Simulating and designing small hydrokinetic turbines: A review
The increased use of renewable energy resources for rural electrification has encouraged research and experimental projects decreasing designs uncertainties. This paper presents a deep and critical review of the design of micro hydro-generation technologies for river applications. This article shows...
- Autores:
-
López Castrillón, Yuri Ulianov
Laín Beatove, Santiago
Ramírez Tovar, Ana María
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11412
- Palabra clave:
- Desarrollo energético
Recursos energéticos
Energy development
Power resources
CFD
Fluid-structure interaction
Hydrokinetic turbines
Mechanical design
- Rights
- License
- Derechos Reservados - Universidad Autónoma de Occidente
| id |
REPOUAO2_a829a3f81526e3108fa9ceb4492997f7 |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/11412 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Simulating and designing small hydrokinetic turbines: A review |
| title |
Simulating and designing small hydrokinetic turbines: A review |
| spellingShingle |
Simulating and designing small hydrokinetic turbines: A review Desarrollo energético Recursos energéticos Energy development Power resources CFD Fluid-structure interaction Hydrokinetic turbines Mechanical design |
| title_short |
Simulating and designing small hydrokinetic turbines: A review |
| title_full |
Simulating and designing small hydrokinetic turbines: A review |
| title_fullStr |
Simulating and designing small hydrokinetic turbines: A review |
| title_full_unstemmed |
Simulating and designing small hydrokinetic turbines: A review |
| title_sort |
Simulating and designing small hydrokinetic turbines: A review |
| dc.creator.fl_str_mv |
López Castrillón, Yuri Ulianov Laín Beatove, Santiago Ramírez Tovar, Ana María |
| dc.contributor.author.none.fl_str_mv |
López Castrillón, Yuri Ulianov Laín Beatove, Santiago Ramírez Tovar, Ana María |
| dc.subject.armarc.spa.fl_str_mv |
Desarrollo energético Recursos energéticos |
| topic |
Desarrollo energético Recursos energéticos Energy development Power resources CFD Fluid-structure interaction Hydrokinetic turbines Mechanical design |
| dc.subject.armarc.eng.fl_str_mv |
Energy development Power resources |
| dc.subject.proposal.eng.fl_str_mv |
CFD Fluid-structure interaction Hydrokinetic turbines Mechanical design |
| description |
The increased use of renewable energy resources for rural electrification has encouraged research and experimental projects decreasing designs uncertainties. This paper presents a deep and critical review of the design of micro hydro-generation technologies for river applications. This article shows three principal aspects: design, analysis and computational tools to study vertical micro-turbines, including the ones that are not vertical but that are relevant for the actual research. An exhaustive review is presented and analyzed hereafter. An in-depth review analysis focused on design is carried out. As a result of this work, it is clear that despite the need for interest in using renewable resources technologies, there is still a lack of research about design focused on computational analysis, as evidenced by the limited number of publications so far |
| publishDate |
2018 |
| dc.date.issued.none.fl_str_mv |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2019-11-06T14:37:57Z |
| dc.date.available.none.fl_str_mv |
2019-11-06T14:37:57Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.issn.spa.fl_str_mv |
1970-8734 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11412 |
| dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.15866/ireme.v12i11.15525 |
| identifier_str_mv |
1970-8734 |
| url |
http://hdl.handle.net/10614/11412 https://doi.org/10.15866/ireme.v12i11.15525 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.cites.spa.fl_str_mv |
Ramirez-Tovar, A., López Castrillón, Y., Laín, S., Simulating and Designing Small Hydrokinetic Turbines: a Review, (2018). International Review of Mechanical Engineering (IREME) , 12 (11), 1-10 (876-884) . doi: https://doi.org/10.15866/ireme.v12i11.15525 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
International Review of Mechanical Engineering |
| dc.relation.references.none.fl_str_mv |
[1] REN21, "Renewables Global Status Report 2014," REN 21 STEERING COMMITTEE, 2014. [2] I. Boie, C. Kost, S. Bohn, M. Agsten, P. Bretschneider, O. Snjegovyic, M. Publika, M. Ragweed, T. Schlegl and D. Westermann, "Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe – Scenarios for power sector and transmission infrastructure in 2030 and 2050," Renewable Energy, vol. 87, no. 1, pp. 130 - 144, 2016. DOI: 10.1016/j.esd.2015.12.001, Database: ScienceDirect Physics, vol 346. 