Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems

Microgrids are considered an adequate alternative to overcome the challenges involving integrating distributed energy resources in distribution systems to contribute to the ‘Three D’ trend in the electricity sector, i.e., decentralize, decarbonize, and digitize electricity. This paper reviews the mo...

Full description

Autores:
Núñez R, Rafael A.
Unsihuay-Vila, Clodomiro
Pinzón-Ardila, Omar
Posada Contreras, Johnny
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15889
Acceso en línea:
https://hdl.handle.net/10614/15889
https://red.uao.edu.co/
Palabra clave:
AC/DC microgrid
Distributed generation
Power management
Smart transformer
Rights
openAccess
License
Derechos reservados - IEEE, 2023
id REPOUAO2_ac22cce6fe6fc8dac69a77bb4c9d3af8
oai_identifier_str oai:red.uao.edu.co:10614/15889
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
title Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
spellingShingle Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
AC/DC microgrid
Distributed generation
Power management
Smart transformer
title_short Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
title_full Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
title_fullStr Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
title_full_unstemmed Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
title_sort Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systems
dc.creator.fl_str_mv Núñez R, Rafael A.
Unsihuay-Vila, Clodomiro
Pinzón-Ardila, Omar
Posada Contreras, Johnny
dc.contributor.author.none.fl_str_mv Núñez R, Rafael A.
Unsihuay-Vila, Clodomiro
Pinzón-Ardila, Omar
Posada Contreras, Johnny
dc.subject.proposal.eng.fl_str_mv AC/DC microgrid
Distributed generation
Power management
Smart transformer
topic AC/DC microgrid
Distributed generation
Power management
Smart transformer
description Microgrids are considered an adequate alternative to overcome the challenges involving integrating distributed energy resources in distribution systems to contribute to the ‘Three D’ trend in the electricity sector, i.e., decentralize, decarbonize, and digitize electricity. This paper reviews the most relevant works to establish a baseline for advancing and developing smart transformer-based meshed hybrid microgrids and energy management systems. First, the structure of the solid-state transformers as Smart transformers and their potential application as energy routers in a microgrid is discussed. Then, the principle of conformation of meshed hybrid microgrids based on a smart transformer and the topologies reported in the literature are reviewed. Finally, power management systems integrated into smart transformers-based meshed hybrid microgrids are studied. According to the findings and conclusions, smart transformers-based meshed hybrid microgrids operated by an optimal energy management system under uncertainty are a potentially feasible technological alternative for adequately penetrating distributed energy resources into local distribution systems
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-11-13T14:08:16Z
dc.date.available.none.fl_str_mv 2024-11-13T14:08:16Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Núñez R., R. A.; Posada Contreras, J.; Unsihuay-Vila, C. y Pinzón-Ardila, O. (2023). Review of Smart Transformer-Based Meshed Hybrid Microgrids: Shaping, Topology and Energy Management Systems. IEEE access. volumen 11. p.p. 130165 - 130185. DOI: 10.1109/ACCESS.2023.3334651
dc.identifier.issn.spa.fl_str_mv 21693536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15889
dc.identifier.doi.spa.fl_str_mv DOI: 10.1109/ACCESS.2023.3334651
dc.identifier.eissn.spa.fl_str_mv 21693536
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Núñez R., R. A.; Posada Contreras, J.; Unsihuay-Vila, C. y Pinzón-Ardila, O. (2023). Review of Smart Transformer-Based Meshed Hybrid Microgrids: Shaping, Topology and Energy Management Systems. IEEE access. volumen 11. p.p. 130165 - 130185. DOI: 10.1109/ACCESS.2023.3334651
21693536
DOI: 10.1109/ACCESS.2023.3334651
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15889
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 130185
dc.relation.citationstartpage.spa.fl_str_mv 130165
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.eng.fl_str_mv IEEE access
dc.relation.references.none.fl_str_mv [1] M. A. Judge, A. Khan, A. Manzoor, and H. A. Khattak, ‘‘Overview of smart grid implementation: Frameworks, impact, performance and challenges,’’ J. Energy Storage, vol. 49, May 2022, Art. no. 104056, doi: 10.1016/j.est.2022.104056.
[2] F. R. Badal, S. K. Sarker, Z. Nayem, S. I. Moyeen, and S. K. Das, ‘‘Microgrid to smart grid’s evolution: Technical challenges, current solutions, and future scopes,’’ Energy Sci. Eng., vol. 11, no. 2, pp. 874–928, Oct. 2022, doi: 10.1002/ese3.1319.
[3] J. Viola and C. Aceros, ‘‘Smart grids and their applicability for the development of the electricity sector for Colombia in the year 2050,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 138, Jul. 2016, Art. no. 012010, doi: 10.1088/1757-899x/138/1/012010.
[4] G. Chicco, ‘‘Introduction—Advances and challenges in active distribution systems,’’ in Planning and Operation of Active Distribution Networks, vol. 826. Cham, Switzerland: Springer, 2022, pp. 1–42.
[5] P. Fortenbacher, M. Zellner, and G. Andersson, ‘‘Optimal sizing and placement of distributed storage in low voltage networks,’’ in Proc. Power Syst. Comput. Conf. (PSCC), Jun. 2016, pp. 1–7, doi: 10.1109/PSCC.2016.7540850.
[6] UPME. (2015). Plan de Expansión de Referencia Generación Transmisión 2015–2029. Unidad de Planeación Minero Energética, Bogotá. [Online]. Available: http://www1.upme.gov.co/Energia_electrica/Planes-expansion/PlanExpansion-2015-2029/Plan_GT_2015-2029_VF_22-12-2015.pdf
[7] K. Gholami, A. Azizivahed, A. Arefi, and L. Li, ‘‘Risk-averse voltVAr management scheme to coordinate distributed energy resources with demand response program,’’ Int. J. Electr. Power Energy Syst., vol. 146, Mar. 2023, Art. no. 108761, doi: 10.1016/j.ijepes.2022.108761.
[8] M. Auguadra, D. Ribó-Pérez, and T. Gómez-Navarro, ‘‘Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study,’’ Energy, vol. 264, Feb. 2023, Art. no. 126275, doi: 10.1016/j.energy.2022.126275.
[9] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, ‘‘Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids,’’ IEEE J. Photovolt., vol. 1, no. 2, pp. 174–182, Oct. 2011, doi: 10.1109/JPHOTOV.2011.2174821.
[10] A. A. D. O. Filho, T. B. Rodríguez, A. C. Navarro, F. L. Consoni, E. Barassa, and E. Lacusta Jr., ‘‘Institutional framework and the advance of electromobility: The case of South America,’’ Int. J. Automot. Technol. Manage., vol. 22, no. 3, p. 277, 2022, doi: 10.1504/ijatm.2022.124830.
[11] J. Quirós-Tortós, L. Victor-Gallardo, and L. Ochoa, ‘‘Electric vehicles in Latin America: Slowly but surely toward a clean transport,’’ IEEE Electrific. Mag., vol. 7, no. 2, pp. 22–32, Jun. 2019, doi: 10.1109/MELE.2019.2908791.
[12] F. Alfaverh, M. Denaï, and Y. Sun, ‘‘Optimal vehicle-to-grid control for supplementary frequency regulation using deep reinforcement learning,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023, Art. no. 108949, doi: 10.1016/j.epsr.2022.108949.
[13] H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, ‘‘Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review,’’ Renew. Sustain. Energy Rev., vol. 120, Mar. 2020, Art. no. 109618, doi: 10.1016/j.rser.2019.109618.
14] R. Zhu and M. Liserre, ‘‘Operation and supervision control in smart transformer-based meshed and hybrid grids,’’ in Proc. 6th IEEE Int. Energy Conf. (ENERGYCon), Sep. 2020, pp. 1019–1023, doi: 10.1109/ENERGYCon48941.2020.9236572.
[15] S. K. Sahoo, A. K. Sinha, and N. K. Kishore, ‘‘Control techniques in AC, DC, and hybrid AC–DC microgrid: A review,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018, doi: 10.1109/JESTPE.2017.2786588.
[16] E. Unamuno and J. A. Barrena, ‘‘Hybrid AC/DC microgrids—Part I: Review and classification of topologies,’’ Renew. Sustain. Energy Rev., vol. 52, pp. 1251–1259, Dec. 2015, doi: 10.1016/j.rser.2015.07.194.
[17] F. S. Al-Ismail, ‘‘DC microgrid planning, operation, and control: A comprehensive review,’’ IEEE Access, vol. 9, pp. 36154–36172, 2021, doi: 10.1109/ACCESS.2021.3062840.
[18] E. Planas, J. Andreu, J. I. Gárate, I. M. de Alegría, and E. Ibarra, ‘‘AC and DC technology in microgrids: A review,’’ Renew. Sustain. Energy Rev., vol. 43, pp. 726–749, Mar. 2015, doi: 10.1016/j.rser.2014.11.067.
[19] L. Jia, Y. Zhu, and Y. Wang, ‘‘Architecture design for new AC–DC hybrid micro-grid,’’ in Proc. IEEE 1st Int. Conf. DC Microgrids (ICDCM), Jun. 2015, pp. 113–118, doi: 10.1109/ICDCM.2015.7152020.
[20] Y. Li, Q. Sun, T. Dong, and Z. Zhang, ‘‘Energy management strategy of AC/DC hybrid microgrid based on power electronic transformer,’’ in Proc. 13th IEEE Conf. Ind. Electron. Appl. (ICIEA), May 2018, pp. 2677–2682, doi: 10.1109/ICIEA.2018.8398163.
[21] A. Garcés-Ruíz, ‘‘Small-signal stability analysis of DC microgrids considering electric vehicles,’’ Revista Facultad de Ingeniería Universidad de Antioquia, vol. 89, pp. 52–58, Jan. 2018, doi: 10.17533/ udea.redin.n89a07.
