Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review

Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alone an in-depth discussion to aid in deciding which...

Full description

Autores:
Castillo García, Javier Ferney
Argüello-Prada, Erick Javier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16262
Acceso en línea:
https://hdl.handle.net/10614/16262
https://red.uao.edu.co/
Palabra clave:
Motion artifacts
Photoplethysmogram
Machine learning
Reference signal-less methods
Real-time applications
Computational complexity
Artefactos de movimiento
Fotopletismograma
Aprendizaje automático
Métodos sin señal de referencia
Aplicaciones en tiempo real
Complejidad computacional
Rights
openAccess
License
Derechos reservados - MDPI, 2025
id REPOUAO2_b08c07c5bc0bfa62bb3bb06df826deec
oai_identifier_str oai:red.uao.edu.co:10614/16262
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
dc.title.translated.spa.fl_str_mv Aprendizaje automático aplicado a la detección de artefactos de movimiento en señales fotopletismográficas sin señal de referencia: una revisión
title Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
spellingShingle Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
Motion artifacts
Photoplethysmogram
Machine learning
Reference signal-less methods
Real-time applications
Computational complexity
Artefactos de movimiento
Fotopletismograma
Aprendizaje automático
Métodos sin señal de referencia
Aplicaciones en tiempo real
Complejidad computacional
title_short Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
title_full Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
title_fullStr Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
title_full_unstemmed Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
title_sort Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review
dc.creator.fl_str_mv Castillo García, Javier Ferney
Argüello-Prada, Erick Javier
dc.contributor.author.none.fl_str_mv Castillo García, Javier Ferney
Argüello-Prada, Erick Javier
dc.subject.proposal.eng.fl_str_mv Motion artifacts
Photoplethysmogram
Machine learning
Reference signal-less methods
Real-time applications
Computational complexity
topic Motion artifacts
Photoplethysmogram
Machine learning
Reference signal-less methods
Real-time applications
Computational complexity
Artefactos de movimiento
Fotopletismograma
Aprendizaje automático
Métodos sin señal de referencia
Aplicaciones en tiempo real
Complejidad computacional
dc.subject.proposal.spa.fl_str_mv Artefactos de movimiento
Fotopletismograma
Aprendizaje automático
Métodos sin señal de referencia
Aplicaciones en tiempo real
Complejidad computacional
description Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alone an in-depth discussion to aid in deciding which one is more suitable for a specific purpose. This narrative review examines the application of machine learning techniques for the reference signal-less detection of MAs in PPG signals. We did not consider articles introducing signal filtering or decomposition algorithms without previous identification of corrupted segments. Studies on MA-detecting approaches utilizing multiple channels and additional sensors such as accelerometers were also excluded. Despite its promising results, the literature on this topic shows several limitations and inconsistencies, particularly those regarding the model development and testing process and the measures used by authors to support the method’s suitability for real-time applications. Moreover, there is a need for broader exploration and validation across different body parts and a standardized set of experiments specifically designed to test and validate MA detection approaches. It is essential to provide enough elements to enable researchers and developers to objectively assess the reliability and applicability of these methods and, therefore, obtain the most out of them
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-08-13T16:35:12Z
dc.date.available.none.fl_str_mv 2025-08-13T16:35:12Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Castillo García, J. F. y Argüello-Prada, E. J. (2024). Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review. 24(22). 17 p. https://doi.org/10.3390/s24227193
dc.identifier.issn.spa.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16262
dc.identifier.doi.spa.fl_str_mv doi.org/10.3390/s24227193
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Castillo García, J. F. y Argüello-Prada, E. J. (2024). Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review. 24(22). 17 p. https://doi.org/10.3390/s24227193
14248220
doi.org/10.3390/s24227193
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16262
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 22
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 24
dc.relation.ispartofjournal.spa.fl_str_mv Sensor
dc.relation.references.none.fl_str_mv 1. Koteska, B.; Bodanova, A.M.; Mitrova, H.; Sidorenko, M.; Lehocki, F. A deep learning approach to estimate SpO2 from PPG signals. In Proceedings of the 9th International Conference on Bioinformatics Research and Applications, Berlin, Germany, 18–20 September 2022; pp. 142–148. [CrossRef]
2. Argüello-Prada, E.J.; Bolaños, S.M. On the role of perfusion index for estimating blood glucose levels with ultrasound-assisted and conventional finger photoplethysmography in the near-infrared wavelength range. Biomed. Signal Process. Control 2023, 86, 105338. [CrossRef]
3. Gupta, S.; Singh, A.; Sharma, A. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed. Eng. Lett. 2023, 13, 1–9. [CrossRef]
4. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [CrossRef]
5. Seok, D.; Lee, S.; Kim, M.; Cho, J.; Kim, C. Motion artifact removal techniques for wearable EEG and PPG sensor systems. Front. Electron. 2021, 2, 685513. [CrossRef]
6. Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2005.