2017. DOI: 10.1016/j.jcp.2017.06.008, Database: ScienceDirect [3] Instituto de Planificación de Soluciones Energéticas - IPSE, " Soluciones energéticas para las zonas no interconectadas de Colombia," 2014. [4] M. Pehnt, "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, vol. 31, no. 1, pp. 55-71, 2006. DOI: 10.1016/j.renene.2016.04.027, Database|[5] R. Ortiz Flórez, Pequeñas Centrales Hidroeléctricas, Bogotá: Ediciones de la U., 2011. [6] J. Painul, "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, vol. 24, no. 1, p. 73–89, 2001. DOI: 10.1016/S0960-1481(00)00186-5, Database: ScienceDirect [7] W. Margaret Amutha and V. Rajini, "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, vol. 62, pp. 236 - 246, 2016. DOI: 10.1016/j.rser.2016.04.042, Database: ScienceDirect [8] M. Khan, G. Bhuyan, M. T. Iqbal and J. Quaicoe, "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbine for river and tidal applications: A technology status review," Energy, vol. 86, no. 10, pp. 1823 - 1835, 2009. DOI:10.1016/j.apenergy.2009.02.017, Database: ScienceDirect [9] Universidad de Chile, "Centro de Computación Universidad de Chile," [Online]. Available: http://www.cec.uchile.cl/~jfiguero/historia.html. [Accessed Julio 09 2015]. [10] J. D. Parres, "Máquinas Hidráulicas," México, 1966. [11] F. Balduzzi, A. Bianchini, G. Ferrara and L. Ferrari, "Dimensionless numbers for the assessment of mesh and time step requirements in CFD simulations of Darrieus wind turbines," Energy, vol. 97, pp. 246 - 261, 2016. DOI:10.1016/j.energy.2015.12.111, Database: ScienceDirect [12] M. C, Turbomáquinas Hidraúlicas, ICAI, 1974. [13] National Aeronautics And Space Administration – NASA, “What is Lift?” May 05 2015 [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/lift1.html [14] A. Beri, Y. Yao. “Double Multiple Stream Tube Model and Numerical Analysis of Vertical Axis Wind Turbine”. Energy and Power Engineering, Vol 3. Pp 262 – 270. 2011 [15] P. Tchakoua, R. Wakmkeue, M. Ouhrouche, G. Ekemb and T. Temeghe, A New Approach for Modeling Darrieus- Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of theoretical Formulations and Model Development Energies, 2015. [16] H. Jiang, Y. Li, Z. Cheng, “Performances of ideal wind turbine”, Renewable Energy, Vol 83. Pp 658-662. November 2015. DOI: 10.1016/j.renene.2015.05.013, Database: ScienceDirect [17] G.A van Kuik, “The Lanchester–Betz–Joukowsky limit” Wind Energy, vol. 10 pp. 289–291, 2007 [18] R. Vennel, “Exceeding the Betz limit with tidal turbines”, Renewable Energy, Vol 55. Pp 277 – 286. July 2013. DOI:10.1016/j.renene.2012.12.016, Database: ScienceDirect [19] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, “Wind Energy Handbook”. John Wiley & Sons, Ltd. England, 2001. [20] A. Niksiar, M. Sohrabu, “A novel hydrodynamic model for conical spouted beds based on streamtube modelling approach”. Powder Technology, Vol 267. Pp 371-380. November 2014. DOI: 10.1016/j.powtec.2014.08.005, Database: ScienceDirect [21] S. Camporeale, V. Magi, “Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion”. Energy Conversion and Management, Vol 41. Pp 1811-1827. November 2000. DOI: 10.1016/S0196-8904(99)00183-1, Database: ScienceDirect. [22] P. Delafin, L. Wang, “Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines”. Renewable Energy, Vol 109. Pp 564-575. August 2017. DOI: 10.1016/j.renene.2017.03.065, Database: ScienceDirect [23] J.M. Huang y S.K. Ong, «Structure design and analysis with integrated AR-FEA» CIRP Annals – Manufacturing Technology, vol. 66, nº 1, pp. 149-152, 2017 [24] L. Wang, R. Quant y A. Kolios, “Fluid structure interaction modeling of horizontal-axis wind turbine blades based on CFD and FEA,” Wind Engineering & Industrial Aerodynamics, vol. 1, pp. 11-25, 2016. [25] Q.Wang, J. Goosen y F.van Keulen, “An efficient fluid–structure interaction model for optimizing twistable flapping wings,” Journal of Fluids and Structures, vol. 73, pp. 82-99, Agosto 2017. DOI: 10.1016/j.jfluidstructs.2017.06.006, Database: ScienceDirect [26] Sang Yu Je, Yoon-Suk Chang, Sung-Sik Kang, “Dynamic characteristics assessment of reactor vessel internals with fluidstructure interaction”. Nuclear Engineering and Technology. 2017. DOI: 10.1016/j.net.2017.05.003, Database: ScienceDirect [28] A. Zhang, P. Sun, F. Ming, A. Colagrossi, “Smoothed particle hydrodynamics and its applications in fluid-structure interactions”. Journal of Hydrodynamics, Ser. B, Vol 29. Pp. 187 – 216. October 2017. DOI: 10.1016/S1001-6058(16)60730-8, Database: ScienceDirect [29] K. Nordanger, A. Rasheed, K. Morten Okstad, A. Morten Kvarving, R. Holdahl, T. Kvamsdal, “Numerical benchmarking of fluid–structure interaction: An isogeometric finite element approach”. Ocean Engineering, Vol 124. Pp 324 – 339. September 2016. DOI: 10.1016/j.oceaneng.2016.07.018, Database: ScienceDirect [30] B. K. Sovacool and L. C. Bulan, "Behind an ambitious mega project in Asia: The history and implications of the Bakun hydroelectric damin Borneo," Energy Policy, vol. 39, pp. 4842 - 4859, 2011. [31] K. Benjamin, L. Sovacool and L.C. Bulan, "Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE)" Renewable Energy, vol. 40, pp. 113 - 129, 2012. DOI: 10.1016/j.renene.2011.09.032, Database: ScienceDirect [32] H. Saldías, H. Ulloa, H. Rudnick and E. Recordón, "Evaluación Comparativa de centrales de generación de energías renovables mediante la aplicación de la nueva ley de energías renovables recientemente aprobada en Chile," 25 mayo 2008. [Online]. Available: http://power.sitios.ing.uc.cl/alumno08/renewables/EXTRAS/The_Chilean_renewables_law.pdf. [Accessed 18 Julio 2016]. [33] M. Z. Jacobson and M. A. Delucchi, "Energía sostenible: Objetivo 2030," Investigación y Ciencia, vol. 400, pp. 20 - 27, 2010. [34] H. J. Vermaak, K. Kusakana and S. P. Koko, "Status of microhydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, vol. 29, pp. 625 - 633, 2014. DOI: 10.1016/j.rser.2013.08.066, [35] H. Sy-Ruen, M. Yen-Huai, C. Chia-Fu, S. Kazuichi and A. Toshiyuki, "Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine," Energy Conversion and Management, vol. 86, pp. 727 - 734, 