[22] M. Nour, J. P. Chaves-Ávila, G. Magdy, and Á. Sánchez-Miralles, ‘‘Review of positive and negative impacts of electric vehicles charging on electric power systems,’’ Energies, vol. 13, no. 18, p. 4675, Sep. 2020, doi: 10.3390/en13184675.
[23] R. Zhu, M. Liserre, M. Langwasser, and C. Kumar, ‘‘Operation and control of the smart transformer in meshed and hybrid grids: Choosing the appropriate smart transformer control and operation scheme,’’ IEEE Ind. Electron. Mag., vol. 15, no. 1, pp. 43–57, Mar. 2021, doi: 10.1109/mie.2020.3005357.
[24] C. Kumar, X. Gao, and M. Liserre, ‘‘Smart transformer based loop power controller in radial power distribution grid,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT-Eur.), Oct. 2018, pp. 1–6, doi: 10.1109/ISGTEurope.2018.8571844.
[25] D. Das, V. M. Hrishikesan, C. Kumar, and M. Liserre, ‘‘Smart transformer-enabled meshed hybrid distribution grid,’’ IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 282–292, Jan. 2021, doi: 10.1109/TIE.2020.2965489.
[26] R. Zhu, G. De Carne, M. Andresen, and M. Liserre, ‘‘Control of smart transformer in different electric grid configurations,’’ in Proc. 10th Int. Conf. Power Electron. ECCE Asia (ICPE-ECCE Asia), May 2019, pp. 1668–1675.
[27] H. Guo, F. Wang, J. Luo, and L. Zhang, ‘‘Review of energy routers applied for the energy internet integrating renewable energy,’’ in Proc. IEEE 8th Int. Power Electron. Motion Control Conf. (IPEMCECCE Asia), May 2016, pp. 1997–2003, doi: 10.1109/IPEMC.2016. 7512602.
[28] A. Gupta, S. Doolla, and K. Chatterjee, ‘‘Hybrid AC–DC microgrid: Systematic evaluation of control strategies,’’ IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3830–3843, Jul. 2018, doi: 10.1109/TSG.2017. 2727344.
[29] D. Das, H. V. M., and C. Kumar, ‘‘BESS-PV integrated islanded operation of ST-based meshed hybrid microgrid,’’ in Proc. IEEE 9th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), Nov. 2020, pp. 2122–2128, doi: 10.1109/IPEMC-ECCEAsia48364.2020. 9367663.
[30] V. M. Hrishikesan and C. Kumar, ‘‘Operation of meshed hybrid microgrid during adverse grid conditions with storage integrated smart transformer,’’ IEEE Open J. Ind. Electron. Soc., vol. 2, pp. 315–325, 2021, doi: 10.1109/OJIES.2021.3073142.
[31] V. M. Hrishikesan and C. Kumar, ‘‘Smart transformer based meshed hybrid microgrid with MVDC interconnection,’’ in Proc. IECON 46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 4961–4966, doi: 10.1109/IECON43393.2020.9255284.
[32] D. Das and C. Kumar, ‘‘Partial startup scheme for smart transformer in meshed hybrid islanded grid operation,’’ IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 142–151, Jan. 2022, doi: 10.1109/TIA.2021.3124862.
[33] C. Kumar, R. Manojkumar, S. Ganguly, and M. Liserre, ‘‘Impact of optimal control of distributed generation converters in smart transformer based meshed hybrid distribution network,’’ IEEE Access, vol. 9, pp. 140268–140280, 2021, doi: 10.1109/ACCESS.2021.3119349.
[34] A. Eisapour-Moarref, M. Kalantar, and M. Esmaili, ‘‘Power sharing in hybrid microgrids with multiple DC subgrids,’’ Int. J. Electr. Power Energy Syst., vol. 128, Jun. 2021, Art. no. 106716, doi: 10.1016/j.ijepes.2020.106716.
[35] B. Sahoo, S. K. Routray, and P. K. Rout, ‘‘AC,DC,and hybrid control strategies for smart microgrid application: A review,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 1, pp. 1–53, Jan. 2021, doi: 10.1002/2050- 7038.12683.
[36] M. V. Hrishikesan, C. Kumar, and M. Liserre, ‘‘An MVDC-based meshed hybrid microgrid enabled using smart transformers,’’ IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3722–3731, Apr. 2022, doi: 10.1109/TIE.2021.3071683.
[37] D. Das, R. Manojkumar, C. Kumar, and S. Ganguly, ‘‘Optimal power management for islanded operation of ST-based meshed hybrid LV microgrid,’’ in Proc. IEEE 12th Energy Convers. Congr. Expo. Asia (ECCE-Asia), May 2021, pp. 183–188, doi: 10.1109/ECCEAsia49820.2021.9479110.
[38] C. Kumar, R. Manojkumar, and S. Ganguly, ‘‘Optimal placement of smart transformer low voltage converter in meshed hybrid distribution network,’’ in Proc. IEEE 12th Energy Convers. Congr. Expo. Asia (ECCE-Asia), May 2021, pp. 1795–1800, doi: 10.1109/ECCEAsia49820.2021.9479233.
[39] S. Hussain, C. Z. El-Bayeh, C. Lai, and U. Eicker, ‘‘Multi-level energy management systems toward a smarter grid: A review,’’ IEEE Access, vol. 9, pp. 71994–72016, 2021, doi: 10.1109/ACCESS.2021.3078082.
[40] M. O. De Lara Filho, R. S. Pinto, A. C. De Campos, C. U. Vila, and F. H. Tabarro, ‘‘Day-ahead robust operation planning of microgrids under uncertainties considering DERs and demand response,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Latin Amer. (ISGT Latin America), Sep. 2021, pp. 1–5, doi: 10.1109/ISGTLatinAmerica52371.2021.9543063.
[41] S. K. Rangu, P. R. Lolla, K. R. Dhenuvakonda, and A. R. Singh, ‘‘Recent trends in power management strategies for optimal operation of distributed energy resources in microgrids: A comprehensive review,’’ Int. J. Energy Res., vol. 44, no. 13, pp. 9889–9911, Oct. 2020, doi: 10.1002/er.5649.
[42] F. Ruiz, M. A. Perez, J. R. Espinosa, T. Gajowik, S. Stynski, and M. Malinowski, ‘‘Surveying solid-state transformer structures and controls: Providing highly efficient and controllable power flow in distribution grids,’’ IEEE Ind. Electron. Mag., vol. 14, no. 1, pp. 56–70, Mar. 2020, doi: 10.1109/MIE.2019.2950436.
[43] Y. Wang, T. L. Nguyen, M. H. Syed, Y. Xu, E. Guillo-Sansano, V.-H. Nguyen, G. M. Burt, Q.-T. Tran, and R. Caire, ‘‘A distributed control scheme of microgrids in energy internet paradigm and its multisite implementation,’’ IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 1141–1153, Feb. 2021, doi: 10.1109/TII.2020.2976830.
[44] A. Joseph and P. Balachandra, ‘‘Energy Internet, the future electricity system: Overview, concept, model structure, and mechanism,’’ Energies, vol. 13, no. 16, p. 4242, Aug. 2020, doi: 10.3390/en13164242.
[45] C. Kumar, R. Manojkumar, S. Ganguly, and M. Liserre, ‘‘Power loss minimization in smart transformer based meshed hybrid distribution network,’’ in Proc. IECON 46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 1670–1675, doi: 10.1109/IECON43393.2020.9254324.
[46] C. Kumar, H. VM, D. Das, and S. Ghosh, ‘‘Control and sizing of two-stage smart transformer in meshed hybrid distribution grid,’’ in Proc. IEEE 9th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), Nov. 2020, pp. 2129–2134, doi: 10.1109/IPEMCECCEAsia48364.2020.9368198.
[47] I. Roasto, O. Husev, M. Najafzadeh, T. Jalakas, and J. Rodriguez, ‘‘Voltage source operation of the energy-router based on model predictive control,’’ Energies, vol. 12, no. 10, p. 1892, May 2019, doi: 10.3390/en12101892.
[48] A. Q. Huang, ‘‘Solid state transformers, the energy router and the energy internet,’’ in The Energy Internet, W. Su and A. Q. Huang, Eds. Sawston, U.K.: Woodhead Publishing, 2019, pp. 21–44.
[49] M. Manbachi, Energy Management Systems for Hybrid AC/DC Microgrids: Challenges and Opportunities. Challenges and Opportunities. Amsterdam, The Netherlands: Elsevier, 2018.
[50] H. Shayeghi, E. Shahryari, M. Moradzadeh, and P. Siano, ‘‘A survey on microgrid energy management considering flexible energy sources,’’ Energies, vol. 12, no. 11, p. 2156, Jun. 2019, doi: 10.3390/en12112156.
[51] Y. Li, Z. Yang, G. Li, D. Zhao, and W. Tian, ‘‘Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties,’’ IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1565–1575, Feb. 2019, doi: 10.1109/TIE.2018.2840498.
[52] J. S. Giraldo, J. A. Castrillon, J. C. López, M. J. Rider, and C. A. Castro, ‘‘Microgrids energy management using robust convex programming,’’ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4520–4530, Jul. 2019, doi: 10.1109/TSG.2018.2863049.
[53] M. Pourbehzadi, T. Niknam, J. Aghaei, G. Mokryani, M. Shafie-khah, and J. P. S. Catalão, ‘‘Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review,’’ Int. J. Electr. Power Energy Syst., vol. 109, pp. 139–159, Jul. 2019, doi: 10.1016/j.ijepes.2019.01.025.
[54] I. Syed, V. Khadkikar, and H. H. Zeineldin, ‘‘Loss reduction in radial distribution networks using a solid-state transformer,’’ IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5474–5482, Sep. 2018, doi: 10.1109/TIA.2018.2840533.
[55] G. De Carne, G. Buticchi, Z. Zou, and M. Liserre, ‘‘Reverse power flow control in a ST-fed distribution grid,’’ IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3811–3819, Jul. 2018, doi: 10.1109/TSG.2017.2651147.