7. Pollreisz, D.; TaheriNejad, N. Detection and removal of motion artifacts in PPG signals. Mobile Netw. Appl. 2022, 27, 728–738. [CrossRef]
8. Ismail, S.; Akram, U.; Siddiqi, I. Heart rate tracking in photoplethysmography signals affected by motion artifacts: A review. EURASIP J. Adv. Signal Process. 2021, 2021, 5. [CrossRef]
9. Such, O. Motion tolerance in wearable sensors-The challenge of motion artifact. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1542–1545. [CrossRef]
10. Nabavi, S.; Bhadra, S. A robust fusion method for motion artifacts reduction in photoplethysmography signal. IEEE Trans. Instrum. Meas. 2020, 69, 9599–9608. [CrossRef]
11. Tău¸tan, A.M.; Young, A.;Wentink, E.; Wieringa, F. Characterization and Reduction of Motion Artifacts in Photoplethysmographic Signals from a Wrist-worn Device. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6146–6149. [CrossRef]
12. Zhang, Y.; Song, S.; Vullings, R.; Biswas, D.; Simões-Capela, N.; Van Helleputte, N.; Van Hoff, C.; Groenendaal,W. Motion Artifact Reduction forWrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors 2019, 19, 673. [CrossRef]
13. Hayes, M.J.; Smith, P.R. A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact. IEEE Trans. Biomed. Eng. 2001, 48, 452–461. [CrossRef]
14. Ram, M.R.; Madhav, V.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. A Novel Approach for Motion Artifact Reduction in PPG Signals Based on AS-LMS Adaptive Filter. IEEE Trans. Instrum. Meas. 2012, 61, 1445–1457. [CrossRef]
15. Raghuram, M.; Sivani, K.; Reddy, K.A. Use of complex EMD generated noise reference for adaptive reduction of motion artifacts from PPG signal. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016. [CrossRef]
16. Kumar, A.; Komaragiri, R.; Kumar, M. A review on computation methods used in photoplethysmography signal analysis for heart rate estimation. Arch. Comput. Methods Eng. 2022, 29, 921–940. [CrossRef]
17. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Markets 2021, 31, 685–695. [CrossRef]
18. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [CrossRef]
19. Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [CrossRef] [PubMed]
20. Lim, P.K.; Ng, S.C.; Lovell, N.H.; Yu, Y.P.; Tan, M.P.; McCombie, D.; Lim, E.; Redmond, S.J. Adaptive template matching of photoplethysmogram pulses to detect motion artefact. Physiol. Meas. 2018, 39, 105005. [CrossRef] [PubMed]
21. Vadrevu, S.; Manikandan, M.S. Real-time PPG signal quality assessment system for improving battery life and false alarms. IEEE Trans. Circuits Syst. II Express Briefs. 2019, 66, 1910–1914. [CrossRef]
22. Reddy, G.N.K.; Manikandan, M.S.; Murty, N.N. On-device integrated PPG quality assessment and sensor disconnection/ saturation detection system for IoT health monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 6351–6361. [CrossRef]
23. Elgendi, M. Optimal signal quality index for photoplethysmogram signals. Bioengineering 2016, 3, 21. [CrossRef]
24. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2021.
25. Bishop, C.M. Pattern Recognition and Machine Learning—Information Science and Statistics; Springer: New York, NY, USA, 2006.
26. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24.
27. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
28. Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [CrossRef]
29. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef]
30. Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. Npj Comput. Mater. 2018, 4, 25. [CrossRef]
31. Longjie, L.; Abeysekera, S.S. Motion Artefact Removal using Single Beat Classification of Photoplethysmographic Signals. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–4. [CrossRef]
32. Karna, V.R.; Kumar, N. Determination of Absolute Heart Beat from Photoplethysmographic Signals in the Presence of Motion Artifacts. In Proceedings of the 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bangalore, India, 9–10 February 2018; pp. 1–5. [CrossRef]
33. Subhagya, D.S.; Keshavamurth, C. Motion Artifact Detection Model using Machine Learning Technique for Classifying Abnormalities in Human Being. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 334–340.