2014. DOI: 10.1016/j.enconman.2014.05.098, Database: ScienceDirect. [36] J. Rohmer, D. Knittel, G. Sturtzer, D. Flieller and J. Renaud, "Modelling and experimental results of an Archimedes screw turbine," Renewable Energy, vol. 94, pp. 136 - 146, 2016. DOI: 10.1016/j.renene.2016.03.044, Database: ScienceDirect. [37] A. López, J. A. Somolinos and L. Ramón Núñez, "Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas," Revista Iberoamericana de Automática e Informática industrial, vol. 11, pp. 224 - 235, 2011. DOI:10.1016/j.riai.2014.02.005, Database: ScienceDirect [38] M. I Shahidul, S. Tarmizi, A. Yassin, A. Othman, H. Zen, T. Ching Hung and L.M. Djun, "Modelling the Energy Extraction from In-stream Water by Multi Stage Blade System of Cross Flow Micro Hydro Turbine," Procedia Engineering, vol. 105, p. 488 – 494, 2015. DOI: 10.1016/j.proeng.2015.05.081, Database: ScienceDirect [39] N. Vatin, N. Lavrov and A. Shipilov, "The Water Intake Facility for Diversion HPPs in Winter Operation Conditions in an Urban Area," Procedia Engineering, vol. 117, p. 369 – 375, 2015. DOI: 10.1016/j.proeng.2015.08.177, Database: ScienceDirect. [40] J. Chen, H.X. Yang, C.P. Liu, C.H. Lau, M. Lo, "A novel vertical axis water turbine for power generation from wáter pipelines" Energy, 2013. DOI: 10.1016/j.energy.2013.01.064, Database: ScienceDirect. [41] S. R. Huang, Y.H. Ma, C.F. Chen, K. Seki, T. Aso, "Theorical and conditional monitoring of a small three-bladed vertical-axis micro hydro turbine" Energy conversion and Management, 2014. [42] S. Laín, B. Quintero, Y. Ulianov and D. Trujillo, "Simulation of Vertical Axis Water Turbines," IEEE, 2012. [43] J. Zanette, D. Imbault and A. Tourabi, "A design methodology for cross flow water turbines," Renewable Energy, vol. 35, pp. 997 - 1009, 2010. DOI: 10.1016/j.renene.2009.09.014, Database: ScienceDirect. [44] S. Patel and P. Pakale, "STUDY ON POWER GENERATION BY USING CROSS FLOW WATER TURBINE IN MICRO HYDRO POWER PLANT," International Journal of Research in Engineering and Technology, pp. 1 - 4, Mayo 2015. [45] D. Kilama Okot, "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, vol. 26, pp. 515 - 620, 2013. DOI: 10.1016/j.rser.2013.05.006, Database: ScienceDirect. [46] G. Samprogna Mohor, D. A. Rodriguez, J. Tomasella and J. Siqueira Júnior, "Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant," Journal of Hydrology: Regional, vol. 4, p. 41–59, 2015. DOI: 10.1016/j.ejrh.2015.04.003, Database: ScienceDirect. [47] Proyecto de FGT I 2012, "Turbinas de río: una alternativa energética para la Amazonía," Hidrored 2002 (1), pp. 12-15, 2002. [48] K. Shimokawa, A. Furukawa, K. Okuma, D. Matsushita and. S. Watanabe, "Experimental study on simplification of Darrieustype hydro turbine with inlet nozzle for extra-low head hydropower utilization," Renewable Energy, vol. 41, p. 376–382, 2012. DOI: 10.1016/j.renene.2011.09.017, Database: ScienceDirect [49] Y. Chompoobutrgool, W. Li and L. Vanfretti, "Development and implementation of hydro turbine and governor models in a free and open source software package," Simulation Modelling Practice and Theory, vol. 24, pp. 84 - 102, 2012. DOI: 10.1016/j.simpat.2012.02.005, Database: ScienceDirect. [50] R. Luquet, D. Bellevre, D. Fréchou, P. Perdon and P. Guinard, "Design and model testing of an optimized ducted marine current turbine," International Journal of Marine Energy, vol. 2, p. 61–80, 2013. [51] M. Belhache, S. Guillou, P. GRangeret, A. Santa-Cruz and F. Bellanger, "Fluid Structure Interaction of a loaded Darrieus Marine Current Turbine" in International Conference on Renewable Energies and Power Quality, Bilbao, 2013. [52] Larrea L, Writer, Vibration Analysis of a VAWT – MASTER THESIS INDUSTRIAL ENGINEERING. [Performance]. Universidad Pública de Navarra, 2013. [53] S. Laín, O. López and B. Quintero, "Design Optimization of a Vertical Axis Water Turbine with CFD," Alternative Energies, vol. 34, pp. 113 - 139, 2013. [54] E. Koç, T. Yavu, B. Kılkış, Ö. Erol, A. Balas and T. Aydemir, "Numerical and experimental analysis of the twin-blade hydrofoil for hydro and wind turbine applications," Ocean Engineering, vol. 97, pp. 12 - 20, 2015. DOI:10.1016/j.oceaneng.2014.12.037, Database: ScienceDirect. [55] G. A. Aggidis and A. Židonis, "Hydro turbine prototype testing and generation of performance curves: Fully automated approach," Renewable Energy, vol. 71, p. 433–441, 2014. DOI:10.1016/j.renene.2014.05.043, Database: ScienceDirect. [56] C. Rebollo Mugueta, "Modelling, analysis and options for improvement of horizontal axis wind turbine design," October 2014. [Online]. Available: . unavarra.es/handle/2454/14245. [57] A.H. Muñoz, L.E. Chiang and E.A. De la Jara, "A design tool and fabrication guidelines for small low cost horizontal axis hydrokinetic turbines," Energy for Sustainable Development, vol. 22, p. 21–33, 2014. DOI: 10.1016/j.esd.2014.05.003, Database: ScienceDirect [58] D. Rivadeneira Moya, "Modelación y simulación de la operación de generadores que emplean turbinas hidro-cinéticas en ríos de bajo caudal," marzo 2015. [Online]. Available: http://www.dspace.ups.edu.ec/handle/123456789/8015. [59] V. Peña García, "Diseño de una turbina hidro-cinética para aprovechamiento energético de ríos no caudalosos," 08 marzo 2015. [Online]. Available: http://pirhua.udep.edu.pe/handle/123456789/2058. [Accessed 19 Marzo 2016]. [60] Jiménez C, "Análisis de un sistema de conversión para generación hidrocinética basado en máquinas multifásicas," 23 marzo 2015. [Online]. Available: http://repositorio.utp.edu.co/dspace/handle/11059/5949. [61] G. Thanigaivel, "Design and analysis of drag and lift vertical axis wind turbine" Research gate, pp. 106 - 108, 2015. [62] Ferreira, C. Simao, G. Ben, "Aerofoil optimization for verticalaxis wind turbines" Wind Energy, pp. 1371 - 1585, 2015. [63] C. M. Borg M, "A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines," Offshore and Renewable Energy, Cranfield University, 2015. [64] N. Acharua, C.