[56] Y. Li, Z. Yang, G. Li, Y. Mu, D. Zhao, C. Chen, and B. Shen, ‘‘Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing,’’ Appl. Energy, vol. 232, pp. 54–68, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.211.
[57] O. Smith, O. Cattell, E. Farcot, R. D. O’Dea, and K. I. Hopcraft, ‘‘The effect of renewable energy incorporation on power grid stability and resilience,’’ Sci. Adv., vol. 8, no. 9, Mar. 2022, Art. no. eabj6734, doi: 10.1126/sciadv.abj6734.
[58] H. Nosair and F. Bouffard, ‘‘Economic dispatch under uncertainty: The probabilistic envelopes approach,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2017, p. 1, doi: 10.1109/PESGM.2017.8273988.
[59] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, ‘‘Defining control strategies for MicroGrids islanded operation,’’ IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006, doi: 10.1109/tpwrs.2006.873018.
[60] J. M. Guerrero, J. C. Vasquez, and R. Teodorescu, ‘‘Hierarchical control of droop-controlled DC and AC microgrids—A general approach towards standardization,’’ in Proc. 35th Annu. Conf. IEEE Ind. Electron., Nov. 2009, pp. 4305–4310, doi: 10.1109/IECON.2009.5414926.
[61] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, ‘‘Trends in microgrid control,’’ IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014, doi: 10.1109/TSG. 2013.2295514.
[62] A. Basati, M. B. Menhaj, and A. Fakharian, ‘‘GA-based optimal droop control approach to improve voltage regulation and equal power sharing for islanded DC microgrids,’’ in Proc. Electr. Power Quality Supply Rel. (PQ), Aug. 2016, pp. 145–150, doi: 10.1109/PQ.2016.7724104.
[63] M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, ‘‘Stability and control aspects of microgrid Architectures—A comprehensive review,’’ IEEE Access, vol. 8, pp. 144730–144766, 2020, doi: 10.1109/ACCESS.2020.3014977.
[64] B. Sahoo, S. K. Routray, and P. K. Rout, ‘‘A novel centralized energy management approach for power quality improvement,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 10, Aug. 2020, Art. no. e12582, doi: 10.1002/2050-7038.12582.
[65] W. McMurray, ‘‘Power converter circuits having a high frequency link,’’ U.S. Patent 3 517 300 A, Jun. 23, 1970.
[66] J. L. Brooks. (1980). Solid State Transformer Concept Development, California E.E.U.U. [Online]. Available: https://apps.dtic.mil/ sti/citations/ADA089299
[67] J. C. Bowers, S. J. Garrett, H. A. Nienhaus, and J. L. Brooks, ‘‘A solid state transformer,’’ in Proc. IEEE Power Electron. Spec. Conf., Jun. 1980, pp. 253–264, doi: 10.1109/PESC.1980.7089456.
[68] S. D. Sudhoff, ‘‘Solid state transformer,’’ U.S. Patent 5 943 229 A, Aug. 24, 1999.
[69] M. Kang, P. N. Enjeti, and I. J. Pitel, ‘‘Analysis and design of electronic transformers for electric power distribution system,’’ IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1133–1141, Nov. 1999, doi: 10.1109/63.803407.
[70] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, ‘‘The future renewable electric energy delivery and management (FREEDM) system: The energy internet,’’ Proc. IEEE, vol. 99, no. 1, pp. 133–148, Jan. 2011, doi: 10.1109/JPROC.2010.2081330.
[71] J. E. Huber and J. W. Kolar, ‘‘Solid-state transformers: On the origins and evolution of key concepts,’’ IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 19–28, Sep. 2016, doi: 10.1109/MIE.2016.2588878. VOLUME 11, 2023
[72] L. Ferreira Costa, G. De Carne, G. Buticchi, and M. Liserre, ‘‘The smart transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid,’’ IEEE Power Electron. Mag., vol. 4, no. 2, pp. 56–67, Jun. 2017, doi: 10.1109/MPEL.2017.2692381.
[73] H. Shadfar, M. G. Pashakolaei, and A. A. Foroud, ‘‘Solid-state transformers: An overview of the concept, topology, and its applications in the smart grid,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 9, pp. 1–24, Sep. 2021, doi: 10.1002/2050-7038.12996.
[74] R. P. Londero, A. P. C. d. Mello, and G. S. da Silva, ‘‘Comparison between conventional and solid state transformers in smart distribution grids,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Latin Amer. (ISGT Latin Amer.), Sep. 2019, pp. 1–6, doi: 10.1109/ISGT-LA.2019.8895327.
[75] F. Baronti, S. Vazquez, and M.-Y. Chow, ‘‘Modeling, control, and integration of energy storage systems in E-Transportation and smart grid,’’ IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6548–6551, Apr. 2018, doi: 10.1109/TIE.2018.2810658.
[76] J. P. Contreras, J. M. Ramirez, J. V. Marin, and G. R. E. Correa, ‘‘Distribution systems equipped with power electronic transformers,’’ in Proc. IEEE Grenoble Conf., Jun. 2013, pp. 1–6, doi: 10.1109/PTC.2013.6652154.
[77] F. Z. Peng, J.-S. Lai, J. McKeever, and J. VanCoevering, ‘‘A multilevel voltage-source inverter with separate DC sources for static VAr generation,’’ in Proc. Conf. Rec. IEEE Ind. Appl. Conf. 13th IAS Annu. Meeting, vol. 3, Oct. 1995, pp. 2541–2548, doi: 10.1109/IAS.1995.530626.
[78] J. E. Huber and J. W. Kolar, ‘‘Applicability of solid-state transformers in today’s and future distribution grids,’’ IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317–326, Jan. 2019, doi: 10.1109/TSG.2017.2738610.
[79] A. Abu-Siada, J. Budiri, and A. Abdou, ‘‘Solid state transformers topologies, controllers, and applications: State-of-the-Art literature review,’’ Electronics, vol. 7, no. 11, p. 298, Nov. 2018, doi: 10.3390/electronics7110298.
[80] R. B. Jeyapradha and V. Rajini, ‘‘Investigations on service extensions of solid state transformer,’’ in Proc. 5th Int. Conf. Elect. Energy Syst. (ICEES), May 2019, pp. 1–6, doi: 10.1109/ICEES.2019.8719315.
[81] V. N. Jakka, S. Acharya, A. Anurag, Y. Prabowo, A. Kumar, S. Parashar, and S. Bhattacharya, ‘‘Protection design considerations of a 10 kV SiC MOSFET enabled mobile utilities support equipment based solid state transformer (MUSE-SST),’’ in Proc. IECON 44th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2018, pp. 5559–5565, doi: 10.1109/IECON.2018.8592886.
[82] R. Zhu, M. Andresen, M. Langwasser, M. Liserre, J. P. Lopes, C. Moreira, J. Rodrigues, and M. Couto, ‘‘Smart transformer/large flexible transformer,’’ CES Trans. Electr. Mach. Syst., vol. 4, no. 4, pp. 264–274, Dec. 2020, doi: 10.30941/CESTEMS.2020.00033.
[83] R. Zhu, G. Buticchi, and M. Liserre, ‘‘Investigation on common-mode voltage suppression in smart transformer-fed distributed hybrid grids,’’ IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8438–8448, Oct. 2018, doi: 10.1109/TPEL.2017.2779803.
[84] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, ‘‘Microgrid supervisory controllers and energy management systems: A literature review,’’ Renew. Sustain. Energy Rev., vol. 60, pp. 1263–1273, Jul. 2016, doi: 10.1016/j.rser.2016.03.003.
[85] A. Q. Huang, ‘‘Solid state transformers, the energy router and the energy internet,’’ in The Energy Internet. Amsterdam, The Netherlands: Elsevier, 2019, pp. 21–44.
[86] H. M. Hussain, A. Narayanan, P. H. J. Nardelli, and Y. Yang, ‘‘What is energy internet? Concepts, technologies, and future directions,’’ IEEE Access, vol. 8, pp. 183127–183145, 2020, doi: 10.1109/ACCESS.2020.3029251. [
87] K. Zhou, S. Yang, and Z. Shao, ‘‘Energy internet: The business perspective,’’ Appl. Energy, vol. 178, pp. 212–222, Sep. 2016, doi: 10.1016/ j.apenergy.2016.06.052.
[88] K. Wang, J. Yu, Y. Yu, Y. Qian, D. Zeng, S. Guo, Y. Xiang, and J. Wu, ‘‘A survey on energy internet: Architecture, approach, and emerging technologies,’’ IEEE Syst. J., vol. 12, no. 3, pp. 2403–2416, Sep. 2018, doi: 10.1109/JSYST.2016.2639820.
[89] B. N. Alhasnawi, B. H. Jasim, Z.-A.-S. A. Rahman, J. M. Guerrero, and M. D. Esteban, ‘‘A novel internet of energy based optimal multi-agent control scheme for microgrid including renewable energy resources,’’ Int. J. Environ. Res. Public Health, vol. 18, no. 15, p. 8146, Jul. 2021, doi: 10.3390/ijerph18158146.
[90] B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, E. Hossain, and J. M. Guerrero, ‘‘A new decentralized control strategy of microgrids in the internet of energy paradigm,’’ Energies, vol. 14, no. 8, p. 2183, Apr. 2021, doi: 10.3390/en14082183.
[91] B. N. Alhasnawi, B. H. Jasim, Z.-A.-S. A. Rahman, and P. Siano, ‘‘A novel robust smart energy management and demand reduction for smart homes based on internet of energy,’’ Sensors, vol. 21, no. 14, p. 4756, Jul. 2021, doi: 10.3390/s21144756.
[92] B. N. Alhasnawi, B. H. Jasim, P. Siano, H. H. Alhelou, and A. Al-Hinai, ‘‘A novel solution for day-ahead scheduling problems using the IoT-based bald eagle search optimization algorithm,’’ Inventions, vol. 7, no. 3, p. 48, Jun. 2022, doi: 10.3390/inventions7030048.
