayor voltaje de salida de forma escalable. Esta iniciativa establece un nuevo referente en la investigación de sistemas fotovoltaicos, ofreciendo una combinación de precisión y flexibilidad en la prueba de estrategias de supervisión, agilizando así el camino hacia los avances tecnológicos en el aprovechamiento de la energía solar.23 páginasapplication/pdfengMDPIBasilea, SuizaDerechos reservados - MDPI, 202https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Hardware-in-the-loop emulation of a SEPIC multiplier converter in a photovoltaic SystemEmulación de hardware en el bucle de un convertidor multiplicador SEPIC en un sistema fotovoltaicoArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8544834265Electricity1. Subbulakshmy, R.; Palanisamy, R.; Alshahrani, S.; Saleel, C.A. Implementation of Non-Isolated High Gain Interleaved DC-DC Converter for Fuel Cell Electric Vehicle Using ANN-Based MPPT Controller. Sustainability 2024, 16, 1335. [CrossRef]2. Khan, M.R.; Haider, Z.M.; Malik, F.H.; Almasoudi, F.M.; Alatawi, K.S.S.; Bhutta, M.S. A Comprehensive Review of Microgrid Energy Management Strategies Considering Electric Vehicles, Energy Storage Systems, and AI Techniques. Processes 2024, 12, 270. [CrossRef]3. Daccò, E.; Falabretti, D.; Ilea, V.; Merlo, M.; Nebuloni, R.; Spiller, M. Decentralised Voltage Regulation through Optimal Reactive Power Flow in Distribution Networks with Dispersed Generation. Electricity 2024, 5, 134–153. [CrossRef]4. Bordbari, M.J.; Nasiri, F. Networked Microgrids: A Review on Configuration, Operation, and Control Strategies. Energies 2024, 17, 715. [CrossRef]5. Min, C.; Kim, H. A Practical Framework for Developing Net-Zero Electricity Mix Scenarios: A Case Study of South Korea. Energies 2024, 17, 926. [CrossRef]6. Gayathri, R.; Chang, J.-Y.; Tsai, C.-C.; Hsu, T.-W. Wave Energy Conversion through Oscillating Water Columns: A Review. J. Mar. Sci. Eng. 2024, 12, 342. [CrossRef]7. Mihaliˇc, F.; Truntiˇc, M.; Hren, A. Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges. Electronics 2022, 11, 2462. [CrossRef]8. Yousefzadeh, M.; Hedayati Kia, S.; Hoseintabar Marzebali, M.; Arab Khaburi, D.; Razik, H. Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-BasedWind Turbines. Energies 2022, 15, 6896. [CrossRef]9. Hermassi, M.; Krim, S.; Kraiem, Y.; Hajjaji, M.A.; Alshammari, B.M.; Alsaif, H.; Alshammari, A.S.; Guesmi, T. Design of Vector Control Strategies Based on Fuzzy Gain Scheduling PID Controllers for a Grid-Connected Wind Energy Conversion System: Hardware FPGA-in-the-Loop Verification. Electronics 2023, 12, 1419. [CrossRef]10. Dini, P.; Saponara, S. Modeling and Control Simulation of Power Converters in Automotive Applications. Appl. Sci. 2024, 14, 1227. [CrossRef]11. Lamo, P.; de Castro, A.; Sanchez, A.; Ruiz, G.A.; Azcondo, F.J.; Pigazo, A. Hardware-in-the-Loop and Digital Control Techniques Applied to Single-Phase PFC Converters. Electronics 2021, 10, 1563. [CrossRef]12. Estrada, L.; Vázquez, N.; Vaquero, J.; de Castro, Á.; Arau, J. Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA. Energies 2020, 13, 373. [CrossRef]13. Sanchez, A.; Todorovich, E.; De Castro, A. Exploring the Limits of Floating-Point Resolution for Hardware-In-the-Loop Implemented with FPGAs. Electronics 2018, 7, 219. [CrossRef]14. De Souza, I.D.T.; Silva, S.N.; Teles, R.M.; Fernandes, M.A.C. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms. Sensors 2014, 14, 19176–19199. [CrossRef] [PubMed]15. Regatron Programmable Power Supplies. Available online: https://www.regatron.com/programmable-power-supplies/en/ #hardware-in-the-loop (accessed on 16 June 2024).16. Chroma Solar Array Simulator Model 62000H-S Series. Available online: https://www.chromaate.com/en/product/solar_ array_simulator_62000h_s_series_205 (accessed on 16 June 2024).17. Martínez, J.R.; Rengifo, H.R.; Córdoba, J.S.; Palacios, J.; Posada, J. Design and Implementation of a Multiplier SEPIC Converter to Emulate a Photovoltaic System Using Power HIL. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; pp. 1–7.18. Olayiwola, T.N.; Hyun, S.-H.; Choi, S.-J. Photovoltaic Modeling: A Comprehensive Analysis of the I–V Characteristic Curve. Sustainability 2024, 16, 432. [CrossRef]19. Pan, W.; Zhang, Y.; Jin, W.; Liang, Z.; Wang, M.; Li, Q. Photovoltaic-Based Residential Direct-Current Microgrid and Its Comprehensive Performance Evaluation. Appl. Sci. 2023, 13, 12890. [CrossRef]20. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, Photovoltaics and Wind; Wiley: New York, NY, USA, 1991; pp. 762–772.21. Rashid, M.H. Power Electronics: Circuits, Devices, and Applications, 3rd ed.; Pearson Education: Hoboken, NJ, USA, 2009; pp. 289–292.22. Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics in Converters, Applications, and Design, 3rd ed.; Whiley: Hoboken, NJ, USA, 2002.23. Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 3rd ed.; Springer: New York, NY, USA, 2020.24. Valdez-Resendiz, J.E.; Mayo-Maldonado, J.C.; Alejo-Reyes, A.; Rosas-Caro, J.C. Double-Dual DC-DC Conversion: A Survey of Contributions, Generalization, and Systematic Generation of New Topologies. IEEE Access 2023, 11, 38913–38928. [CrossRef]25. Rosas-Caro, J.C.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; Alejo-Reyes, A.; Beltran-Carbajal, F.; López-Santos, O. An Overview of Non-Isolated Hybrid Switched-Capacitor Step-Up DC–DC Converters. Appl. Sci. 2022, 12, 8554. [CrossRef]26. Rosas-Caro, J.C.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; Salas-Cabrera, R.; Gonzalez-Rodriguez, A.; Salas-Cabrera, E.N.; Cisneros-Villegas, H.; Gonzalez-Hernandez, J.G. Multiplier SEPIC converter. In Proceedings of the CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers, Cholula, Puebla, Mexico, 28 February–2 March 2011; pp. 232–238.27. Rosas-Caro, J.C.; Sanchez, V.M.; Vazquez-Bautista, R.F.; Morales-Mendoza, L.J.; Mayo-Maldonado, J.C.; Garcia-Vite, P.M.; Barbosa, R. A novel DC-DC multilevel SEPIC converter for PEMFC systems. Int. J. Hydrogren Energy 2016, 41, 23401–23408. [CrossRef]Pulse-width-modulated (PWM) converterSEPIC multiplier converterPower electronicsHardware-in-the-loop emulationPhotovoltaic systemConvertidor modulado por ancho de pulso (PWM)Convertidor multiplicador SEPICElectrónica de potenciaEmulación de hardware en el bucleSistema fotovoltaicoComunidad generalPublication11ddcf21-b409-4913-9535-44b2a15539d0virtual::6197-111ddcf21-b409-4913-9535-44b2a15539d0virtual::6197-1https://scholar.google.com/citations?user=icvmhSkAAAAJ&hl=es&authuser=6virtual::6197-10000-0001-7576-1021virtual::6197-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000193488virtual::6197-1ORIGINALHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdfHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf8054647https://red.uao.edu.co/bitstreams/ee505b11-6fb6-43c4-a356-b90db2217cd0/download2b643447c01bff020d1a4c4260058981MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/63986ec6-11f0-4855-b83f-f1bd70453558/download6987b791264a2b5525252450f99b10d1MD52TEXTHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdf.txtHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdf.txtExtracted texttext/plain88355https://red.uao.edu.co/bitstreams/7ebcbe6f-c660-44bd-8c9b-b2fe06ab9957/download352ddfccdd59c22da393b86988a6b6d6MD53THUMBNAILHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdf.jpgHardware-in-the-loop_emulation_of_a_SEPIC_multiplier_converter_in_a_photovoltaic_system.pdf.jpgGenerated Thumbnailimage/jpeg15370https://red.uao.edu.co/bitstreams/579b9b3e-25d6-4718-988e-eb3382aa8833/downloadb91509c48bd2c51d04710984515b0e70MD5410614/16229oai:red.uao.edu.co:10614/162292025-07-31 03:02:42.099https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 202open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==