-G. Kim, B. Thapa and Y.-H. Lee, "Numerical analysis and performance enhancement of a cross-flow hydro turbine," Renewable Energy, vol. 80, pp. 819 - 826, 2015. DOI: 10.1016/j.renene.2015.01.064, Database: ScienceDirect. [65] H. Liu, Y. Lin, M. Shi, W. Li, H. Gu, Q. Xu and Le Tu, "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, vol. 81, p. 31–42, 2015. DOI: 10.1016/j.renene.2015.02.059, Database: ScienceDirect [66] A. Židonis, A. Panagiotopoulos, G. Aggidi, J. Anagnostopoulos and D. Papantonis, "Parametric optimization of two Pelton turbine runner designs using CFD," Journal of Hydrodynamics, Ser. B, vol. 23, no. 3, pp. 403-412, 2015. DOI:10.1016/S1001-6058(15)60498-X, Database: ScienceDirect. [67] W. Schleicher, J. Riglin and A. Oztekin, "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design," Renewable Energy, vol. 76, p. 234–241, 2015. DOI: 10.1016/j.renene.2014.11.032, Database: ScienceDirect [68] B. Wahyud, S. Soeparman and H. Hoeijmaker, "Optimization Design of Savonius Diffuser Blade with Moving Deflector for Hydrokınetıc Cross Flow Turbıne Rotor," Energy Procedia, vol. 68, pp. 244-253, 2015. DOI:10.1016/j.egypro.2015.03.253, Database: ScienceDirect. [69] P. Jaohindy, S. McTavish, F. Garde and A. Bastide, "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, vol. 55, pp. 286 - 295, 2013. DOI: 10.1016/j.renene.2012.12.045, Database: ScienceDirect. [70] R. Lanzafame, S. Mauro and M. Messina, "2D CFD Modelling of H-Darrieus Wind Turbines using a Transition Turbulence Model," Energy Procedia, vol. 45, pp. 131 -140, 2014. DOI: 10.1016/j.egypro.2014.01.015, Database: ScienceDirect [71] A. Krishnan and M. Paraschivoiu, "3D analysis of building mounted VAWT with diffuser shaped shroud," Sustainable Cities and Society, 2015. DOI: 10.1016/j.scs.2015.06.006, Database: ScienceDirect [72] Q. Li, T. Maeda, Y. Kamada, J. Murata, K. Furukawa and M. Yamamoto, "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, vol. 90, pp. 784 - 795, 2015. DOI: 10.1016/j.renene.2016.05.054, Database: ScienceDirect [73] E.A. García Ramos, M.A. Arjona, C.A. Morales "Sistemas de control de velocidad usados en Aerogeneradores de Eje Horizontal" in 15vo CONGRESO NACIONAL DE INGENIERÍA ELECTROMECÁNICA Y DE SISTEMAS (CNIES 2015), México, 2015. [74] A. Rossetti and G. Pavesi, "Comparison of different numerical approaches to the study of H-Darrieus turbines start - up" Renewable Energy, vol. 50, pp. 7-19, 2013. DOI:10.1016/j.renene.2012.06.025. , Database: Environment Complete [75] J. McNaughton, F. Billard and A. Revell, "Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at arrange of tip-speed ratios," Journal of Fluids and Structures, vol. 47, pp. 124 - 138, 2014. [76] Z. Jerónimo and I. Didier, "Fluid-structure interaction and design of Water Current Turbines," Scientific Bulletin of the "Polytechnic" University of Timisoara Transactions on Mechanics, p. 66, 2007. [77] G. Ardizzon, G. Cavazzini, G. Pavesi, “A new generation of small hydro and pumped-hydro power plants: Advances and future challenges,” Renewable and Sustainable Energy Reviews, Volume 31, March 2014, Pages 746-761. DOI:10.1016/j.rser.2013.12.043 Database: ScienceDirect. [78] R. Henri van Els, C. Oliveira, A.M. Díaz, L.F. Balduino "Turbina hidrocinética para poblaciones aisladas" HIDRORED, pp. 13 - 15, 2003. [79] S. Aramayo, S. A. Oller and Sergio, "Material Compuesto Vs Acero En El Conformado De Un Rotor De Turbina Hidroeléctrica – Ventajas En Su Utilización" Revista Iberoamericana de Ingeniería Mecánica, pp. 03-16, 2012. [80] P. Cherian, et al, "Horizontal-axis hydrokinetic water turbine system". Estados Unidos de América Patent US 13191537, 27 07 2011. [81] A-man Zhang, Peng-nan Sun, Fu-ren Ming, A. Colagrossi. Smoothed particle hydrodynamics and its applications in fluid-structure interactions” Journal of Hydrodynamics, pp. 187-216, 2017. [82] Ming-Jian Li, Nian-Mei Zhang, Ming-Jiu Ni “Magneto-fluidstructure interaction issues for vibrating rigid bodies in conducting fluids: The numerical and the analytical approaches” Computers & Structures, pp. 41-57, 2018. [83] Dominic Mokbel, Helmut Abels, Sebastian Aland “A phasefield model for fluid–structure interaction” Jpurnal of Computational Physics, pp.823-840, 2018. [84] GH. R. Kefayati, H. Tang, A. Chan “Immersed Boundary-Finite Difference Lattice Boltzmann method through fluid–structureinteraction for viscoplastic fluids”, Journal of Fluids and Structures, Vol.83, pp. 238-258, 2018. [85] Raja Jayendiran, Bakr Nour, Annie Ruimi “Fluidstructure interaction (FSI) analysis of stent-graft for aortic ndovascular aneurysm repair (EVAR): Material and structural considerations”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 87, pp. 95-110, 2018 |
| dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/OpenAcces |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/OpenAcces Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_16ec |