[93] B. N. Alhasnawi and B. H. J. Jasim, ‘‘A novel hierarchical energy management system based on optimization for multi-microgrid,’’ Int. J. Electr. Eng. Informat., vol. 12, no. 3, pp. 586–606, Sep. 2020, doi: 10.15676/ijeei.2020.12.3.10.
[94] Z. Yixin, Z. Zhiwei, Z. Chenxi, and W. Haoyu, ‘‘Power flow optimization method research for the AC/DC distribution network with energy routers,’’ in Proc. Annu. Conf. China Electrotechnical Soc., Singapore: Springer, 2023, pp. 396–405.
[95] S. Chen, T. Zhang, H. B. Gooi, R. D. Masiello, and W. Katzenstein, ‘‘Penetration rate and effectiveness studies of aggregated BESS for frequency regulation,’’ IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 167–177, Jan. 2016, doi: 10.1109/TSG.2015.2426017.
[96] C.-W. Yang, J. Yan, and V. Vyatkin, ‘‘Towards implementation of plugand-play and distributed HMI for the FREEDM system with IEC 61499,’’ in Proc. IECON 39th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2013, pp. 5347–5353, doi: 10.1109/IECON.2013.6700005.
[97] E. M. Najm, Y. Xu, and A. Q. Huang, ‘‘Low cost plug-and-play PV system for DC microgrid,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2015, pp. 4236–4242, doi: 10.1109/ECCE.2015.7310258.
[98] F. Meng, R. Akella, M. L. Crow, and B. McMillin, ‘‘Distributed grid intelligence for future microgrid with renewable sources and storage,’’ in Proc. North Amer. Power Symp., Sep. 2010, pp. 1–6, doi: 10.1109/NAPS.2010.5618963.
[99] F. Cao, Y. Zhang, C. Liu, and R. Qian, ‘‘Location model and algorithm of solid state transformer considering distribution network reconfigu ration,’’ in Proc. 2nd IEEE Conf. Energy Internet Energy Syst. Integr. (EI), Oct. 2018, pp. 1–6, doi: 10.1109/EI2.2018.8582429.
[100] Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, ‘‘Energy router: Architectures and functionalities toward energy internet,’’ in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Oct. 2011, pp. 31–36, doi: 10.1109/SmartGridComm.2011.6102340.
[101] T.-H. Chang, M. Alizadeh, and A. Scaglione, ‘‘Real-time power balancing via decentralized coordinated home energy scheduling,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1490–1504, Sep. 2013, doi: 10.1109/TSG.2013.2250532.
[102] J. M. Guerrero, P. C. Loh, T.-L. Lee, and M. Chandorkar, ‘‘Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids,’’ IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263–1270, Apr. 2013, doi: 10.1109/TIE. 2012.2196889.
[103] A. Hirsch, Y. Parag, and J. Guerrero, ‘‘Microgrids: A review of technologies, key drivers, and outstanding issues,’’ Renew. Sustain. Energy Rev., vol. 90, pp. 402–411, Jul. 2018, doi: 10.1016/j.rser.2018.03.040.
[104] R. Zamora and A. K. Srivastava, ‘‘Controls for microgrids with storage: Review, challenges, and research needs,’’ Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 2009–2018, Sep. 2010, doi: 10.1016/j.rser.2010. 03.019.
[105] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, ‘‘Microgrids management,’’ IEEE Power Energy Mag., vol. 6, no. 3, pp. 54–65, May 2008, doi: 10.1109/mpe.2008.918702.
[106] A. Bidram and A. Davoudi, ‘‘Hierarchical structure of microgrids control system,’’ IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, Dec. 2012, doi: 10.1109/TSG.2012.2197425.
[107] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, ‘‘Distributed secondary control for islanded microgrids—A novel approach,’’ IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018–1031, Feb. 2014, doi: 10.1109/TPEL.2013.2259506.
[108] S. A. Helal, M. O. Hanna, R. J. Najee, M. F. Shaaban, A. H. Osman, and M. S. Hassan, ‘‘Energy management system for smart hybrid AC/DC microgrids in remote communities,’’ Electr. Power Compon. Syst., vol. 47, nos. 11–12, pp. 1012–1024, Jul. 2019, doi: 10.1080/15325008.2019.1629512.
[109] M. M. Alam, M. H. Rahman, H. Nurcahyanto, and Y. M. Jang, ‘‘Energy management by scheduling ESS with active demand response in low voltage grid,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 683–686, doi: 10.1109/ICTC49870.2020. 9289284.
[110] D. Ramin, S. Spinelli, and A. Brusaferri, ‘‘Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process,’’ Appl. Energy, vol. 225, pp. 622–636, Sep. 2018, doi: 10.1016/j.apenergy.2018.03.084.
[111] A. K. Erenoğlu, İ. Şengör, O. Erdinç, A. Taşcıkaraoğlu, and J. P. S. Catalão, ‘‘Optimal energy management system for microgrids considering energy storage, demand response and renewable power generation,’’ Int. J. Electr. Power Energy Syst., vol. 136, Mar. 2022, Art. no. 107714, doi: 10.1016/j.ijepes.2021.107714.
[112] S. K. Rathor and D. Saxena, ‘‘Energy management system for smart grid: An overview and key issues,’’ Int. J. Energy Res., vol. 44, no. 6, pp. 4067–4109, May 2020, doi: 10.1002/er.4883.
[113] D. E. Olivares, C. A. Cañizares, and M. Kazerani, ‘‘A centralized energy management system for isolated microgrids,’’ IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1864–1875, Jul. 2014, doi: 10.1109/TSG.2013.2294187.
[114] X. Zhou, Z. Ma, S. Zou, J. Zhang, and Y. Guo, ‘‘Distributed energy management of double-side multienergy systems via sub-gradient averaging consensus,’’ IEEE Trans. Smart Grid, vol. 14, no. 2, pp. 979–995, Mar. 2023, doi: 10.1109/TSG.2022.3201814.
[115] N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero, ‘‘A hierarchical energy management strategy for interconnected microgrids considering uncertainty,’’ Int. J. Electr. Power Energy Syst., vol. 109, pp. 597–608, Jul. 2019, doi: 10.1016/j.ijepes.2019.02.033.
[116] R. Wang, P. Wang, and G. Xiao, Intelligent Microgrid Management and EV Control Under Uncertainties in Smart Grid, 1st ed. Singapore: Springer, 2018.
[117] S.-J. Kim and G. B. Giannakis, ‘‘Scalable and robust demand response with mixed-integer constraints,’’ IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2089–2099, Dec. 2013, doi: 10.1109/TSG.2013.2257893.
[118] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, ‘‘Adaptive robust optimization for the security constrained unit commitment problem,’’ IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52–63, Feb. 2013, doi: 10.1109/TPWRS.2012.2205021.
[119] M. A. Rahman, Md. R. Islam, K. M. Muttaqi, and D. Sutanto, ‘‘Data-driven coordinated control of converters in a smart solidstate transformer for reliable and automated distribution grids,’’ IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4532–4542, Jul. 2020, doi: 10.1109/TIA.2020.2972507.
[120] A. Hussain, V.-H. Bui, and H.-M. Kim, ‘‘Robust optimal operation of AC/DC hybrid microgrids under market price uncertainties,’’ IEEE Access, vol. 6, pp. 2654–2667, 2018, doi: 10.1109/access.2017.2784834.
[121] L. C. Blanco et al., Control Jerárquico en Micro-Redes AC, 1st ed. Pereira, Colombia: Universidad Tecnológica de Pereira, 2021.
[122] G. Calafiore and M. C. Campi, ‘‘Uncertain convex programs: Randomized solutions and confidence levels,’’ Math. Program., vol. 102, no. 1, pp. 25–46, Jan. 2005, doi: 10.1007/s10107-003-0499-y.
[123] S. Claeys, M. Vanin, F. Geth, and G. Deconinck, ‘‘Applications of optimization models for electricity distribution networks,’’ WIREs Energy Environ., vol. 10, no. 5, pp. 1–35, Sep. 2021, doi: 10.1002/wene.401.
[124] R. S. Pinto, C. Unsihuay-Vila, and F. H. Tabarro, ‘‘Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties,’’ Appl. Energy, vol. 297, Sep. 2021, Art. no. 117108, doi: 10.1016/j.apenergy.2021.117108.
[125] L. A. Roald, D. Pozo, A. Papavasiliou, D. K. Molzahn, J. Kazempour, and A. Conejo, ‘‘Power systems optimization under uncertainty: A review of methods and applications,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023, Art. no. 108725, doi: 10.1016/j.epsr.2022.108725.
[126] S. M. Muyeen, S. M. Islam, and F. Blaabjerg, Variability, Scalability Stability Microgrids, 11st ed. London, U.K.: Institution of Engineering and Technology, 2019.
[127] H. T. Kim, Y. G. Jin, and Y. T. Yoon, ‘‘An economic analysis of load leveling with battery energy storage systems (BESS) in an electricity market environment: The Korean case,’’ Energies, vol. 12, no. 9, p. 1608, Apr. 2019, doi: 10.3390/en12091608.
[128] Z. Zhou and T. Lin, ‘‘Spatial and temporal model for electric vehicle rapid charging demand,’’ in Proc. IEEE Vehicle Power Propuls. Conf., Oct. 2012, pp. 345–348, doi: 10.1109/VPPC.2012.6422675.
[129] R. Leou, J. Teng, and C. Su, ‘‘Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements,’’ IET Gener., Transmiss. Distrib., vol. 9, no. 11, pp. 1112–1119, Aug. 2015, doi: 10.1049/iet-gtd.2014.0446.
[130] A. Donoghue. (2022). LV Engine. SP Energy Networks. [Online]. Available: https://www.spenergynetworks.co.uk/pages/lv_engine.aspx# tablist1-tab5
dc.rights.eng.fl_str_mv Derechos reservados - IEEE, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IEEE, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv IEEE
dc.publisher.place.eng.fl_str_mv United States
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/89d532a7-c043-41b0-8f9c-66f573b591a8/download
https://red.uao.edu.co/bitstreams/318787fe-f3a8-485f-802f-ac63eca60731/download
https://red.uao.edu.co/bitstreams/682506bc-ade5-45a8-b14d-dc317c20c9e9/download
https://red.uao.edu.co/bitstreams/645775a0-ab6e-43a1-afe1-f3806d3a7376/download
bitstream.checksum.fl_str_mv 8e9aee0d7dfbf92c686ca516408d7e80
6987b791264a2b5525252450f99b10d1
48e2bf1d17effb344bd615b35eff0325
6a2b974e2499e43b7085f4c192284db7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1831928890074857472
spelling Núñez R, Rafael A.Unsihuay-Vila, ClodomiroPinzón-Ardila, OmarPosada Contreras, Johnnyvirtual::5760-12024-11-13T14:08:16Z2024-11-13T14:08:16Z2023Núñez R., R. A.; Posada Contreras, J.; Unsihuay-Vila, C. y Pinzón-Ardila, O. (2023). Review of Smart Transformer-Based Meshed Hybrid Microgrids: Shaping, Topology and Energy Management Systems. IEEE access. volumen 11. p.p. 130165 - 130185. DOI: 10.1109/ACCESS.2023.333465121693536https://hdl.handle.net/10614/15889DOI: 10.1109/ACCESS.2023.333465121693536Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Microgrids are considered an adequate alternative to overcome the challenges involving integrating distributed energy resources in distribution systems to contribute to the ‘Three D’ trend in the electricity sector, i.e., decentralize, decarbonize, and digitize electricity. This paper reviews the most relevant works to establish a baseline for advancing and developing smart transformer-based meshed hybrid microgrids and energy management systems. First, the structure of the solid-state transformers as Smart transformers and their potential application as energy routers in a microgrid is discussed. Then, the principle of conformation of meshed hybrid microgrids based on a smart transformer and the topologies reported in the literature are reviewed. Finally, power management systems integrated into smart transformers-based meshed hybrid microgrids are studied. According to the findings and conclusions, smart transformers-based meshed hybrid microgrids operated by an optimal energy management system under uncertainty are a potentially feasible technological alternative for adequately penetrating distributed energy resources into local distribution systems20 páginasapplication/pdfengIEEEUnited StatesDerechos reservados - IEEE, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Review of smart transformer-based meshed hybrid microgrids: shaping, topology and energy management systemsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8513018513016511IEEE access[1] M. A. Judge, A. Khan, A. Manzoor, and H. A. Khattak, ‘‘Overview of smart grid implementation: Frameworks, impact, performance and challenges,’’ J. Energy Storage, vol. 49, May 2022, Art. no. 104056, doi: 10.1016/j.est.2022.104056.[2] F. R. Badal, S. K. Sarker, Z. Nayem, S. I. Moyeen, and S. K. Das, ‘‘Microgrid to smart grid’s evolution: Technical challenges, current solutions, and future scopes,’’ Energy Sci. Eng., vol. 11, no. 2, pp. 874–928, Oct. 2022, doi: 10.1002/ese3.1319.[3] J. Viola and C. Aceros, ‘‘Smart grids and their applicability for the development of the electricity sector for Colombia in the year 2050,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 138, Jul. 2016, Art. no. 012010, doi: 10.1088/1757-899x/138/1/012010.[4] G. Chicco, ‘‘Introduction—Advances and challenges in active distribution systems,’’ in Planning and Operation of Active Distribution Networks, vol. 826. Cham, Switzerland: Springer, 2022, pp. 1–42.[5] P. Fortenbacher, M. Zellner, and G. Andersson, ‘‘Optimal sizing and placement of distributed storage in low voltage networks,’’ in Proc. Power Syst. Comput. Conf. (PSCC), Jun. 2016, pp. 1–7, doi: 10.1109/PSCC.2016.7540850.[6] UPME. (2015). Plan de Expansión de Referencia Generación Transmisión 2015–2029. Unidad de Planeación Minero Energética, Bogotá. [Online]. Available: http://www1.upme.gov.co/Energia_electrica/Planes-expansion/PlanExpansion-2015-2029/Plan_GT_2015-2029_VF_22-12-2015.pdf[7] K. Gholami, A. Azizivahed, A. Arefi, and L. Li, ‘‘Risk-averse voltVAr management scheme to coordinate distributed energy resources with demand response program,’’ Int. J. Electr. Power Energy Syst., vol. 146, Mar. 2023, Art. no. 108761, doi: 10.1016/j.ijepes.2022.108761.[8] M. Auguadra, D. Ribó-Pérez, and T. Gómez-Navarro, ‘‘Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study,’’ Energy, vol. 264, Feb. 2023, Art. no. 126275, doi: 10.1016/j.energy.2022.126275.[9] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, ‘‘Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids,’’ IEEE J. Photovolt., vol. 1, no. 2, pp. 174–182, Oct. 2011, doi: 10.1109/JPHOTOV.2011.2174821.[10] A. A. D. O. Filho, T. B. Rodríguez, A. C. Navarro, F. L. Consoni, E. Barassa, and E. Lacusta Jr., ‘‘Institutional framework and the advance of electromobility: The case of South America,’’ Int. J. Automot. Technol. Manage., vol. 22, no. 3, p. 277, 2022, doi: 10.1504/ijatm.2022.124830.[11] J. Quirós-Tortós, L. Victor-Gallardo, and L. Ochoa, ‘‘Electric vehicles in Latin America: Slowly but surely toward a clean transport,’’ IEEE Electrific. Mag., vol. 7, no. 2, pp. 22–32, Jun. 2019, doi: 10.1109/MELE.2019.2908791.[12] F. Alfaverh, M. Denaï, and Y. Sun, ‘‘Optimal vehicle-to-grid control for supplementary frequency regulation using deep reinforcement learning,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023, Art. no. 108949, doi: 10.1016/j.epsr.2022.108949.[13] H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, ‘‘Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review,’’ Renew. Sustain. Energy Rev., vol. 120, Mar. 2020, Art. no. 109618, doi: 10.1016/j.rser.2019.109618.14] R. Zhu and M. Liserre, ‘‘Operation and supervision control in smart transformer-based meshed and hybrid grids,’’ in Proc. 6th IEEE Int. Energy Conf. (ENERGYCon), Sep. 2020, pp. 1019–1023, doi: 10.1109/ENERGYCon48941.2020.9236572.[15] S. K. Sahoo, A. K. Sinha, and N. K. Kishore, ‘‘Control techniques in AC, DC, and hybrid AC–DC microgrid: A review,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018, doi: 10.1109/JESTPE.2017.2786588.[16] E. Unamuno and J. A. Barrena, ‘‘Hybrid AC/DC microgrids—Part I: Review and classification of topologies,’’ Renew. Sustain. Energy Rev., vol. 52, pp. 1251–1259, Dec. 2015, doi: 10.1016/j.rser.2015.07.194.[17] F. S. Al-Ismail, ‘‘DC microgrid planning, operation, and control: A comprehensive review,’’ IEEE Access, vol. 9, pp. 36154–36172, 2021, doi: 10.1109/ACCESS.2021.3062840.[18] E. Planas, J. Andreu, J. I. Gárate, I. M. de Alegría, and E. Ibarra, ‘‘AC and DC technology in microgrids: A review,’’ Renew. Sustain. Energy Rev., vol. 43, pp. 726–749, Mar. 2015, doi: 10.1016/j.rser.2014.11.067.[19] L. Jia, Y. Zhu, and Y. Wang, ‘‘Architecture design for new AC–DC hybrid micro-grid,’’ in Proc. IEEE 1st Int. Conf. DC Microgrids (ICDCM), Jun. 2015, pp. 113–118, doi: 10.1109/ICDCM.2015.7152020.[20] Y. Li, Q. Sun, T. Dong, and Z. Zhang, ‘‘Energy management strategy of AC/DC hybrid microgrid based on power electronic transformer,’’ in Proc. 13th IEEE Conf. Ind. Electron. Appl. (ICIEA), May 2018, pp. 2677–2682, doi: 10.1109/ICIEA.2018.8398163.[21] A. Garcés-Ruíz, ‘‘Small-signal stability analysis of DC microgrids considering electric vehicles,’’ Revista Facultad de Ingeniería Universidad de Antioquia, vol. 89, pp. 52–58, Jan. 2018, doi: 10.17533/ udea.redin.n89a07.[22] M. Nour, J. P. Chaves-Ávila, G. Magdy, and Á. Sánchez-Miralles, ‘‘Review of positive and negative impacts of electric vehicles charging on electric power systems,’’ Energies, vol. 13, no. 18, p. 4675, Sep. 2020, doi: 10.3390/en13184675.[23] R. Zhu, M. Liserre, M. Langwasser, and C. Kumar, ‘‘Operation and control of the smart transformer in meshed and hybrid grids: Choosing the appropriate smart transformer control and operation scheme,’’ IEEE Ind. Electron. Mag., vol. 15, no. 1, pp. 43–57, Mar. 2021, doi: 10.1109/mie.2020.3005357.[24] C. Kumar, X. Gao, and M. Liserre, ‘‘Smart transformer based loop power controller in radial power distribution grid,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT-Eur.), Oct. 2018, pp. 1–6, doi: 10.1109/ISGTEurope.2018.8571844.[25] D. Das, V. M. Hrishikesan, C. Kumar, and M. Liserre, ‘‘Smart transformer-enabled meshed hybrid distribution grid,’’ IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 282–292, Jan. 2021, doi: 10.1109/TIE.2020.2965489.