34. Dao, D.; Salehizadeh, S.M.; Noh, Y.; Chong, J.W.; Cho, C.H.; McManus, D.; Darling, C.E.; Mendelson, Y.; Chon, K.H. A robust motion artifact detection algorithm for accurate detection of heart rates from photoplethysmographic signals using time–frequency spectral features. IEEE J. Biomed. Health Inform. 2016, 21, 1242–1253. [CrossRef] [PubMed]
35. Sabeti, E.; Reamaroon, N.; Mathis, M.; Gryak, J.; Sjoding, M.; Najarian, K. Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry. Inform. Med. Unlocked 2019, 16, 100222. [CrossRef] [PubMed]
36. Feli, M.; Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Liljeberg, P. An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment. Smart Health 2023, 28, 100390. [CrossRef]
37. Chong, J.W.; Dao, D.K.; Salehizadeh, S.M.A.; McManus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection–reduction approach. Part I: Motion and noise artifact detection. Ann. Biomed. Eng. 2014, 42, 2238–2250. [CrossRef]
38. Oliveira, L.C.; Lai, Z.; Geng,W.; Siefkes, H.; Chuah, C.N. A machine learning driven pipeline for automated Photoplethysmogram signal artifact detection. In Proceedings of the 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE),Washington, DC, USA, 16–18 December 2021; pp. 149–154. [CrossRef]
39. Athaya, T.; Choi, S. An efficient fingertip photoplethysmographic signal artifact detection method: A machine learning approach. J. Sens. 2021, 2021, 9925033. [CrossRef]
40. Pflugradt, M.; Moeller, B.; Orglmeister, R. OPRA: A fast on-line signal quality estimator for pulsatile signals. IFAC Pap. 2015, 48, 459–464. [CrossRef]
41. Roy, M.S.; Gupta, R.; Sharma, K.D. Photoplethysmogram signal quality evaluation by unsupervised learning approach. In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020; pp. 6–10. [CrossRef]
42. Mahmoudzadeh, A.; Azimi, I.; Rahmani, A.M.; Liljeberg, P. Lightweight photoplethysmography quality assessment for real-time IoT-based health monitoring using unsupervised anomaly detection. Procedia Comput. Sci. 2021, 184, 140–147. [CrossRef]
43. Kohonen, T. Self-Organizing Maps; Springer: Berlin, Germany, 2001.
44. Shriram, S.; Sivasankar, E. Anomaly detection on shuttle data using unsupervised learning techniques. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019; pp. 221–225. [CrossRef]
45. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [CrossRef]
46. Gu, Q.; Li, Z.; Han, J. Generalized Fisher Score for Feature Selection. 2012. Available online: http://arxiv.org/abs/1202.3725 (accessed on 5 August 2024).
47. Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [CrossRef]
48. Yu, L.; Liu, H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224. Available online: https://www.jmlr.org/papers/volume5/yu04a/yu04a.pdf (accessed on 20 August 2024).
49. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [CrossRef]
50. Zihni, E.; Madai, V.I.; Livne, M.; Galinovic, I.; Khalil, A.A.; Fiebach, J.B.; Frey, D. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 2020, 15, e0231166. [CrossRef] [PubMed]
51. Liu, X.; Hu, Q.; Yuan, H.; Yang, C. Motion artifact detection in ppg signals based on gramian angular field, 2.-D.-C.N.N. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 743–747. [CrossRef]
52. Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. arXiv 2015, arXiv:1506.00327. [CrossRef]
53. Suzuki, G.; Freitas, P.G. On the Performance of Composite 1D-to-2D Projections for Signal Quality Assessment. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS); SBC: Vancouver, WA, USA, 2024; pp. 319–330. [CrossRef]
54. Zargari, A.H.A.; Aqajari, S.A.H.; Khodabandeh, H.; Rahmani, A.; Kurdahi, F. An accurate non-accelerometer-based ppg motion artifact removal technique using cyclegan. ACM Trans. Comput. Healthc. 2023, 4, 1–14. [CrossRef]
55. Goh, C.H.; Tan, L.K.; Lovell, N.H.; Ng, S.C.; Tan, M.; Lim, E. Robust PPG motion artifact detection using a 1-D convolution neural network. Comput. Methods Programs Biomed. 2020, 196, 105596. [CrossRef]