| dc.format.eng.fl_str_mv |
application/pdf |
| dc.format.extent.spa.fl_str_mv |
10 páginas |
| dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
| dc.publisher.eng.fl_str_mv |
International Review of Electrical Engineering (IREE) |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/40a53e2c-690d-4c7f-9785-23796a1c2fce/download https://red.uao.edu.co/bitstreams/06322ac4-885b-4b80-bdc8-54a13bf4ab1c/download https://red.uao.edu.co/bitstreams/41cca4b5-c083-4e00-8926-65ad8ef7d461/download https://red.uao.edu.co/bitstreams/4dc97c7b-ab93-4e4c-9006-e29d5ee878e4/download |
| bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 b9cd6d8707fc994b6f99f5ae4e16ee05 31734a1af2901535324e62063321dfbc bb854729b22c15561b873c08aa7380fb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053136629727232 |
| spelling |
López Castrillón, Yuri Ulianovvirtual::2672-1Laín Beatove, Santiagovirtual::2671-1Ramírez Tovar, Ana María20200c1f29f8bbd2e5d5ddcd264d5be0Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-06T14:37:57Z2019-11-06T14:37:57Z20181970-8734http://hdl.handle.net/10614/11412https://doi.org/10.15866/ireme.v12i11.15525The increased use of renewable energy resources for rural electrification has encouraged research and experimental projects decreasing designs uncertainties. This paper presents a deep and critical review of the design of micro hydro-generation technologies for river applications. This article shows three principal aspects: design, analysis and computational tools to study vertical micro-turbines, including the ones that are not vertical but that are relevant for the actual research. An exhaustive review is presented and analyzed hereafter. An in-depth review analysis focused on design is carried out. As a result of this work, it is clear that despite the need for interest in using renewable resources technologies, there is still a lack of research about design focused on computational analysis, as evidenced by the limited number of publications so farapplication/pdf10 páginasengInternational Review of Electrical Engineering (IREE)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/OpenAccesAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_16ecSimulating and designing small hydrokinetic turbines: A reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Desarrollo energéticoRecursos energéticosEnergy developmentPower resourcesCFDFluid-structure interactionHydrokinetic turbinesMechanical designRamirez-Tovar, A., López Castrillón, Y., Laín, S., Simulating and Designing Small Hydrokinetic Turbines: a Review, (2018). International Review of Mechanical Engineering (IREME) , 12 (11), 1-10 (876-884) . doi: https://doi.org/10.15866/ireme.v12i11.15525International Review of Mechanical Engineering[1] REN21, "Renewables Global Status Report 2014," REN 21 STEERING COMMITTEE, 2014.[2] I. Boie, C. Kost, S. Bohn, M. Agsten, P. Bretschneider, O. Snjegovyic, M. Publika, M. Ragweed, T. Schlegl and D. Westermann, "Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe – Scenarios for power sector and transmission infrastructure in 2030 and 2050," Renewable Energy, vol. 87, no. 1, pp. 130 - 144, 2016. DOI: 10.1016/j.esd.2015.12.001, Database: ScienceDirect Physics, vol 346. 2017. DOI: 10.1016/j.jcp.2017.06.008, Database: ScienceDirect[3] Instituto de Planificación de Soluciones Energéticas - IPSE, " Soluciones energéticas para las zonas no interconectadas de Colombia," 2014.[4] M. Pehnt, "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, vol. 31, no. 1, pp. 55-71, 2006. DOI: 10.1016/j.renene.2016.04.027, Database|[5] R. Ortiz Flórez, Pequeñas Centrales Hidroeléctricas, Bogotá: Ediciones de la U., 2011.[6] J. Painul, "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, vol. 24, no. 1, p. 73–89, 2001. DOI: 10.1016/S0960-1481(00)00186-5, Database: ScienceDirect[7] W. Margaret Amutha and V. Rajini, "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, vol. 62, pp. 236 - 246, 2016. DOI: 10.1016/j.rser.2016.04.042, Database: ScienceDirect[8] M. Khan, G. Bhuyan, M. T. Iqbal and J. Quaicoe, "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbine for river and tidal applications: A technology status review," Energy, vol. 86, no. 10, pp. 1823 - 1835, 2009. DOI:10.1016/j.apenergy.2009.02.017, Database: ScienceDirect[9] Universidad de Chile, "Centro de Computación Universidad de Chile," [Online]. Available: http://www.cec.uchile.cl/~jfiguero/historia.html. [Accessed Julio 09 2015].[10] J. D. Parres, "Máquinas Hidráulicas," México, 1966.[11] F. Balduzzi, A. Bianchini, G. Ferrara and L. Ferrari, "Dimensionless numbers for the assessment of mesh and time step requirements in CFD simulations of Darrieus wind turbines," Energy, vol. 97, pp. 246 - 261, 2016. DOI:10.1016/j.energy.2015.12.111, Database: ScienceDirect[12] M. C, Turbomáquinas Hidraúlicas, ICAI, 1974.[13] National Aeronautics And Space Administration – NASA, “What is Lift?” May 05 2015 [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/lift1.html[14] A. Beri, Y. Yao. “Double Multiple Stream Tube Model and Numerical Analysis of Vertical Axis Wind Turbine”. Energy and Power Engineering, Vol 3. Pp 262 – 270. 2011[15] P. Tchakoua, R. Wakmkeue, M. Ouhrouche, G. Ekemb and T. Temeghe, A New Approach for Modeling Darrieus- Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of theoretical Formulations and Model Development Energies, 2015.