[26] R. Zhu, G. De Carne, M. Andresen, and M. Liserre, ‘‘Control of smart transformer in different electric grid configurations,’’ in Proc. 10th Int. Conf. Power Electron. ECCE Asia (ICPE-ECCE Asia), May 2019, pp. 1668–1675.[27] H. Guo, F. Wang, J. Luo, and L. Zhang, ‘‘Review of energy routers applied for the energy internet integrating renewable energy,’’ in Proc. IEEE 8th Int. Power Electron. Motion Control Conf. (IPEMCECCE Asia), May 2016, pp. 1997–2003, doi: 10.1109/IPEMC.2016. 7512602.[28] A. Gupta, S. Doolla, and K. Chatterjee, ‘‘Hybrid AC–DC microgrid: Systematic evaluation of control strategies,’’ IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3830–3843, Jul. 2018, doi: 10.1109/TSG.2017. 2727344.[29] D. Das, H. V. M., and C. Kumar, ‘‘BESS-PV integrated islanded operation of ST-based meshed hybrid microgrid,’’ in Proc. IEEE 9th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), Nov. 2020, pp. 2122–2128, doi: 10.1109/IPEMC-ECCEAsia48364.2020. 9367663.[30] V. M. Hrishikesan and C. Kumar, ‘‘Operation of meshed hybrid microgrid during adverse grid conditions with storage integrated smart transformer,’’ IEEE Open J. Ind. Electron. Soc., vol. 2, pp. 315–325, 2021, doi: 10.1109/OJIES.2021.3073142.[31] V. M. Hrishikesan and C. Kumar, ‘‘Smart transformer based meshed hybrid microgrid with MVDC interconnection,’’ in Proc. IECON 46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 4961–4966, doi: 10.1109/IECON43393.2020.9255284.[32] D. Das and C. Kumar, ‘‘Partial startup scheme for smart transformer in meshed hybrid islanded grid operation,’’ IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 142–151, Jan. 2022, doi: 10.1109/TIA.2021.3124862.[33] C. Kumar, R. Manojkumar, S. Ganguly, and M. Liserre, ‘‘Impact of optimal control of distributed generation converters in smart transformer based meshed hybrid distribution network,’’ IEEE Access, vol. 9, pp. 140268–140280, 2021, doi: 10.1109/ACCESS.2021.3119349.[34] A. Eisapour-Moarref, M. Kalantar, and M. Esmaili, ‘‘Power sharing in hybrid microgrids with multiple DC subgrids,’’ Int. J. Electr. Power Energy Syst., vol. 128, Jun. 2021, Art. no. 106716, doi: 10.1016/j.ijepes.2020.106716.[35] B. Sahoo, S. K. Routray, and P. K. Rout, ‘‘AC,DC,and hybrid control strategies for smart microgrid application: A review,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 1, pp. 1–53, Jan. 2021, doi: 10.1002/2050- 7038.12683.[36] M. V. Hrishikesan, C. Kumar, and M. Liserre, ‘‘An MVDC-based meshed hybrid microgrid enabled using smart transformers,’’ IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3722–3731, Apr. 2022, doi: 10.1109/TIE.2021.3071683.[37] D. Das, R. Manojkumar, C. Kumar, and S. Ganguly, ‘‘Optimal power management for islanded operation of ST-based meshed hybrid LV microgrid,’’ in Proc. IEEE 12th Energy Convers. Congr. Expo. Asia (ECCE-Asia), May 2021, pp. 183–188, doi: 10.1109/ECCEAsia49820.2021.9479110.[38] C. Kumar, R. Manojkumar, and S. Ganguly, ‘‘Optimal placement of smart transformer low voltage converter in meshed hybrid distribution network,’’ in Proc. IEEE 12th Energy Convers. Congr. Expo. Asia (ECCE-Asia), May 2021, pp. 1795–1800, doi: 10.1109/ECCEAsia49820.2021.9479233.[39] S. Hussain, C. Z. El-Bayeh, C. Lai, and U. Eicker, ‘‘Multi-level energy management systems toward a smarter grid: A review,’’ IEEE Access, vol. 9, pp. 71994–72016, 2021, doi: 10.1109/ACCESS.2021.3078082.[40] M. O. De Lara Filho, R. S. Pinto, A. C. De Campos, C. U. Vila, and F. H. Tabarro, ‘‘Day-ahead robust operation planning of microgrids under uncertainties considering DERs and demand response,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Latin Amer. (ISGT Latin America), Sep. 2021, pp. 1–5, doi: 10.1109/ISGTLatinAmerica52371.2021.9543063.[41] S. K. Rangu, P. R. Lolla, K. R. Dhenuvakonda, and A. R. Singh, ‘‘Recent trends in power management strategies for optimal operation of distributed energy resources in microgrids: A comprehensive review,’’ Int. J. Energy Res., vol. 44, no. 13, pp. 9889–9911, Oct. 2020, doi: 10.1002/er.5649.[42] F. Ruiz, M. A. Perez, J. R. Espinosa, T. Gajowik, S. Stynski, and M. Malinowski, ‘‘Surveying solid-state transformer structures and controls: Providing highly efficient and controllable power flow in distribution grids,’’ IEEE Ind. Electron. Mag., vol. 14, no. 1, pp. 56–70, Mar. 2020, doi: 10.1109/MIE.2019.2950436.[43] Y. Wang, T. L. Nguyen, M. H. Syed, Y. Xu, E. Guillo-Sansano, V.-H. Nguyen, G. M. Burt, Q.-T. Tran, and R. Caire, ‘‘A distributed control scheme of microgrids in energy internet paradigm and its multisite implementation,’’ IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 1141–1153, Feb. 2021, doi: 10.1109/TII.2020.2976830.[44] A. Joseph and P. Balachandra, ‘‘Energy Internet, the future electricity system: Overview, concept, model structure, and mechanism,’’ Energies, vol. 13, no. 16, p. 4242, Aug. 2020, doi: 10.3390/en13164242.[45] C. Kumar, R. Manojkumar, S. Ganguly, and M. Liserre, ‘‘Power loss minimization in smart transformer based meshed hybrid distribution network,’’ in Proc. IECON 46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 1670–1675, doi: 10.1109/IECON43393.2020.9254324.[46] C. Kumar, H. VM, D. Das, and S. Ghosh, ‘‘Control and sizing of two-stage smart transformer in meshed hybrid distribution grid,’’ in Proc. IEEE 9th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), Nov. 2020, pp. 2129–2134, doi: 10.1109/IPEMCECCEAsia48364.2020.9368198.[47] I. Roasto, O. Husev, M. Najafzadeh, T. Jalakas, and J. Rodriguez, ‘‘Voltage source operation of the energy-router based on model predictive control,’’ Energies, vol. 12, no. 10, p. 1892, May 2019, doi: 10.3390/en12101892.[48] A. Q. Huang, ‘‘Solid state transformers, the energy router and the energy internet,’’ in The Energy Internet, W. Su and A. Q. Huang, Eds. Sawston, U.K.: Woodhead Publishing, 2019, pp. 21–44.[49] M. Manbachi, Energy Management Systems for Hybrid AC/DC Microgrids: Challenges and Opportunities. Challenges and Opportunities. Amsterdam, The Netherlands: Elsevier, 2018.[50] H. Shayeghi, E. Shahryari, M. Moradzadeh, and P. Siano, ‘‘A survey on microgrid energy management considering flexible energy sources,’’ Energies, vol. 12, no. 11, p. 2156, Jun. 2019, doi: 10.3390/en12112156.[51] Y. Li, Z. Yang, G. Li, D. Zhao, and W. Tian, ‘‘Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties,’’ IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1565–1575, Feb. 2019, doi: 10.1109/TIE.2018.2840498.[52] J. S. Giraldo, J. A. Castrillon, J. C. López, M. J. Rider, and C. A. Castro, ‘‘Microgrids energy management using robust convex programming,’’ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4520–4530, Jul. 2019, doi: 10.1109/TSG.2018.2863049.[53] M. Pourbehzadi, T. Niknam, J. Aghaei, G. Mokryani, M. Shafie-khah, and J. P. S. Catalão, ‘‘Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review,’’ Int. J. Electr. Power Energy Syst., vol. 109, pp. 139–159, Jul. 2019, doi: 10.1016/j.ijepes.2019.01.025.[54] I. Syed, V. Khadkikar, and H. H. Zeineldin, ‘‘Loss reduction in radial distribution networks using a solid-state transformer,’’ IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5474–5482, Sep. 2018, doi: 10.1109/TIA.2018.2840533.[55] G. De Carne, G. Buticchi, Z. Zou, and M. Liserre, ‘‘Reverse power flow control in a ST-fed distribution grid,’’ IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3811–3819, Jul. 2018, doi: 10.1109/TSG.2017.2651147.[56] Y. Li, Z. Yang, G. Li, Y. Mu, D. Zhao, C. Chen, and B. Shen, ‘‘Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing,’’ Appl. Energy, vol. 232, pp. 54–68, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.211.[57] O. Smith, O. Cattell, E. Farcot, R. D. O’Dea, and K. I. Hopcraft, ‘‘The effect of renewable energy incorporation on power grid stability and resilience,’’ Sci. Adv., vol. 8, no. 9, Mar. 2022, Art. no. eabj6734, doi: 10.1126/sciadv.abj6734.[58] H. Nosair and F. Bouffard, ‘‘Economic dispatch under uncertainty: The probabilistic envelopes approach,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2017, p. 1, doi: 10.1109/PESGM.2017.8273988.[59] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, ‘‘Defining control strategies for MicroGrids islanded operation,’’ IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006, doi: 10.1109/tpwrs.2006.873018.[60] J. M. Guerrero, J. C. Vasquez, and R. Teodorescu, ‘‘Hierarchical control of droop-controlled DC and AC microgrids—A general approach towards standardization,’’ in Proc. 35th Annu. Conf. IEEE Ind. Electron., Nov. 2009, pp. 4305–4310, doi: 10.1109/IECON.2009.5414926.[61] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, ‘‘Trends in microgrid control,’’ IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014, doi: 10.1109/TSG. 2013.2295514.[62] A. Basati, M. B. Menhaj, and A. Fakharian, ‘‘GA-based optimal droop control approach to improve voltage regulation and equal power sharing for islanded DC microgrids,’’ in Proc. Electr. Power Quality Supply Rel. (PQ), Aug. 2016, pp. 145–150, doi: 10.1109/PQ.2016.7724104.[63] M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, ‘‘Stability and control aspects of microgrid Architectures—A comprehensive review,’’ IEEE Access, vol. 8, pp. 144730–144766, 2020, doi: 10.1109/ACCESS.2020.3014977.[64] B. Sahoo, S. K. Routray, and P. K. Rout, ‘‘A novel centralized energy management approach for power quality improvement,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 10, Aug. 2020, Art. no. e12582, doi: 10.1002/2050-7038.12582.[65] W. McMurray, ‘‘Power converter circuits having a high frequency link,’’ U.S. Patent 3 517 300 A, Jun. 23, 1970.[66] J. L. Brooks. (1980). Solid State Transformer Concept Development, California E.E.U.U. [Online]. Available: https://apps.dtic.mil/ sti/citations/ADA089299[67] J. C. Bowers, S. J. Garrett, H. A. Nienhaus, and J. L. Brooks, ‘‘A solid state transformer,’’ in Proc. IEEE Power Electron. Spec. Conf., Jun. 1980, pp. 253–264, doi: 10.1109/PESC.1980.7089456.[68] S. D. Sudhoff, ‘‘Solid state transformer,’’ U.S. Patent 5 943 229 A, Aug. 24, 1999.[69] M. Kang, P. N. Enjeti, and I. J. Pitel, ‘‘Analysis and design of electronic transformers for electric power distribution system,’’ IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1133–1141, Nov. 1999, doi: 10.1109/63.803407.[70] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, ‘‘The future renewable electric energy delivery and management (FREEDM) system: The energy internet,’’ Proc. IEEE, vol. 99, no. 1, pp. 133–148, Jan. 2011, doi: 10.1109/JPROC.2010.2081330.[71] J. E. Huber and J. W. Kolar, ‘‘Solid-state transformers: On the origins and evolution of key concepts,’’ IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 19–28, Sep. 2016, doi: 10.1109/MIE.2016.2588878. VOLUME 11, 2023[72] L. Ferreira Costa, G. De Carne, G. Buticchi, and M. Liserre, ‘‘The smart transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid,’’ IEEE Power Electron. Mag., vol. 4, no. 2, pp. 56–67, Jun. 2017, doi: 10.1109/MPEL.2017.2692381.[73] H. Shadfar, M. G. Pashakolaei, and A. A. Foroud, ‘‘Solid-state transformers: An overview of the concept, topology, and its applications in the smart grid,’’ Int. Trans. Electr. Energy Syst., vol. 31, no. 9, pp. 1–24, Sep. 2021, doi: 10.1002/2050-7038.12996.[74] R. P. Londero, A. P. C. d. Mello, and G. S. da Silva, ‘‘Comparison between conventional and solid state transformers in smart distribution grids,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Latin Amer. (ISGT Latin Amer.), Sep. 2019, pp. 1–6, doi: 10.1109/ISGT-LA.2019.8895327.[75] F. Baronti, S. Vazquez, and M.-Y. Chow, ‘‘Modeling, control, and integration of energy storage systems in E-Transportation and smart grid,’’ IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6548–6551, Apr. 2018, doi: 10.1109/TIE.2018.2810658.[76] J. P. Contreras, J. M. Ramirez, J. V. Marin, and G. R. E. Correa, ‘‘Distribution systems equipped with power electronic transformers,’’ in Proc. IEEE Grenoble Conf., Jun. 2013, pp. 1–6, doi: 10.1109/PTC.2013.6652154.[77] F. Z. Peng, J.-S. Lai, J. McKeever, and J. VanCoevering, ‘‘A multilevel voltage-source inverter with separate DC sources for static VAr generation,’’ in Proc. Conf. Rec. IEEE Ind. Appl. Conf. 13th IAS Annu. Meeting, vol. 3, Oct. 1995, pp. 2541–2548, doi: 10.1109/IAS.1995.530626.[78] J. E. Huber and J. W. Kolar, ‘‘Applicability of solid-state transformers in today’s and future distribution grids,’’ IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317–326, Jan. 2019, doi: 10.1109/TSG.2017.2738610.[79] A. Abu-Siada, J. Budiri, and A. Abdou, ‘‘Solid state transformers topologies, controllers, and applications: State-of-the-Art literature review,’’ Electronics, vol. 7, no. 11, p. 298, Nov. 2018, doi: 10.3390/electronics7110298.[80] R. B. Jeyapradha and V. Rajini, ‘‘Investigations on service extensions of solid state transformer,’’ in Proc. 5th Int. Conf. Elect. Energy Syst. (ICEES), May 2019, pp. 1–6, doi: 10.1109/ICEES.2019.8719315.[81] V. N. Jakka, S. Acharya, A. Anurag, Y. Prabowo, A. Kumar, S. Parashar, and S. Bhattacharya, ‘‘Protection design considerations of a 10 kV SiC MOSFET enabled mobile utilities support equipment based solid state transformer (MUSE-SST),’’ in Proc. IECON 44th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2018, pp. 5559–5565, doi: 10.1109/IECON.2018.8592886.[82] R. Zhu, M. Andresen, M. Langwasser, M. Liserre, J. P. Lopes, C. Moreira, J. Rodrigues, and M. Couto, ‘‘Smart transformer/large flexible transformer,’’ CES Trans. Electr. Mach. Syst., vol. 4, no. 4, pp. 264–274, Dec. 2020, doi: 10.30941/CESTEMS.2020.00033.[83] R. Zhu, G. Buticchi, and M. Liserre, ‘‘Investigation on common-mode voltage suppression in smart transformer-fed distributed hybrid grids,’’ IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8438–8448, Oct. 2018, doi: 10.1109/TPEL.2017.2779803.[84] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, ‘‘Microgrid supervisory controllers and energy management systems: A literature review,’’ Renew. Sustain. Energy Rev., vol. 60, pp. 1263–1273, Jul. 2016, doi: 10.1016/j.rser.2016.03.003.[85] A. Q. Huang, ‘‘Solid state transformers, the energy router and the energy internet,’’ in The Energy Internet. Amsterdam, The Netherlands: Elsevier, 2019, pp. 21–44.[86] H. M. Hussain, A. Narayanan, P. H. J. Nardelli, and Y. Yang, ‘‘What is energy internet? Concepts, technologies, and future directions,’’ IEEE Access, vol. 8, pp. 183127–183145, 2020, doi: 10.1109/ACCESS.2020.3029251. [87] K. Zhou, S. Yang, and Z. Shao, ‘‘Energy internet: The business perspective,’’ Appl. Energy, vol. 178, pp. 212–222, Sep. 2016, doi: 10.1016/ j.apenergy.2016.06.052.[88] K. Wang, J. Yu, Y. Yu, Y. Qian, D. Zeng, S. Guo, Y. Xiang, and J. Wu, ‘‘A survey on energy internet: Architecture, approach, and emerging technologies,’’ IEEE Syst. J., vol. 12, no. 3, pp. 2403–2416, Sep. 2018, doi: 10.1109/JSYST.2016.2639820.[89] B. N. Alhasnawi, B. H. Jasim, Z.-A.-S. A. Rahman, J. M. Guerrero, and M. D. Esteban, ‘‘A novel internet of energy based optimal multi-agent control scheme for microgrid including renewable energy resources,’’ Int. J. Environ. Res. Public Health, vol. 18, no. 15, p. 8146, Jul. 2021, doi: 10.3390/ijerph18158146.[90] B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, E. Hossain, and J. M. Guerrero, ‘‘A new decentralized control strategy of microgrids in the internet of energy paradigm,’’ Energies, vol. 14, no. 8, p. 2183, Apr. 2021, doi: 10.3390/en14082183.[91] B. N. Alhasnawi, B. H. Jasim, Z.-A.-S. A. Rahman, and P. Siano, ‘‘A novel robust smart energy management and demand reduction for smart homes based on internet of energy,’’ Sensors, vol. 21, no. 14, p. 4756, Jul. 2021, doi: 10.3390/s21144756.[92] B. N. Alhasnawi, B. H. Jasim, P. Siano, H. H. Alhelou, and A. Al-Hinai, ‘‘A novel solution for day-ahead scheduling problems using the IoT-based bald eagle search optimization algorithm,’’ Inventions, vol. 7, no. 3, p. 48, Jun. 2022, doi: 10.3390/inventions7030048.[93] B. N. Alhasnawi and B. H. J. Jasim, ‘‘A novel hierarchical energy management system based on optimization for multi-microgrid,’’ Int. J. Electr. Eng. Informat., vol. 12, no. 3, pp. 586–606, Sep. 2020, doi: 10.15676/ijeei.2020.12.3.10.[94] Z. Yixin, Z. Zhiwei, Z. Chenxi, and W. Haoyu, ‘‘Power flow optimization method research for the AC/DC distribution network with energy routers,’’ in Proc. Annu. Conf. China Electrotechnical Soc., Singapore: Springer, 2023, pp. 396–405.[95] S. Chen, T. Zhang, H. B. Gooi, R. D. Masiello, and W. Katzenstein, ‘‘Penetration rate and effectiveness studies of aggregated BESS for frequency regulation,’’ IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 167–177, Jan. 2016, doi: 10.1109/TSG.2015.2426017.[96] C.-W. Yang, J. Yan, and V. Vyatkin, ‘‘Towards implementation of plugand-play and distributed HMI for the FREEDM system with IEC 61499,’’ in Proc. IECON 39th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2013, pp. 5347–5353, doi: 10.1109/IECON.2013.6700005.[97] E. M. Najm, Y. Xu, and A. Q. Huang, ‘‘Low cost plug-and-play PV system for DC microgrid,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2015, pp. 4236–4242, doi: 10.1109/ECCE.2015.7310258.[98] F. Meng, R. Akella, M. L. Crow, and B. McMillin, ‘‘Distributed grid intelligence for future microgrid with renewable sources and storage,’’ in Proc. North Amer. Power Symp., Sep. 2010, pp. 1–6, doi: 10.1109/NAPS.2010.5618963.[99] F. Cao, Y. Zhang, C. Liu, and R. Qian, ‘‘Location model and algorithm of solid state transformer considering distribution network reconfigu ration,’’ in Proc. 2nd IEEE Conf. Energy Internet Energy Syst. Integr. (EI), Oct. 2018, pp. 1–6, doi: 10.1109/EI2.2018.8582429.[100] Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, ‘‘Energy router: Architectures and functionalities toward energy internet,’’ in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Oct. 2011, pp. 31–36, doi: 10.1109/SmartGridComm.2011.6102340.[101] T.-H. Chang, M. Alizadeh, and A. Scaglione, ‘‘Real-time power balancing via decentralized coordinated home energy scheduling,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1490–1504, Sep. 2013, doi: 10.1109/TSG.2013.2250532.[102] J. M. Guerrero, P. C. Loh, T.-L. Lee, and M. Chandorkar, ‘‘Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids,’’ IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263–1270, Apr. 2013, doi: 10.1109/TIE. 2012.2196889.[103] A. Hirsch, Y. Parag, and J. Guerrero, ‘‘Microgrids: A review of technologies, key drivers, and outstanding issues,’’ Renew. Sustain. Energy Rev., vol. 90, pp. 402–411, Jul. 2018, doi: 10.1016/j.rser.2018.03.040.[104] R. Zamora and A. K. Srivastava, ‘‘Controls for microgrids with storage: Review, challenges, and research needs,’’ Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 2009–2018, Sep. 2010, doi: 10.1016/j.rser.2010. 03.019.[105] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, ‘‘Microgrids management,’’ IEEE Power Energy Mag., vol. 6, no. 3, pp. 54–65, May 2008, doi: 10.1109/mpe.2008.918702.[106] A. Bidram and A. Davoudi, ‘‘Hierarchical structure of microgrids control system,’’ IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, Dec. 2012, doi: 10.1109/TSG.2012.2197425.[107] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, ‘‘Distributed secondary control for islanded microgrids—A novel approach,’’ IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018–1031, Feb. 2014, doi: 10.1109/TPEL.2013.2259506.[108] S. A. Helal, M. O. Hanna, R. J. Najee, M. F. Shaaban, A. H. Osman, and M. S. Hassan, ‘‘Energy management system for smart hybrid AC/DC microgrids in remote communities,’’ Electr. Power Compon. Syst., vol. 47, nos. 11–12, pp. 1012–1024, Jul. 2019, doi: 10.1080/15325008.2019.1629512.[109] M. M. Alam, M. H. Rahman, H. Nurcahyanto, and Y. M. Jang, ‘‘Energy management by scheduling ESS with active demand response in low voltage grid,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 683–686, doi: 10.1109/ICTC49870.2020. 9289284.[110] D. Ramin, S. Spinelli, and A. Brusaferri, ‘‘Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process,’’ Appl. Energy, vol. 225, pp. 622–636, Sep. 2018, doi: 10.1016/j.apenergy.2018.03.084.[111] A. K. Erenoğlu, İ. Şengör, O. Erdinç, A. Taşcıkaraoğlu, and J. P. S. Catalão, ‘‘Optimal energy management system for microgrids considering energy storage, demand response and renewable power generation,’’ Int. J. Electr. Power Energy Syst., vol. 136, Mar. 2022, Art. no. 107714, doi: 10.1016/j.ijepes.2021.107714.[112] S. K. Rathor and D. Saxena, ‘‘Energy management system for smart grid: An overview and key issues,’’ Int. J. Energy Res., vol. 44, no. 6, pp. 4067–4109, May 2020, doi: 10.1002/er.4883.[113] D. E. Olivares, C. A. Cañizares, and M. Kazerani, ‘‘A centralized energy management system for isolated microgrids,’’ IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1864–1875, Jul. 2014, doi: 10.1109/TSG.2013.2294187.[114] X. Zhou, Z. Ma, S. Zou, J. Zhang, and Y. Guo, ‘‘Distributed energy management of double-side multienergy systems via sub-gradient averaging consensus,’’ IEEE Trans. Smart Grid, vol. 14, no. 2, pp. 979–995, Mar. 2023, doi: 10.1109/TSG.2022.3201814.[115] N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero, ‘‘A hierarchical energy management strategy for interconnected microgrids considering uncertainty,’’ Int. J. Electr. Power Energy Syst., vol. 109, pp. 597–608, Jul. 2019, doi: 10.1016/j.ijepes.2019.02.033.[116] R. Wang, P. Wang, and G. Xiao, Intelligent Microgrid Management and EV Control Under Uncertainties in Smart Grid, 1st ed. Singapore: Springer, 2018.[117] S.-J. Kim and G. B. Giannakis, ‘‘Scalable and robust demand response with mixed-integer constraints,’’ IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2089–2099, Dec. 2013, doi: 10.1109/TSG.2013.2257893.[118] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, ‘‘Adaptive robust optimization for the security constrained unit commitment problem,’’ IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52–63, Feb. 2013, doi: 10.1109/TPWRS.2012.2205021.[119] M. A. Rahman, Md. R. Islam, K. M. Muttaqi, and D. Sutanto, ‘‘Data-driven coordinated control of converters in a smart solidstate transformer for reliable and automated distribution grids,’’ IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4532–4542, Jul. 2020, doi: 10.1109/TIA.2020.2972507.[120] A. Hussain, V.-H. Bui, and H.-M. Kim, ‘‘Robust optimal operation of AC/DC hybrid microgrids under market price uncertainties,’’ IEEE Access, vol. 6, pp. 2654–2667, 2018, doi: 10.1109/access.2017.2784834.[121] L. C. Blanco et al., Control Jerárquico en Micro-Redes AC, 1st ed. Pereira, Colombia: Universidad Tecnológica de Pereira, 2021.[122] G. Calafiore and M. C. Campi, ‘‘Uncertain convex programs: Randomized solutions and confidence levels,’’ Math. Program., vol. 102, no. 1, pp. 25–46, Jan. 2005, doi: 10.1007/s10107-003-0499-y.[123] S. Claeys, M. Vanin, F. Geth, and G. Deconinck, ‘‘Applications of optimization models for electricity distribution networks,’’ WIREs Energy Environ., vol. 10, no. 5, pp. 1–35, Sep. 2021, doi: 10.1002/wene.401.[124] R. S. Pinto, C. Unsihuay-Vila, and F. H. Tabarro, ‘‘Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties,’’ Appl. Energy, vol. 297, Sep. 2021, Art. no. 117108, doi: 10.1016/j.apenergy.2021.117108.[125] L. A. Roald, D. Pozo, A. Papavasiliou, D. K. Molzahn, J. Kazempour, and A. Conejo, ‘‘Power systems optimization under uncertainty: A review of methods and applications,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023, Art. no. 108725, doi: 10.1016/j.epsr.2022.108725.[126] S. M. Muyeen, S. M. Islam, and F. Blaabjerg, Variability, Scalability Stability Microgrids, 11st ed. London, U.K.: Institution of Engineering and Technology, 2019.[127] H. T. Kim, Y. G. Jin, and Y. T. Yoon, ‘‘An economic analysis of load leveling with battery energy storage systems (BESS) in an electricity market environment: The Korean case,’’ Energies, vol. 12, no. 9, p. 1608, Apr. 2019, doi: 10.3390/en12091608.[128] Z. Zhou and T. Lin, ‘‘Spatial and temporal model for electric vehicle rapid charging demand,’’ in Proc. IEEE Vehicle Power Propuls. Conf., Oct. 2012, pp. 345–348, doi: 10.1109/VPPC.2012.6422675.[129] R. Leou, J. Teng, and C. Su, ‘‘Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements,’’ IET Gener., Transmiss. Distrib., vol. 9, no. 11, pp. 1112–1119, Aug. 2015, doi: 10.1049/iet-gtd.2014.0446.[130] A. Donoghue. (2022). LV Engine. SP Energy Networks. [Online]. Available: https://www.spenergynetworks.co.uk/pages/lv_engine.aspx# tablist1-tab5AC/DC microgridDistributed generationPower managementSmart transformerComunidad generalPublication11ddcf21-b409-4913-9535-44b2a15539d0virtual::5760-111ddcf21-b409-4913-9535-44b2a15539d0virtual::5760-1https://scholar.google.com/citations?user=icvmhSkAAAAJ&hl=es&authuser=6virtual::5760-10000-0001-7576-1021virtual::5760-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000193488virtual::5760-1ORIGINALReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdfReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf4033947https://red.uao.edu.co/bitstreams/89d532a7-c043-41b0-8f9c-66f573b591a8/download8e9aee0d7dfbf92c686ca516408d7e80MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/318787fe-f3a8-485f-802f-ac63eca60731/download6987b791264a2b5525252450f99b10d1MD52TEXTReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdf.txtReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdf.txtExtracted texttext/plain100910https://red.uao.edu.co/bitstreams/682506bc-ade5-45a8-b14d-dc317c20c9e9/download48e2bf1d17effb344bd615b35eff0325MD53THUMBNAILReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdf.jpgReview_of_Smart_Transformer-Based_Meshed_Hybrid_Microgrids_Shaping,_Topology_and_Energy_Management_Systems.pdf.jpgGenerated Thumbnailimage/jpeg14326https://red.uao.edu.co/bitstreams/645775a0-ab6e-43a1-afe1-f3806d3a7376/download6a2b974e2499e43b7085f4c192284db7MD5410614/15889oai:red.uao.edu.co:10614/158892024-11-16 03:02:20.749https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==