56. Azar, J.; Makhoul, A.; Couturier, R.; Demerjian, J. Deep recurrent neural network-based autoencoder for photoplethysmogram artifacts filtering. Comput. Electr. Eng. 2021, 92, 107065. [CrossRef]
57. Guo, Z.; Ding, C.; Hu, X.; Rudin, C. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Physiol. Meas. 2021, 42, 125003. [CrossRef]
58. Shin, H. Deep convolutional neural network-based signal quality assessment for photoplethysmogram. Comput. Biol. Med. 2022, 145, 105430. [CrossRef]
59. Lucafó, G.D.; Freitas, P.; Lima, R.; da Luz, G.; Bispo, R.; Rodrigues, P.; Cabello, F.; Penatti, O. Signal quality assessment of photoplethysmogram signals using hybrid rule-and learning-based models. J. Health Inform. 2023, 15. [CrossRef]
60. Zheng, Y.; Wu, C.; Cai, P.; Zhong, Z.; Huang, H.; Jiang, Y. Tiny-PPG: A lightweight deep neural network for real-time detection of motion artifacts in photoplethysmogram signals on edge devices. Internet Things 2024, 25, 101007. [CrossRef]
61. Shahid, S.M.; Ko, S.; Kwon, S. Performance comparison of 1d and 2d convolutional neural networks for real-time classification of time series sensor data. In Proceedings of the 2022 International Conference on Information Networking (ICOIN), Jeju-si, Republic of Korea, 12–15 January 2022; pp. 507–511. [CrossRef]
62. Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofjur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [CrossRef]
63. Freitas, P.G.; De Lima, R.G.; Lucafo, G.D.; Penatti, O.A. Assessing the quality of photoplethysmograms via gramian angular fields and vision transformer. In Proceedings of the 2023 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023; pp. 1035–1039. [CrossRef]
64. Liu, J.; Hu, S.; Hu, Q.; Wang, D.; Yang, C. A Lightweight Hybrid Model Using Multiscale Markov Transition Field for Real-Time Quality Assessment of Photoplethysmography Signals. IEEE J. Biomed. Health Inform. 2023, 28, 1078–1088. [CrossRef] [PubMed]
65. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023.
66. Hastie, T.; Tibshirani, R.; Friedman, J. Overview of Supervised Learning. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 9–42.
67. Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [CrossRef]
68. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [CrossRef]
69. Saeed, M.; Villarroel, M.; Reisner, A.T.; Clifford, G.; Lehman, L.W.; Moody, G.; Heldt, T.; Kyaw, T.H.; Moody, B.; Mark, R.G. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Crit. Care Med. 2011, 39, 952–960. [CrossRef] [PubMed]
70. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [CrossRef]
71. Karlen, W.; Turner, M.; Cooke, E.; Dumont, G.; Ansermino, J.M. CapnoBase: Signal database and tools to collect, share and annotate respiratory signals. In Proceedings of the 2010 Annual Meeting of the Society for Technology in Anesthesia, San Diego, CA, USA, 16–20 October 2010; p. 27. [CrossRef]
72. Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2015, 62, 522–531. [CrossRef]
73. Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Paris, France, 9–13 October 2018; pp. 400–408. [CrossRef]
74. Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Large-scale heart rate estimation with convolutional neural networks. Sensors 2019, 19, 3079. [CrossRef]
75. Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195. [CrossRef]
76. Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative comparison of photoplethysmographic waveform characteristics: Effect of measurement site. Front. Physiol. 2019, 10, 198. [CrossRef] [PubMed]
77. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Englewood Cliffs, NJ, USA, 1999.
78. Schölkopf, B.; Williamson, R.C.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 1999, 12, 582–588.
79. Faust, O.; Yu, W.; Acharya, U.R. The role of real-time in biomedical science: A meta-analysis on computational complexity, delay and speedup. Comput. Biol. Med. 2015, 58, 73–84. [CrossRef] [PubMed]
80. Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 2006.