[16] H. Jiang, Y. Li, Z. Cheng, “Performances of ideal wind turbine”, Renewable Energy, Vol 83. Pp 658-662. November 2015. DOI: 10.1016/j.renene.2015.05.013, Database: ScienceDirect[17] G.A van Kuik, “The Lanchester–Betz–Joukowsky limit” Wind Energy, vol. 10 pp. 289–291, 2007[18] R. Vennel, “Exceeding the Betz limit with tidal turbines”, Renewable Energy, Vol 55. Pp 277 – 286. July 2013. DOI:10.1016/j.renene.2012.12.016, Database: ScienceDirect[19] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, “Wind Energy Handbook”. John Wiley & Sons, Ltd. England, 2001.[20] A. Niksiar, M. Sohrabu, “A novel hydrodynamic model for conical spouted beds based on streamtube modelling approach”. Powder Technology, Vol 267. Pp 371-380. November 2014. DOI: 10.1016/j.powtec.2014.08.005, Database: ScienceDirect[21] S. Camporeale, V. Magi, “Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion”. Energy Conversion and Management, Vol 41. Pp 1811-1827. November 2000. DOI: 10.1016/S0196-8904(99)00183-1, Database: ScienceDirect.[22] P. Delafin, L. Wang, “Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines”. Renewable Energy, Vol 109. Pp 564-575. August 2017. DOI: 10.1016/j.renene.2017.03.065, Database: ScienceDirect[23] J.M. Huang y S.K. Ong, «Structure design and analysis with integrated AR-FEA» CIRP Annals – Manufacturing Technology, vol. 66, nº 1, pp. 149-152, 2017[24] L. Wang, R. Quant y A. Kolios, “Fluid structure interaction modeling of horizontal-axis wind turbine blades based on CFD and FEA,” Wind Engineering & Industrial Aerodynamics, vol. 1, pp. 11-25, 2016.[25] Q.Wang, J. Goosen y F.van Keulen, “An efficient fluid–structure interaction model for optimizing twistable flapping wings,” Journal of Fluids and Structures, vol. 73, pp. 82-99, Agosto 2017. DOI: 10.1016/j.jfluidstructs.2017.06.006, Database: ScienceDirect[26] Sang Yu Je, Yoon-Suk Chang, Sung-Sik Kang, “Dynamic characteristics assessment of reactor vessel internals with fluidstructure interaction”. Nuclear Engineering and Technology. 2017. DOI: 10.1016/j.net.2017.05.003, Database: ScienceDirect[28] A. Zhang, P. Sun, F. Ming, A. Colagrossi, “Smoothed particle hydrodynamics and its applications in fluid-structure interactions”. Journal of Hydrodynamics, Ser. B, Vol 29. Pp. 187 – 216. October 2017. DOI: 10.1016/S1001-6058(16)60730-8, Database: ScienceDirect[29] K. Nordanger, A. Rasheed, K. Morten Okstad, A. Morten Kvarving, R. Holdahl, T. Kvamsdal, “Numerical benchmarking of fluid–structure interaction: An isogeometric finite element approach”. Ocean Engineering, Vol 124. Pp 324 – 339. September 2016. DOI: 10.1016/j.oceaneng.2016.07.018, Database: ScienceDirect[30] B. K. Sovacool and L. C. Bulan, "Behind an ambitious mega project in Asia: The history and implications of the Bakun hydroelectric damin Borneo," Energy Policy, vol. 39, pp. 4842 - 4859, 2011.[31] K. Benjamin, L. Sovacool and L.C. Bulan, "Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE)" Renewable Energy, vol. 40, pp. 113 - 129, 2012. DOI: 10.1016/j.renene.2011.09.032, Database: ScienceDirect[32] H. Saldías, H. Ulloa, H. Rudnick and E. Recordón, "Evaluación Comparativa de centrales de generación de energías renovables mediante la aplicación de la nueva ley de energías renovables recientemente aprobada en Chile," 25 mayo 2008. [Online]. Available: http://power.sitios.ing.uc.cl/alumno08/renewables/EXTRAS/The_Chilean_renewables_law.pdf. [Accessed 18 Julio 2016].[33] M. Z. Jacobson and M. A. Delucchi, "Energía sostenible: Objetivo 2030," Investigación y Ciencia, vol. 400, pp. 20 - 27, 2010.[34] H. J. Vermaak, K. Kusakana and S. P. Koko, "Status of microhydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, vol. 29, pp. 625 - 633, 2014. DOI: 10.1016/j.rser.2013.08.066,[35] H. Sy-Ruen, M. Yen-Huai, C. Chia-Fu, S. Kazuichi and A. Toshiyuki, "Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine," Energy Conversion and Management, vol. 86, pp. 727 - 734, 2014. DOI: 10.1016/j.enconman.2014.05.098, Database: ScienceDirect.[36] J. Rohmer, D. Knittel, G. Sturtzer, D. Flieller and J. Renaud, "Modelling and experimental results of an Archimedes screw turbine," Renewable Energy, vol. 94, pp. 136 - 146, 2016. DOI: 10.1016/j.renene.2016.03.044, Database: ScienceDirect.[37] A. López, J. A. Somolinos and L. Ramón Núñez, "Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas," Revista Iberoamericana de Automática e Informática industrial, vol. 11, pp. 224 - 235, 2011. DOI:10.1016/j.riai.2014.02.005, Database: ScienceDirect[38] M. I Shahidul, S. Tarmizi, A. Yassin, A. Othman, H. Zen, T. Ching Hung and L.M. Djun, "Modelling the Energy Extraction from In-stream Water by Multi Stage Blade System of Cross Flow Micro Hydro Turbine," Procedia Engineering, vol. 105, p. 488 – 494, 2015. DOI: 10.1016/j.proeng.2015.05.081, Database: ScienceDirect[39] N. Vatin, N. Lavrov and A. Shipilov, "The Water Intake Facility for Diversion HPPs in Winter Operation Conditions in an Urban Area," Procedia Engineering, vol. 117, p. 369 – 375, 2015. DOI: 10.1016/j.proeng.2015.08.177, Database: ScienceDirect.[40] J. Chen, H.X. Yang, C.P. Liu, C.H. Lau, M. Lo, "A novel vertical axis water turbine for power generation from wáter pipelines" Energy, 2013. DOI: 10.1016/j.energy.2013.01.064, Database: ScienceDirect.[41] S. R. Huang, Y.H. Ma, C.F. Chen, K. Seki, T. Aso, "Theorical and conditional monitoring of a small three-bladed vertical-axis micro hydro turbine" Energy conversion and Management, 2014.[42] S. Laín, B. Quintero, Y. Ulianov and D. Trujillo, "Simulation of Vertical Axis Water Turbines," IEEE, 2012.[43] J. Zanette, D. Imbault and A. Tourabi, "A design methodology for cross flow water turbines," Renewable Energy, vol. 35, pp. 997 - 1009, 2010. DOI: 10.1016/j.renene.2009.09.014, Database: ScienceDirect.[44] S. Patel and P. Pakale, "STUDY ON POWER GENERATION BY USING CROSS FLOW WATER TURBINE IN MICRO HYDRO POWER PLANT," International Journal of Research in Engineering and Technology, pp. 1 - 4, Mayo 2015.[45] D. Kilama Okot, "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, vol. 26, pp. 515 - 620, 2013. DOI: 10.1016/j.rser.2013.05.006, Database: ScienceDirect.[46] G. Samprogna Mohor, D. A. Rodriguez, J. Tomasella and J. Siqueira Júnior, "Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant," Journal of Hydrology: Regional, vol. 4, p. 41–59, 2015. DOI: 10.1016/j.ejrh.2015.04.003, Database: ScienceDirect.[47] Proyecto de FGT I 2012, "Turbinas de río: una alternativa energética para la Amazonía," Hidrored 2002 (1), pp. 12-15, 2002.[48] K. Shimokawa, A. Furukawa, K. Okuma, D. Matsushita and. S. Watanabe, "Experimental study on simplification of Darrieustype hydro turbine with inlet nozzle for extra-low head hydropower utilization," Renewable Energy, vol. 41, p. 376–382, 2012. DOI: 10.1016/j.renene.2011.09.017, Database: ScienceDirect[49] Y. Chompoobutrgool, W. Li and L. Vanfretti, "Development and implementation of hydro turbine and governor models in a free and open source software package," Simulation Modelling Practice and Theory, vol. 24, pp. 84 - 102, 2012. DOI: 10.1016/j.simpat.2012.02.005, Database: ScienceDirect.[50] R. Luquet, D. Bellevre, D. Fréchou, P. Perdon and P. Guinard, "Design and model testing of an optimized ducted marine current turbine," International Journal of Marine Energy, vol. 2, p. 61–80, 2013.[51] M. Belhache, S. Guillou, P. GRangeret, A. Santa-Cruz and F. Bellanger, "Fluid Structure Interaction of a loaded Darrieus Marine Current Turbine" in International Conference on Renewable Energies and Power Quality, Bilbao, 2013.[52] Larrea L, Writer, Vibration Analysis of a VAWT – MASTER THESIS INDUSTRIAL ENGINEERING. [Performance]. Universidad Pública de Navarra, 2013.[53] S. Laín, O. López and B. Quintero, "Design Optimization of a Vertical Axis Water Turbine with CFD," Alternative Energies, vol. 34, pp. 113 - 139, 2013.[54] E. Koç, T. Yavu, B. Kılkış, Ö. Erol, A. Balas and T. Aydemir, "Numerical and experimental analysis of the twin-blade hydrofoil for hydro and wind turbine applications," Ocean Engineering, vol. 97, pp. 12 - 20, 2015. DOI:10.1016/j.oceaneng.2014.12.037, Database: ScienceDirect.[55] G. A. Aggidis and A. Židonis, "Hydro turbine prototype testing and generation of performance curves: Fully automated approach," Renewable Energy, vol. 71, p. 433–441, 2014. DOI:10.1016/j.renene.2014.05.043, Database: ScienceDirect.[56] C. Rebollo Mugueta, "Modelling, analysis and options for improvement of horizontal axis wind turbine design," October 2014. [Online]. Available: . unavarra.es/handle/2454/14245.[57] A.H. Muñoz, L.E. Chiang and E.A. De la Jara, "A design tool and fabrication guidelines for small low cost horizontal axis hydrokinetic turbines," Energy for Sustainable Development, vol. 22, p. 21–33, 2014. DOI: 10.1016/j.esd.2014.05.003, Database: ScienceDirect[58] D. Rivadeneira Moya, "Modelación y simulación de la operación de generadores que emplean turbinas hidro-cinéticas en ríos de bajo caudal," marzo 2015. [Online]. Available: http://www.dspace.ups.edu.ec/handle/123456789/8015.[59] V. Peña García, "Diseño de una turbina hidro-cinética para aprovechamiento energético de ríos no caudalosos," 08 marzo 2015. [Online]. Available: http://pirhua.udep.edu.pe/handle/123456789/2058. [Accessed 19 Marzo 2016].[60] Jiménez C, "Análisis de un sistema de conversión para generación hidrocinética basado en máquinas multifásicas," 23 marzo 2015. [Online]. Available: http://repositorio.utp.edu.co/dspace/handle/11059/5949.[61] G. Thanigaivel, "Design and analysis of drag and lift vertical axis wind turbine" Research gate, pp. 106 - 108, 2015.[62] Ferreira, C. Simao, G. Ben, "Aerofoil optimization for verticalaxis wind turbines" Wind Energy, pp. 1371 - 1585, 2015.[63] C. M. Borg M, "A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines," Offshore and Renewable Energy, Cranfield University, 2015.[64] N. Acharua, C.-G. Kim, B. Thapa and Y.-H. Lee, "Numerical analysis and performance enhancement of a cross-flow hydro turbine," Renewable Energy, vol. 80, pp. 819 - 826, 2015. DOI: 10.1016/j.renene.2015.01.064, Database: ScienceDirect.[65] H. Liu, Y. Lin, M. Shi, W. Li, H. Gu, Q. Xu and Le Tu, "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, vol. 81, p. 31–42, 2015. DOI: 10.1016/j.renene.2015.02.059, Database: ScienceDirect[66] A. Židonis, A. Panagiotopoulos, G. Aggidi, J. Anagnostopoulos and D. Papantonis, "Parametric optimization of two Pelton turbine runner designs using CFD," Journal of Hydrodynamics, Ser. B, vol. 23, no. 3, pp. 403-412, 2015. DOI:10.1016/S1001-6058(15)60498-X, Database: ScienceDirect.[67] W. Schleicher, J. Riglin and A. Oztekin, "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design," Renewable Energy, vol. 76, p. 234–241, 2015. DOI: 10.1016/j.renene.2014.11.032, Database: ScienceDirect[68] B. Wahyud, S. Soeparman and H. Hoeijmaker, "Optimization Design of Savonius Diffuser Blade with Moving Deflector for Hydrokınetıc Cross Flow Turbıne Rotor," Energy Procedia, vol. 68, pp. 244-253, 2015. DOI:10.1016/j.egypro.2015.03.253, Database: ScienceDirect.