81. Arora, S.; Barak, B. Computational Complexity: A Modern Approach; University Press: Cambridge, UK, 2009.
82. Hwang, K.; Briggs, F.A. Computer Architecture and Parallel Processing; McGraw-Hill: New York, NY, USA, 1984.
83. Wang, Y.H.; Yeh, C.H.; Young, H.W.V.; Hu, K.; Lo, M.T. On the computational complexity of the empirical mode decomposition algorithm. Phys. A Stat. Mech. Appl. 2014, 400, 159–167. [CrossRef]
84. Faust, O.; Yu,W.; Kadri, N.A. Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 2013, 13, 1350033. [CrossRef]
85. Charlton, P.H.; Allen, J.; Bailón, R.; Baker, S.; Behar, J.A.; Chen, F.; Clifford, G.D.; Clifton, D.A.; Davies, H.J.; Ding, C.; et al. The 2023 wearable photoplethysmography roadmap. Physiol. Meas. 2023, 44, 111001. [CrossRef]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2025
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/4971c050-6298-4b4f-a137-2bdd7a5de093/download
https://red.uao.edu.co/bitstreams/515c2a78-3184-4387-9688-e51a275f10ca/download
https://red.uao.edu.co/bitstreams/2643fdc7-a08b-4308-9420-bc9fc6b37c9c/download
https://red.uao.edu.co/bitstreams/5fd1b238-1f2e-46b4-9419-61aa9767da51/download
bitstream.checksum.fl_str_mv 649bef405ae0babced5ceeb5407cc759
6987b791264a2b5525252450f99b10d1
ce2955bc0a48d2fd39f0c8a1b94659d0
e0c65e1534a8dae6804d526ecf0ac8f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053379126558720
spelling Castillo García, Javier FerneyArgüello-Prada, Erick Javier2025-08-13T16:35:12Z2025-08-13T16:35:12Z2024Castillo García, J. F. y Argüello-Prada, E. J. (2024). Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A review. 24(22). 17 p. https://doi.org/10.3390/s2422719314248220https://hdl.handle.net/10614/16262doi.org/10.3390/s24227193Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alone an in-depth discussion to aid in deciding which one is more suitable for a specific purpose. This narrative review examines the application of machine learning techniques for the reference signal-less detection of MAs in PPG signals. We did not consider articles introducing signal filtering or decomposition algorithms without previous identification of corrupted segments. Studies on MA-detecting approaches utilizing multiple channels and additional sensors such as accelerometers were also excluded. Despite its promising results, the literature on this topic shows several limitations and inconsistencies, particularly those regarding the model development and testing process and the measures used by authors to support the method’s suitability for real-time applications. Moreover, there is a need for broader exploration and validation across different body parts and a standardized set of experiments specifically designed to test and validate MA detection approaches. It is essential to provide enough elements to enable researchers and developers to objectively assess the reliability and applicability of these methods and, therefore, obtain the most out of themLos algoritmos de aprendizaje automático han aportado avances notables en la detección de artefactos de movimiento (MA) a partir del fotopletismograma (PPG) sin datos de referencia medidos o sintéticos. Sin embargo, ningún estudio ha aportado una síntesis de estos métodos, y mucho menos una discusión exhaustiva que ayude a decidir cuál es el más adecuado para un propósito específico. Esta revisión narrativa examina la aplicación de técnicas de aprendizaje automático para la detección de MA sin señal de referencia en señales PPG. No se consideraron artículos que introdujeran algoritmos de filtrado o descomposición de señales sin la identificación previa de segmentos corruptos. También se excluyeron estudios sobre enfoques de detección de MA que utilizan múltiples canales y sensores adicionales, como acelerómetros. A pesar de sus prometedores resultados, la literatura sobre este tema presenta varias limitaciones e inconsistencias, en particular las relacionadas con el proceso de desarrollo y prueba de modelos y las medidas utilizadas por los autores para respaldar la idoneidad del método para aplicaciones en tiempo real. Además, se necesita una exploración y validación más amplias en diferentes partes del cuerpo y un conjunto estandarizado de experimentos diseñados específicamente para probar y validar los enfoques de detección de MA. Es esencial proporcionar elementos suficientes para que los investigadores y desarrolladores puedan evaluar objetivamente la fiabilidad y aplicabilidad de estos métodos y, por tanto, obtener el máximo provecho de ellos17 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Machine learning applied to reference signal-less detection of motion artifacts in photoplethysmographic signals: A reviewAprendizaje automático aplicado a la detección de artefactos de movimiento en señales fotopletismográficas sin señal de referencia: una revisiónArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851722124Sensor1. Koteska, B.; Bodanova, A.M.; Mitrova, H.; Sidorenko, M.; Lehocki, F. A deep learning approach to estimate SpO2 from PPG signals. In Proceedings of the 9th International Conference on Bioinformatics Research and Applications, Berlin, Germany, 18–20 September 2022; pp. 142–148. [CrossRef]2. Argüello-Prada, E.J.; Bolaños, S.M. On the role of perfusion index for estimating blood glucose levels with ultrasound-assisted and conventional finger photoplethysmography in the near-infrared wavelength range. Biomed. Signal Process. Control 2023, 86, 105338. [CrossRef]3. Gupta, S.; Singh, A.; Sharma, A. Exploiting moving slope features of PPG derivatives for estimation of mean arterial pressure. Biomed. Eng. Lett. 2023, 13, 1–9. [CrossRef]4. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [CrossRef]5. Seok, D.; Lee, S.; Kim, M.; Cho, J.; Kim, C. Motion artifact removal techniques for wearable EEG and PPG sensor systems. Front. Electron. 2021, 2, 685513. [CrossRef]6. Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2005.7. Pollreisz, D.; TaheriNejad, N. Detection and removal of motion artifacts in PPG signals. Mobile Netw. Appl. 2022, 27, 728–738. [CrossRef]8. Ismail, S.; Akram, U.; Siddiqi, I. Heart rate tracking in photoplethysmography signals affected by motion artifacts: A review. EURASIP J. Adv. Signal Process. 2021, 2021, 5. [CrossRef]9. Such, O. Motion tolerance in wearable sensors-The challenge of motion artifact. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1542–1545. [CrossRef]10. Nabavi, S.; Bhadra, S. A robust fusion method for motion artifacts reduction in photoplethysmography signal. IEEE Trans. Instrum. Meas. 2020, 69, 9599–9608. [CrossRef]11. Tău¸tan, A.M.; Young, A.;Wentink, E.; Wieringa, F. Characterization and Reduction of Motion Artifacts in Photoplethysmographic Signals from a Wrist-worn Device. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6146–6149. [CrossRef]12. Zhang, Y.; Song, S.; Vullings, R.; Biswas, D.; Simões-Capela, N.; Van Helleputte, N.; Van Hoff, C.; Groenendaal,W. Motion Artifact Reduction forWrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors 2019, 19, 673. [CrossRef]13. Hayes, M.J.; Smith, P.R. A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact. IEEE Trans. Biomed. Eng. 2001, 48, 452–461. [CrossRef]14. Ram, M.R.; Madhav, V.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. A Novel Approach for Motion Artifact Reduction in PPG Signals Based on AS-LMS Adaptive Filter. IEEE Trans. Instrum. Meas. 2012, 61, 1445–1457. [CrossRef]15. Raghuram, M.; Sivani, K.; Reddy, K.A. Use of complex EMD generated noise reference for adaptive reduction of motion artifacts from PPG signal. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016. [CrossRef]16. Kumar, A.; Komaragiri, R.; Kumar, M. A review on computation methods used in photoplethysmography signal analysis for heart rate estimation. Arch. Comput. Methods Eng. 2022, 29, 921–940. [CrossRef]17. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Markets 2021, 31, 685–695. [CrossRef]18. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [CrossRef]19. Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [CrossRef] [PubMed]20. Lim, P.K.; Ng, S.C.; Lovell, N.H.; Yu, Y.P.; Tan, M.P.; McCombie, D.; Lim, E.; Redmond, S.J. Adaptive template matching of photoplethysmogram pulses to detect motion artefact. Physiol. Meas. 2018, 39, 105005. [CrossRef] [PubMed]21. Vadrevu, S.; Manikandan, M.S. Real-time PPG signal quality assessment system for improving battery life and false alarms. IEEE Trans. Circuits Syst. II Express Briefs. 2019, 66, 1910–1914. [CrossRef]22. Reddy, G.N.K.; Manikandan, M.S.; Murty, N.N. On-device integrated PPG quality assessment and sensor disconnection/ saturation detection system for IoT health monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 6351–6361. [CrossRef]23. Elgendi, M. Optimal signal quality index for photoplethysmogram signals. Bioengineering 2016, 3, 21. [CrossRef]24. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2021.25. Bishop, C.M. Pattern Recognition and Machine Learning—Information Science and Statistics; Springer: New York, NY, USA, 2006.26. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24.27. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.28. Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [CrossRef]29. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef]30. Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. Npj Comput. Mater. 2018, 4, 25. [CrossRef]31. Longjie, L.; Abeysekera, S.S. Motion Artefact Removal using Single Beat Classification of Photoplethysmographic Signals. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–4. [CrossRef]32. Karna, V.R.; Kumar, N. Determination of Absolute Heart Beat from Photoplethysmographic Signals in the Presence of Motion Artifacts. In Proceedings of the 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bangalore, India, 9–10 February 2018; pp. 1–5. [CrossRef]33. Subhagya, D.S.; Keshavamurth, C. Motion Artifact Detection Model using Machine Learning Technique for Classifying Abnormalities in Human Being. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 334–340.34. Dao, D.; Salehizadeh, S.M.; Noh, Y.; Chong, J.W.; Cho, C.H.; McManus, D.; Darling, C.E.; Mendelson, Y.; Chon, K.H. A robust motion artifact detection algorithm for accurate detection of heart rates from photoplethysmographic signals using time–frequency spectral features. IEEE J. Biomed. Health Inform. 2016, 21, 1242–1253. [CrossRef] [PubMed]35. Sabeti, E.; Reamaroon, N.; Mathis, M.; Gryak, J.; Sjoding, M.; Najarian, K. Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry. Inform. Med. Unlocked 2019, 16, 100222. [CrossRef] [PubMed]36. Feli, M.; Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Liljeberg, P. An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment. Smart Health 2023, 28, 100390. [CrossRef]37. Chong, J.W.; Dao, D.K.; Salehizadeh, S.M.A.; McManus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection–reduction approach. Part I: Motion and noise artifact detection. Ann. Biomed. Eng. 2014, 42, 2238–2250. [CrossRef]38. Oliveira, L.C.; Lai, Z.; Geng,W.; Siefkes, H.; Chuah, C.N. A machine learning driven pipeline for automated Photoplethysmogram signal artifact detection. In Proceedings of the 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE),Washington, DC, USA, 16–18 December 2021; pp. 149–154. [CrossRef]39. Athaya, T.; Choi, S. An efficient fingertip photoplethysmographic signal artifact detection method: A machine learning approach. J. Sens. 2021, 2021, 9925033. [CrossRef]40. Pflugradt, M.; Moeller, B.; Orglmeister, R. OPRA: A fast on-line signal quality estimator for pulsatile signals. IFAC Pap. 2015, 48, 459–464. [CrossRef]41. Roy, M.S.; Gupta, R.; Sharma, K.D. Photoplethysmogram signal quality evaluation by unsupervised learning approach. In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020; pp. 6–10. [CrossRef]42. Mahmoudzadeh, A.; Azimi, I.; Rahmani, A.M.; Liljeberg, P. Lightweight photoplethysmography quality assessment for real-time IoT-based health monitoring using unsupervised anomaly detection. Procedia Comput. Sci. 2021, 184, 140–147. [CrossRef]43. Kohonen, T. Self-Organizing Maps; Springer: Berlin, Germany, 2001.44. Shriram, S.; Sivasankar, E. Anomaly detection on shuttle data using unsupervised learning techniques. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019; pp. 221–225. [CrossRef]45. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [CrossRef]46. Gu, Q.; Li, Z.; Han, J. Generalized Fisher Score for Feature Selection. 2012. Available online: http://arxiv.org/abs/1202.3725 (accessed on 5 August 2024).47. Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [CrossRef]48. Yu, L.; Liu, H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224. Available online: https://www.jmlr.org/papers/volume5/yu04a/yu04a.pdf (accessed on 20 August 2024).49. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [CrossRef]50. Zihni, E.; Madai, V.I.; Livne, M.; Galinovic, I.; Khalil, A.A.; Fiebach, J.B.; Frey, D. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 2020, 15, e0231166. [CrossRef] [PubMed]51. Liu, X.; Hu, Q.; Yuan, H.; Yang, C. Motion artifact detection in ppg signals based on gramian angular field, 2.-D.-C.N.N. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 743–747. [CrossRef]52. Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. arXiv 2015, arXiv:1506.00327. [CrossRef]53. Suzuki, G.; Freitas, P.G. On the Performance of Composite 1D-to-2D Projections for Signal Quality Assessment. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS); SBC: Vancouver, WA, USA, 2024; pp. 319–330. [CrossRef]54. Zargari, A.H.A.; Aqajari, S.A.H.; Khodabandeh, H.; Rahmani, A.; Kurdahi, F. An accurate non-accelerometer-based ppg motion artifact removal technique using cyclegan. ACM Trans. Comput. Healthc. 2023, 4, 1–14. [CrossRef]55. Goh, C.H.; Tan, L.K.; Lovell, N.H.; Ng, S.C.; Tan, M.; Lim, E. Robust PPG motion artifact detection using a 1-D convolution neural network. Comput. Methods Programs Biomed. 2020, 196, 105596. [CrossRef]56. Azar, J.; Makhoul, A.; Couturier, R.; Demerjian, J. Deep recurrent neural network-based autoencoder for photoplethysmogram artifacts filtering. Comput. Electr. Eng. 2021, 92, 107065. [CrossRef]57. Guo, Z.; Ding, C.; Hu, X.; Rudin, C. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Physiol. Meas. 2021, 42, 125003. [CrossRef]58. Shin, H. Deep convolutional neural network-based signal quality assessment for photoplethysmogram. Comput. Biol. Med. 2022, 145, 105430. [CrossRef]59. Lucafó, G.D.; Freitas, P.; Lima, R.; da Luz, G.; Bispo, R.; Rodrigues, P.; Cabello, F.; Penatti, O. Signal quality assessment of photoplethysmogram signals using hybrid rule-and learning-based models. J. Health Inform. 2023, 15. [CrossRef]60. Zheng, Y.; Wu, C.; Cai, P.; Zhong, Z.; Huang, H.; Jiang, Y. Tiny-PPG: A lightweight deep neural network for real-time detection of motion artifacts in photoplethysmogram signals on edge devices. Internet Things 2024, 25, 101007. [CrossRef]61. Shahid, S.M.; Ko, S.; Kwon, S. Performance comparison of 1d and 2d convolutional neural networks for real-time classification of time series sensor data. In Proceedings of the 2022 International Conference on Information Networking (ICOIN), Jeju-si, Republic of Korea, 12–15 January 2022; pp. 507–511. [CrossRef]62. Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofjur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [CrossRef]63. Freitas, P.G.; De Lima, R.G.; Lucafo, G.D.; Penatti, O.A. Assessing the quality of photoplethysmograms via gramian angular fields and vision transformer. In Proceedings of the 2023 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023; pp. 1035–1039. [CrossRef]64. Liu, J.; Hu, S.; Hu, Q.; Wang, D.; Yang, C. A Lightweight Hybrid Model Using Multiscale Markov Transition Field for Real-Time Quality Assessment of Photoplethysmography Signals. IEEE J. Biomed. Health Inform. 2023, 28, 1078–1088. [CrossRef] [PubMed]65. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023.66. Hastie, T.; Tibshirani, R.; Friedman, J. Overview of Supervised Learning. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 9–42.67. Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [CrossRef]68. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [CrossRef]69. Saeed, M.; Villarroel, M.; Reisner, A.T.; Clifford, G.; Lehman, L.W.; Moody, G.; Heldt, T.; Kyaw, T.H.; Moody, B.; Mark, R.G. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Crit. Care Med. 2011, 39, 952–960. [CrossRef] [PubMed]70. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [CrossRef]71. Karlen, W.; Turner, M.; Cooke, E.; Dumont, G.; Ansermino, J.M. CapnoBase: Signal database and tools to collect, share and annotate respiratory signals. In Proceedings of the 2010 Annual Meeting of the Society for Technology in Anesthesia, San Diego, CA, USA, 16–20 October 2010; p. 27. [CrossRef]72. Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2015, 62, 522–531. [CrossRef]73. Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Paris, France, 9–13 October 2018; pp. 400–408. [CrossRef]74. Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Large-scale heart rate estimation with convolutional neural networks. Sensors 2019, 19, 3079. [CrossRef]75. Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195. [CrossRef]76. Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative comparison of photoplethysmographic waveform characteristics: Effect of measurement site. Front. Physiol. 2019, 10, 198. [CrossRef] [PubMed]77. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Englewood Cliffs, NJ, USA, 1999.78. Schölkopf, B.; Williamson, R.C.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 1999, 12, 582–588.79. Faust, O.; Yu, W.; Acharya, U.R. The role of real-time in biomedical science: A meta-analysis on computational complexity, delay and speedup. Comput. Biol. Med. 2015, 58, 73–84. [CrossRef] [PubMed]80. Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 2006.81. Arora, S.; Barak, B. Computational Complexity: A Modern Approach; University Press: Cambridge, UK, 2009.82. Hwang, K.; Briggs, F.A. Computer Architecture and Parallel Processing; McGraw-Hill: New York, NY, USA, 1984.83. Wang, Y.H.; Yeh, C.H.; Young, H.W.V.; Hu, K.; Lo, M.T. On the computational complexity of the empirical mode decomposition algorithm. Phys. A Stat. Mech. Appl. 2014, 400, 159–167. [CrossRef]84. Faust, O.; Yu,W.; Kadri, N.A. Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 2013, 13, 1350033. [CrossRef]85. Charlton, P.H.; Allen, J.; Bailón, R.; Baker, S.; Behar, J.A.; Chen, F.; Clifford, G.D.; Clifton, D.A.; Davies, H.J.; Ding, C.; et al. The 2023 wearable photoplethysmography roadmap. Physiol. Meas. 2023, 44, 111001. [CrossRef]Motion artifactsPhotoplethysmogramMachine learningReference signal-less methodsReal-time applicationsComputational complexityArtefactos de movimientoFotopletismogramaAprendizaje automáticoMétodos sin señal de referenciaAplicaciones en tiempo realComplejidad computacionalComunidad estudiantilPublicationORIGINALMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdfMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf1054043https://red.uao.edu.co/bitstreams/4971c050-6298-4b4f-a137-2bdd7a5de093/download649bef405ae0babced5ceeb5407cc759MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/515c2a78-3184-4387-9688-e51a275f10ca/download6987b791264a2b5525252450f99b10d1MD52TEXTMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdf.txtMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdf.txtExtracted texttext/plain80722https://red.uao.edu.co/bitstreams/2643fdc7-a08b-4308-9420-bc9fc6b37c9c/downloadce2955bc0a48d2fd39f0c8a1b94659d0MD53THUMBNAILMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdf.jpgMachine_learning_applied_to_reference_signal-less_detection_of_motion_artifacts_in_photoplethysmographic_signals_A_review.pdf.jpgGenerated Thumbnailimage/jpeg15962https://red.uao.edu.co/bitstreams/5fd1b238-1f2e-46b4-9419-61aa9767da51/downloade0c65e1534a8dae6804d526ecf0ac8f1MD5410614/16262oai:red.uao.edu.co:10614/162622025-08-14 03:03:04.879https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2025open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==