[69] P. Jaohindy, S. McTavish, F. Garde and A. Bastide, "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, vol. 55, pp. 286 - 295, 2013. DOI: 10.1016/j.renene.2012.12.045, Database: ScienceDirect.[70] R. Lanzafame, S. Mauro and M. Messina, "2D CFD Modelling of H-Darrieus Wind Turbines using a Transition Turbulence Model," Energy Procedia, vol. 45, pp. 131 -140, 2014. DOI: 10.1016/j.egypro.2014.01.015, Database: ScienceDirect[71] A. Krishnan and M. Paraschivoiu, "3D analysis of building mounted VAWT with diffuser shaped shroud," Sustainable Cities and Society, 2015. DOI: 10.1016/j.scs.2015.06.006, Database: ScienceDirect[72] Q. Li, T. Maeda, Y. Kamada, J. Murata, K. Furukawa and M. Yamamoto, "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, vol. 90, pp. 784 - 795, 2015. DOI: 10.1016/j.renene.2016.05.054, Database: ScienceDirect[73] E.A. García Ramos, M.A. Arjona, C.A. Morales "Sistemas de control de velocidad usados en Aerogeneradores de Eje Horizontal" in 15vo CONGRESO NACIONAL DE INGENIERÍA ELECTROMECÁNICA Y DE SISTEMAS (CNIES 2015), México, 2015.[74] A. Rossetti and G. Pavesi, "Comparison of different numerical approaches to the study of H-Darrieus turbines start - up" Renewable Energy, vol. 50, pp. 7-19, 2013. DOI:10.1016/j.renene.2012.06.025. , Database: Environment Complete[75] J. McNaughton, F. Billard and A. Revell, "Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at arrange of tip-speed ratios," Journal of Fluids and Structures, vol. 47, pp. 124 - 138, 2014.[76] Z. Jerónimo and I. Didier, "Fluid-structure interaction and design of Water Current Turbines," Scientific Bulletin of the "Polytechnic" University of Timisoara Transactions on Mechanics, p. 66, 2007.[77] G. Ardizzon, G. Cavazzini, G. Pavesi, “A new generation of small hydro and pumped-hydro power plants: Advances and future challenges,” Renewable and Sustainable Energy Reviews, Volume 31, March 2014, Pages 746-761. DOI:10.1016/j.rser.2013.12.043 Database: ScienceDirect.[78] R. Henri van Els, C. Oliveira, A.M. Díaz, L.F. Balduino "Turbina hidrocinética para poblaciones aisladas" HIDRORED, pp. 13 - 15, 2003.[79] S. Aramayo, S. A. Oller and Sergio, "Material Compuesto Vs Acero En El Conformado De Un Rotor De Turbina Hidroeléctrica – Ventajas En Su Utilización" Revista Iberoamericana de Ingeniería Mecánica, pp. 03-16, 2012.[80] P. Cherian, et al, "Horizontal-axis hydrokinetic water turbine system". Estados Unidos de América Patent US 13191537, 27 07 2011.[81] A-man Zhang, Peng-nan Sun, Fu-ren Ming, A. Colagrossi. Smoothed particle hydrodynamics and its applications in fluid-structure interactions” Journal of Hydrodynamics, pp. 187-216, 2017.[82] Ming-Jian Li, Nian-Mei Zhang, Ming-Jiu Ni “Magneto-fluidstructure interaction issues for vibrating rigid bodies in conducting fluids: The numerical and the analytical approaches” Computers & Structures, pp. 41-57, 2018.[83] Dominic Mokbel, Helmut Abels, Sebastian Aland “A phasefield model for fluid–structure interaction” Jpurnal of Computational Physics, pp.823-840, 2018.[84] GH. R. Kefayati, H. Tang, A. Chan “Immersed Boundary-Finite Difference Lattice Boltzmann method through fluid–structureinteraction for viscoplastic fluids”, Journal of Fluids and Structures, Vol.83, pp. 238-258, 2018.[85] Raja Jayendiran, Bakr Nour, Annie Ruimi “Fluidstructure interaction (FSI) analysis of stent-graft for aortic ndovascular aneurysm repair (EVAR): Material and structural considerations”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 87, pp. 95-110, 2018Publicationef4078a5-d368-4d6b-8ff4-60a1414ef26dvirtual::2672-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2671-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2671-1ef4078a5-d368-4d6b-8ff4-60a1414ef26dvirtual::2672-1https://scholar.google.com/citations?user=n3evWVcAAAAJ&hl=envirtual::2672-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2671-10000-0001-5411-2786virtual::2672-10000-0002-0269-2608virtual::2671-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144550virtual::2672-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2671-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/40a53e2c-690d-4c7f-9785-23796a1c2fce/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSimulating and designing small hydrokinetic turbines - A review.pdfSimulating and designing small hydrokinetic turbines - A review.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf316624https://red.uao.edu.co/bitstreams/06322ac4-885b-4b80-bdc8-54a13bf4ab1c/downloadb9cd6d8707fc994b6f99f5ae4e16ee05MD53TEXTSimulating and designing small hydrokinetic turbines - A review.pdf.txtSimulating and designing small hydrokinetic turbines - A review.pdf.txtExtracted texttext/plain50076https://red.uao.edu.co/bitstreams/41cca4b5-c083-4e00-8926-65ad8ef7d461/download31734a1af2901535324e62063321dfbcMD54THUMBNAILSimulating and designing small hydrokinetic turbines - A review.pdf.jpgSimulating and designing small hydrokinetic turbines - A review.pdf.jpgGenerated Thumbnailimage/jpeg13795https://red.uao.edu.co/bitstreams/4dc97c7b-ab93-4e4c-9006-e29d5ee878e4/downloadbb854729b22c15561b873c08aa7380fbMD5510614/11412oai:red.uao.edu.co:10614/114122024-03-07 08:11:30.305https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |
