CFD Simulation of stirling engines: A review
Stirling engines (SEs) have long attracted the attention of renewable energy researchers due to their external combustion design and flexibility in operating with various heat sources. The mathematical analysis of these devices is conducted by using a broad range of models ranging from basic zero-or...
- Autores:
-
Laín Beatove, Santiago
Vidal Medina, Juan Ricardo
Villamíl, Valentina
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/16167
- Acceso en línea:
- https://hdl.handle.net/10614/16167
https://doi.org/10.3390/pr12112360
https://red.uao.edu.co/
- Palabra clave:
- Numerical simulation
Stirling engine
CFD
Transient compressible flow
Dynamic meshes
Heat transfer
Simulación numérica
Motor Stirling
CFD
Flujo compresible transitorio
Mallas dinámicas
Transferencia de calor
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2024
id |
REPOUAO2_94699d13c4c8e1f191a081de7027002b |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/16167 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
CFD Simulation of stirling engines: A review |
dc.title.alternative.spa.fl_str_mv |
Simulación CFD de motores Stirling: Una revisión |
title |
CFD Simulation of stirling engines: A review |
spellingShingle |
CFD Simulation of stirling engines: A review Numerical simulation Stirling engine CFD Transient compressible flow Dynamic meshes Heat transfer Simulación numérica Motor Stirling CFD Flujo compresible transitorio Mallas dinámicas Transferencia de calor |
title_short |
CFD Simulation of stirling engines: A review |
title_full |
CFD Simulation of stirling engines: A review |
title_fullStr |
CFD Simulation of stirling engines: A review |
title_full_unstemmed |
CFD Simulation of stirling engines: A review |
title_sort |
CFD Simulation of stirling engines: A review |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Vidal Medina, Juan Ricardo Villamíl, Valentina |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Vidal Medina, Juan Ricardo Villamíl, Valentina |
dc.subject.proposal.eng.fl_str_mv |
Numerical simulation Stirling engine CFD Transient compressible flow Dynamic meshes Heat transfer |
topic |
Numerical simulation Stirling engine CFD Transient compressible flow Dynamic meshes Heat transfer Simulación numérica Motor Stirling CFD Flujo compresible transitorio Mallas dinámicas Transferencia de calor |
dc.subject.proposal.spa.fl_str_mv |
Simulación numérica Motor Stirling CFD Flujo compresible transitorio Mallas dinámicas Transferencia de calor |
description |
Stirling engines (SEs) have long attracted the attention of renewable energy researchers due to their external combustion design and flexibility in operating with various heat sources. The mathematical analysis of these devices is conducted by using a broad range of models ranging from basic zero-order to highly detailed fourth-order models, which are implemented through Computational Fluid Dynamics (CFD) simulations. The unique features of this last approach, combined with the increase in computing power, have promoted the use of CFD as a tool for analyzing SEs in recent years, significantly reducing the costs associated with prototype construction. However, Stirling CFD simulations are sophisticated due to the variety of physical phenomena involved, such as volume change, conjugated heat transfer, turbulent compressible fluid dynamics, and flow through porous media in the regenerator. Furthermore, there is currently no comprehensive review of CFD simulations of SEs in the literature; therefore, this contribution aims to fill that gap. Emphasis has been placed on identifying the type of engine, the physical phenomena modeled, the simplifying assumptions, and specific numerical aspects, such as mesh type, spatial and temporal discretization, and the order of the numerical schemes used. As a result, it has been found that in many cases, CFD numerical reports lack sufficient detail to ensure the reproducibility of the simulations. This work proposes guidelines for reporting CFD studies on Stirling engines to address this issue. Additionally, the need for a sufficiently detailed experimental benchmark database to validate future CFD studies is stressed. Finally, the use of Large Eddy Simulations on coupled key engine components—such as compression and expansion spaces, pistons, displacer, and regenerator—is suggested to provide further insights into the specific flow and heat transfer characteristics in Stirling engines |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-06-12T20:07:48Z |
dc.date.available.none.fl_str_mv |
2025-06-12T20:07:48Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Laín Beatove, S.; Vidal Medina, J. R. y Villamíl, V. (2024). CFD Simulation of stirling engines: A review. Processes 12(11). https://doi.org/10.3390/pr12112360 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16167 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/pr12112360 |
dc.identifier.eissn.spa.fl_str_mv |
22279717 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Laín Beatove, S.; Vidal Medina, J. R. y Villamíl, V. (2024). CFD Simulation of stirling engines: A review. Processes 12(11). https://doi.org/10.3390/pr12112360 22279717 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/16167 https://doi.org/10.3390/pr12112360 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.spa.fl_str_mv |
26 |
dc.relation.citationissue.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
12 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Processes |
dc.relation.references.none.fl_str_mv |
1. Moonka, G.; Surana, H.; Singh, H.R. Study on some aspects of Stirling engine: A path to solar Stirling engines. Mater. Today Proc. 2022, 63, 737–744. [CrossRef] 2. Yang, C. Promising Stirling Engine: Advancement and Applications. Highlights Sci. Eng. Technol. 2024, 88, 827–834. [CrossRef] 3. Kubule, A.; Kramens, J.; Bimbere, M.; Pedišius, N.; Blumberga, D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024, 17, 383. [CrossRef] 4. Bianchi, M.; De Pascale, A. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energy 2011, 88, 1500–1509. [CrossRef] 5. Perozziello, C.; Grosu, L.; Vaglieco, B.M. Free-Piston Stirling Engine Technologies and Models: A Review. Energies 2021, 14, 7009. [CrossRef] 6. Der Minassians, A. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation. Ph.D. Thesis, University of Berkeley, Berkeley, CA, USA, 2007. 7. Féniès, G.; Formosa, F.; Ramousse, J.; Badel, A. Double acting Stirling engine: Modelling, experiments and optimization. Appl. Energy 2015, 159, 350–361. [CrossRef] 8. Thombare, D.G.; Verma, S.K. Technological development in the Stirling cycle engines. Renew. Sustain. Energy Rev. 2008, 12, 1–38. [CrossRef] 9. Vineeth, C.S. Stirling Engines: A Beginners Guide, 2nd ed.; 2011; Available online: https://www.google.com.co/books/edition/ Stirling_Engines/zTdzKxQaqNcC?hl=es-419&gbpv=0 (accessed on 26 May 2024). 10. Wang, K.; Sanders, S.R.; Dubey, S.; Choo, F.H.; Duan, F. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renew. Sustain. Energy Rev. 2016, 62, 89–108. [CrossRef] 11. Zeiler, M.; Padinger, R.; Spitzer, J.; Podesser, E. Operating experiences with biomass driven Stirling engines; 3 kW and 30 kW. In Proceedings of the 13th International Stirling Conference, Tokyo, Japan, 23–26 September 2007. 12. Bataineh, K. Mathematical formulation of alpha-type Stirling engine with Ross Yoke mechanism. Energy 2018, 164, 1178–1199. [CrossRef] 13. Vinoth Kumar, D. Modification of an alpha stirling engine with an venturi based working fluid control system to promote its automotive applications. Int. J. Mech. Eng. Robot. Res. 2014, 3, 101–113. 14. Ahmadi, M.H.; Ahmadi, M.A.; Pourfayaz, F. Thermal models for analysis of performance of Stirling engine: A review. Renew. Sustain. Energy Rev. 2017, 68, 168–184. [CrossRef] 15. Timoumi, Y.; Tlili, I.; Ben Nasrallah, S. Design and performance optimization of GPU-3 Stirling engines. Energy 2008, 33, 1100–1114. [CrossRef] 16. Singh, U.R.; Kumar, A. Review on solar Stirling engine: Development and performance. Therm. Sci. Eng. Prog. 2018, 8, 244–256. [CrossRef] 17. Schneider, T.; Müller, D.; Karl, J. A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power. Renew. Sustain. Energy Rev. 2020, 134, 110288. [CrossRef] 18. Getie, M.Z.; Lanzetta, F.; Bégot, S.; Admassu, B.T.; Hassen, A.A. Reversed regenerative Stirling cycle machine for refrigeration application: A review. Int. J. Refrig. 2020, 118, 173–187. [CrossRef] 19. Zare, S.; Tavakolpour-saleh, A.R.; Aghahosseini, A.; Sangdani, M.H.; Mirshekari, R. Design and optimization of Stirling engines using soft computing methods: A review. Appl. Energy 2021, 283, 116258. [CrossRef] 20. Zayed, M.E.; Zhao, J.; Elsheikh, A.H.; Li,W.; Sadek, S.; Aboelmaaref, M.M. A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 2021, 283, 124664. [CrossRef] 21. Malik, M.Z.; Shaikh, P.H.; Zhang, S.; Lashari, A.A.; Leghari, Z.H.; Baloch, M.H.; Memon, Z.A.; Caiming, C. A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Rep. 2022, 8, 4128–4154. [CrossRef] 22. Boretti, A. α–Stirling hydrogen engines for concentrated solar power. Int. J. Hydrogen Energy 2021, 46, 16241–16247. [CrossRef] 23. Zhu, S.; Yu, G.; Liang, K.; Dai, W.; Luo, E. A review of Stirling-engine-based combined heat and power technology. Appl. Energy 2021, 294, 116965. [CrossRef] 24. Zhang, L.; Han, K.;Wang, Y.; Zhu, Y.; Zhong, S.; Zhong, G. A bibliometric analysis of Stirling engine and in-depth review of its application for energy supply systems. Energy Rev. 2023, 2, 100048. [CrossRef] 25. Martini, R. Stirling Engine Design Manual, 2nd ed.; NASA Report CR-168088; NASA: Washington, DC, USA, 1983. 26. Chen, N.C.J.; Griffin, F.P. A Review of Stirling Engine Mathematical Models; Oak Ridge National Laboratory ORNL/CON-135; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1983. 27. West, C.D. Principles and Applications of Stirling Engines, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1986. 28. Urieli, I.; Berchowitz, D.M. Stirling Cycle Engine Analysis, 1st ed.; Taylor and Francis: London, UK, 1984. 29. Urieli, I. A Computer Simulation of Stirling Cycle Machines. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 1977. 30. Finkelstein, T. Generalized Thermodynamic Analysis of Stirling Engines; SAE Technical Paper 600222; SAE:Warrendale, PA, USA, 1960. [CrossRef] 31. Dyson, R.W.;Wilson, S.D.; Tew, R.C. Review of Computational Stirling Analysis Methods; NASA/TM—2004-213300 Report; NASA: Washington, DC, USA, 2004. 32. Alfarawi, S.; Al-Dadah, R.; Mahmoud, S. Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation. Energy Convers. Manag. 2016, 124, 130–140. [CrossRef] 33. Chen,W.L.;Wong, K.L.; Chang, Y.F. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine. Int. J. Heat Mass Transf. 2014, 75, 145–155. [CrossRef] 34. Kuban, L.; Stempka, J.; Tyliszczak, A. A 3D-CFD study of a γ-type Stirling engine. Energy 2019, 169, 142–159. [CrossRef] 35. Mahkamov, K. Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling. J. Energy Resour. Technol. 2006, 128, 203–215. [CrossRef] 36. Versteeg, H.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson: Essex, UK, 2007. 37. López, O.D.; Quiñones, J.J.; Lain, S. RANS and Hybrid RANS-LES simulations of an H-type Darrieus vertical axis water turbine. Energies 2018, 11, 2348. [CrossRef] 38. Lain, S.; García, M.; Quintero, B.; Orrego, S. CFD numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33. [CrossRef] 39. O’Brien, J.M.; Young, T.M.; Early, J.M.; Griffin, P.C. An assessment of commercial CFD turbulence models for near wake HAWT modelling. J. Wind. Eng. Ind. Aerodyn. 2018, 176, 32–53. [CrossRef] 40. Sanaye, S.; Farvizi, A. Optimizing a vertical axis wind turbine with helical blades: Application of 3D CFD and Taguchi method. Energy Rep. 2024, 12, 2527–2547. [CrossRef] 41. Lain, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef] 42. Nassini, P.C.; Pampaloni, D.; Meloni, R.; Andreini, A. Lean blow-out prediction in an industrial gas turbine combustor through a LES-based CFD analysis. Combust. Flame 2021, 229, 111391. [CrossRef] 43. Baratta, M.; Chiriches, S.; Goel, P.; Misul, D. CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transp. Eng. 2020, 2, 100018. [CrossRef] 44. Chaturvedi, S.; Santhosh, R.; Mashruk, S.; Yadav, R.; Valera-Medina, A. Prediction of NOx emissions and pathways in premixed ammonia-hydrogen-air combustion using CFD-CRN methodology. J. Energy Inst. 2023, 111, 101406. [CrossRef] 45. Li, Z.; Tang, D.; Du, J.; Li, T. Study of the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility. Appl. Therm. Eng. 2011, 31, 1780–1789. [CrossRef] 46. Khoshvaght-Aliabadi, M.; Ghodrati, P.; Mahian, O.; Kang, Y.T. CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants’ supercritical CO2 cycle. Energy 2024, 292, 130418. [CrossRef] 47. Tarodiya, R.; Khullar, S.; Levy, A. Particulate flow and erosion modeling of a Pelton turbine injector using CFD-DEM simulations. Powder Technol. 2022, 399, 117168. [CrossRef] 48. Ahmed, S.; Hassan, A.; Zubair, R.; Rashid, S.; Ullah, A. Design modification in an industrial multistage orifice to avoid cavitation using CFD simulation. J. Taiwan Inst. Chem. Eng. 2023, 148, 104833. [CrossRef] 49. López, O.D.; Mejía, O.E.; Escorcia, K.M.; Suárez, F.; Lain, S. Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications. Processes 2021, 9, 1933. [CrossRef] 50. Krzemianowski, Z.; Kaniecki, M. Low-head high specific speed Kaplan turbine for small hydropower—Design, CFD loss analysis and basic, cavitation and runaway investigations: A case study. Energy Convers. Manag. 2023, 276, 116558. [CrossRef] 51. Tushar Choudahry, S. Computational analysis of IR-SOFC: Thermodynamic, electrochemical process and flow configuration dependency. Int. J. Hydrogen Energy 2016, 41, 1259–1271. [CrossRef] 52. Gadhewal, R.; Ananthula, V.V.; Patnaikuni, V.S. CFD simulation of hot spot in PEM fuel cell with diverging and converging flow channels. Mater. Today Proc. 2023, 72, 410–416. [CrossRef] 53. Zhang, L.; Yu, X.; Lv, Q.; Cao, F.;Wang, X. Study of transient indoor temperature for a HVAC room using a modified CFD method. Energy Procedia 2019, 160, 420–427. [CrossRef] 54. Lain, S.; Sommerfeld, M.; Quintero, B. Numerical simulation of secondary flow in pneumatic conveying of solid particles in a horizontal circular pipe. Braz. J. Chem. Eng. 2009, 26, 583–594. [CrossRef] 55. Zhang, J.; Poon, K.H.; Kwok, H.H.L.; Hou, F.; Cheng, J.C.P. Predictive control of HVAC by multiple output GRU—CFD integration approach to manage multiple IAQ for commercial heritage building preservation. Build. Environ. 2023, 245, 110802. [CrossRef] 56. Lain, S.; Sommerfeld, M. A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Braz. J. Chem. Eng. 2007, 24, 535–546. [CrossRef] 57. Islam, M.T.; Chen, Y.; Seong, D.; Verhougstraete, M.; Son, Y.J. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Heliyon 2024, 10, e35092. [CrossRef] 58. Salazar, J.L.; Chen,W.L. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β -type Stirling engine. Energy Convers. Manag. 2014, 88, 177–188. [CrossRef] 59. Chen,W.L. A study on the effects of geometric parameters in a low-temperature differential gamma-type Stirling engine using CFD. Int. J. Heat Mass Transf. 2017, 107, 1002–1013. [CrossRef] 60. Chen, W.L.; Yang, Y.C.; Salazar, J.L. CFD parametric study on the performance of a low-temperature-differential γ -type Stirling engine. Energy Convers. Manag. 2015, 106, 635–643. [CrossRef] 61. Kato, Y.; Saitoh, S.; Ishimatsu, K.; Iwamoto, M. Effect of geometry and speed on the temperatures estimated by CFD for an isothermal model of a gamma configuration low temperature differential Stirling engine with Flat-shaped heat exchangers. Appl. Therm. Eng. 2017, 115, 111–122. [CrossRef] 62. Mohammadi, M.A.; Jafarian, A. CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine. Energy 2018, 153, 287–300. [CrossRef] 63. Caughley, A.; Sellier, M.; Gschwendtner, M.; Tucker, A. CFD analysis of a diaphragm free-piston Stirling cryocooler. Cryogenics 2016, 79, 7–16. [CrossRef] 64. Regalado-Rodríguez, N.; Militello, C. Comparative study of the effects of increasing heat transfer area within compression and expansion chambers in combination with modified pistons in Stirling engines. A simulation approach based on CFD and a numerical thermodynamic model. Energy Convers. Manag. 2022, 263, 115930. [CrossRef] 65. Dai, Z.; Wang, C.; Zhang, D.; Tian, W.; Qiu, S.; Su, G.H. Design and heat transfer optimization of a 1 kW free-piston Stirling engine for space reactor power system. Nucl. Eng. Technol. 2021, 53, 2184–2194. [CrossRef] 66. Papurello, D.; Bertino, D.; Santarelli, M. CFD Performance Analysis of a Dish-Stirling System for Microgeneration. Processes 2021, 9, 1142. [CrossRef] 67. Almajri, A.K.; Mahmoud, S.; Al-Dadah, R. Modelling and parametric study of an efficient Alpha type Stirling engine performance based on 3D CFD analysis. Energy Convers. Manag. 2017, 145, 93–106. [CrossRef] 68. Ahmed, H.; Almajri, A.K.; Mahmoud, S.; Al-Dadah, R.; Ahmad, A. CFD modelling and parametric study of small-scale Alpha type Stirling Cryocooler. Energy Procedia 2017, 142, 1668–1673. [CrossRef] 69. Abuelyamen, A.; Ben-Mansour, R. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling. Int. J. Therm. Sci. 2018, 132, 411–423. [CrossRef] 70. Buli ´nsky, Z.; Szczygieł, I.; Krysinski, T.; Stanek,W.; Czarnowska, L.; Gładysz, P.; Kabaj, A. Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy. Energy 2017, 141, 2559–2571. [CrossRef] 71. Buli ´nsky, Z.; Szczygieł, I.; Kabaj, A.; Krysinski, T.; Gładysz, P.; Czarnowska, L.; Stanek, W. Performance analysis of the small-scale α-type stirling engine using computational fluid dynamics tools. J. Energy Resour. Technol. 2018, 140, 032001. [CrossRef] 72. Buli ´nsky, Z.; Kabaj, A.; Krysi ´ nski, T.; Szczygieł, I.; Stanek, W.; Rutczyk, B.; Czarnowska, L.; Gładysz, P. A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions. Energy Convers. Manag. 2019, 195, 125–138. [CrossRef] 73. Xiao, G.; Sultan, U.; Ni, M.; Peng, H.; Zhou, X.; Wang, S.; Luo, Z. Design optimization with computational fluid dynamic analysis of β-type Stirling engine. Appl. Therm. Eng. 2018, 113, 87–102. [CrossRef] 74. Kumaravelu, T.; Saadon, S.; Abu Talib, A.R. Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system. Energy 2022, 239, 121881. [CrossRef] 75. Aksoy, F.; Cinar, C. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism. Energy Convers. Manag. 2013, 75, 319–324. [CrossRef] 76. El-Ghafour, S.A.; El-Ghandour, M.; Mikhael, N.N. Three-dimensional computational fluid dynamics simulation of Stirling engine. Energy Convers. Manag. 2019, 180, 533–549. [CrossRef] 77. Chi, C.; Mou, J.; Lin, M.; Hong, G. CFD simulation and investigation on the operating mechanism of a beta-type free piston Stirling engine. Appl. Therm. Eng. 2020, 166, 114751. [CrossRef] 78. Cheng, C.H.; Chen, Y.F. Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine. Appl. Therm. Eng. 2017, 121, 554–561. [CrossRef] 79. Castro Caetano, B.; Figueiredo Lara, I.; Ungaretti Borges, M.; Sandoval, O.R.; Molina Valle, R. A novel methodology on beta-type Stirling engine simulation using CFD. Energy Convers. Manag. 2019, 184, 510–520. [CrossRef] 80. Rogdakis, E.; Bitsikas, P.; Dogkas, G.; Antonakos, G. Three-dimensional CFD study of a β-type Stirling Engine. Therm. Sci. Eng. Prog. 2019, 11, 302–316. [CrossRef] 81. Bitsikas, P.; Rogdakis, E.; Dogkas, G. CFD study of heat transfer in Stirling engine regenerator. Therm. Sci. Eng. Prog. 2020, 17, 100492. [CrossRef] 82. Ben-Mansour, R.; Abuelyamen, A.; Mokheimer, E.M.A. CFD analysis of radiation impact on Stirling engine performance. Energy Convers. Manag. 2017, 152, 354–356. [CrossRef] 83. Arslan, T.A.; Solmaz, H.; Ipci, D.; Aksoy, F. Investigation of the effect of compression ratio on performance of a beta type Stirling engine with rhombic mechanism by CFD analysis. Environ. Prog. Sustain. Energy 2023, 42, e14076. [CrossRef] 84. Abuelyamen, A.; Ben-Mansour, R.; Abualhamayel, H.; Mokheimer, E.M.A. Parametric study on beta-type Stirling engine. Energy Convers. Manag. 2017, 145, 53–63. [CrossRef] 85. Thieme, L. High-Power Baseline and Motoring Test Results for the GPU-3 Stirling Engine; DOE/NASA/51040-31, NASA TM-82646; NASA:Washington, DC, USA, 1981. 86. Yu, G.Y.; Luo, E.C.; Dai, W.; Hu, J.Y. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics. J. Appl. Phys. 2007, 102, 074901. [CrossRef] 87. Xia, M.; Chen, X. Analysis of resonant frequency of moving magnet linear compressor of stirling cryocooler. Int. J. Refrig. 2010, 33, 739–744. [CrossRef] 88. Chen, G.;Wang, Y.; Tang, L.;Wang, K.; Yu, Z. Large Eddy Simulation of thermally induced oscillatory flow in a thermoacustic engine. Appl. Energy 2020, 276, 115458. [CrossRef] 89. Mahkamov, K. An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of theWorking Process of a Solar Stirling Engine. J. Sol. Energy Eng. 2006, 128, 45–53. [CrossRef] 90. Qiu, S.; Gao, Y.; Rinker, G.; Yanaga, K. Development of an advanced free-piston Stirling engine for micro combined heating and power application. Appl. Energy 2019, 235, 987–1000. [CrossRef] 91. Zhao,W.; Li, R.; Li, H.; Zhang, Y.; Qiu, S. Numerical analysis of fluid dynamics and thermodynamics in Stirling engine. Appl. Therm. Eng. 2021, 189, 116727. [CrossRef] 92. Umair, M.; Shah, A.N.; Kamran, M.S.; Farhan, M.; Anwar, Z. The CFD methodology for simulating pumping loss from displacer and piston seals of free piston Stirling engine. Therm. Sci. 2022, 26, 13–23. [CrossRef] 93. Kim, H.S.; Gwak, I.C.; Lee, S.H. Numerical analysis of heat transfer area effect on cooling performance in regenerator of free-piston Stirling cooler. Case Stud. Therm. Eng. 2022, 32, 101875. [CrossRef] 94. Costa, S.C.; Barrutia, H.; Esnaola, J.A.; Tutar, M. Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2013, 67, 57–65. [CrossRef] 95. Costa, S.C.; Barrutia, H.; Esnaola, J.A.; Tutar, M. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2014, 79, 255–264. [CrossRef] 96. Costa, S.C.; Tutar, M.; Barreno, I.; Esnaola, J.A.; Barrutia, H.; García, D.; Gonzalez, M.A.; Prieto, J.I. Experimental and numerical flow investigation of Stirling engine regenerator. Energy 2014, 72, 800–812. [CrossRef] 97. Costa, S.C.; Barreno, I.; Tutar, M.; Esnaola, J.A.; Barrutia, H. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2015, 89, 473–483. [CrossRef] 98. Barreno, I.; Costa, S.C.; Cordon, M.; Tutar, M.; Urrutibeascoa, I.; Gomez, X.; Castillo, G. Numerical correlation for the pressure drops in Stirling engine heat exchangers. Int. J. Therm. Sci. 2015, 97, 68–81. [CrossRef] 99. York, B.T.; MacDonald, B.D. Influence of misalignment and spacing on the pressure drop through wire mesh Stirling engine regenerators. Energy Convers. Manag. 2021, 245, 114588. [CrossRef] 100. Mancisidor, A.M.; Gil, E.; Garciandia, F.; San Sebastian, M.; Lizaso, O.; Escubi, M. Stirling engine regenerator based on lattice structures manufactured by selective laser melting. Procedia CIRP 2018, 74, 72–75. [CrossRef] 101. Beni, H.M.; Mortazavi, H. Mathematical modeling of the solar regenerative heat exchanger under turbulent oscillating flow: Applications of renewable and sustainable energy and artificial heart. Results Eng. 2022, 13, 100321. [CrossRef] 102. Zhao, Y.; Dang, H. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics 2016, 73, 53–59. [CrossRef] 103. Dang, H.; Zhao, Y. CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30–35 K using mixed stainless steel mesh regenerator matrices. Cryogenics 2016, 78, 40–50. [CrossRef] 104. Zhao, Y.; Yu, G.; Tan, J.; Mao, X.; Li, J.; Zha, R.; Li, N.; Dang, H. CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170 Hz. Cryogenics 2018, 90, 30–40. [CrossRef] 105. Clearman, W.M.; Cha, J.S.; Ghiaasiaan, S.M.; Kirkconnell, C.S. Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators. Cryogenics 2008, 48, 112–121. [CrossRef] 106. Karabulut, H.; Yücesu, H.S.; Koca, A. Manufacturing and testing of a V-type Stirling engine. Turk. J. Eng. Environ. Sci. 2000, 24, 71–80. 107. Sun, H.; Yu, G.; Zhao, D.; Dai, W.; Luo, E. Numerical and experimental investigations on coiled resonance tube of a duplex Stirling cryocooler. Appl. Therm. Eng. 2024, 238, 121930. [CrossRef] 108. Phung, D.T.; Cheng, C.H. Investigating dynamic characteristics and thermal-lag phenomenon in a thermal-lag engine using a CFD-mechanism dynamics model. Appl. Therm. Eng. 2024, 236, 121926. [CrossRef] 109. Papis-Fraczek, K.; Zoładek, M.; Filipowicz, M. The possibilities of upgrading an existing concentrating solar thermal system—Case study. Energy Rep. 2021, 7, 28–32. [CrossRef] 110. Li, Z.; Haramura, Y.; Tang, D.; Guo, C. Analysis on the heat transfer characteristics of a micro-channel type porous-sheets Stirling regenerator. Int. J. Therm. Sci. 2015, 94, 37–49. [CrossRef] 111. Li, Z.; Haramura, Y.; Kato, Y.; Tang, D. Analysis of a high-performance model Stirling engine with compact porous-sheets heat exchangers. Energy 2014, 64, 31–43. [CrossRef] 112. García, D.; Suárez, M.J.; Blanco, E.; Prieto, J.I. Experimental correlations and CFD model of a non-tubular heater for a Stirling solar engine micro-cogeneration unit. Appl. Therm. Eng. 2019, 153, 715–725. [CrossRef] 113. Andersson, B.; Andersson, R.; Håkanson, L.; Mortensen, M.; Sudiyo, R.; vanWachem, B. Best practice guidelines. In Computational Fluid Dynamics for Engineers, 1st ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 174–180. [CrossRef] 114. Roache, P.J. Verification and Validation in Computational Science and Engineering, 1st ed.; Hermosa Publishers: Albuquerque, NM, USA, 1998. 115. Impagnatiello, M.; Bolla, M.; Keskinen, K.; Giannakopoulos, G.; Frouzakis, C.E.; Wright, Y.M.; Bolouchos, K. Systematic assessment of data-driven approaches for wall heat transfer modelling for LES in IC engines using DNS data. Int. J. Heat Mass Transf. 2022, 183, 122109. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
26 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Suiza |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/9b15b505-1730-4aaf-af4f-7f694a00aad1/download https://red.uao.edu.co/bitstreams/7088461b-cad0-4450-8f72-6b08e497f50b/download https://red.uao.edu.co/bitstreams/5c8f9fc7-f2b0-40bf-946b-b46075166409/download https://red.uao.edu.co/bitstreams/7aa98093-3270-48cb-ba04-fd0ee915ea01/download |
bitstream.checksum.fl_str_mv |
d840b1bea2a9cf0963f4132df6e7b2bf 6987b791264a2b5525252450f99b10d1 8691471a030707ed1430b9d9a4abc1d2 3216fe4a2d34b319273e50e2cede01b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1837099041615249408 |
spelling |
Laín Beatove, Santiagovirtual::6088-1Vidal Medina, Juan Ricardovirtual::6089-1Villamíl, Valentina2025-06-12T20:07:48Z2025-06-12T20:07:48Z2024Laín Beatove, S.; Vidal Medina, J. R. y Villamíl, V. (2024). CFD Simulation of stirling engines: A review. Processes 12(11). https://doi.org/10.3390/pr12112360https://hdl.handle.net/10614/16167https://doi.org/10.3390/pr1211236022279717Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Stirling engines (SEs) have long attracted the attention of renewable energy researchers due to their external combustion design and flexibility in operating with various heat sources. The mathematical analysis of these devices is conducted by using a broad range of models ranging from basic zero-order to highly detailed fourth-order models, which are implemented through Computational Fluid Dynamics (CFD) simulations. The unique features of this last approach, combined with the increase in computing power, have promoted the use of CFD as a tool for analyzing SEs in recent years, significantly reducing the costs associated with prototype construction. However, Stirling CFD simulations are sophisticated due to the variety of physical phenomena involved, such as volume change, conjugated heat transfer, turbulent compressible fluid dynamics, and flow through porous media in the regenerator. Furthermore, there is currently no comprehensive review of CFD simulations of SEs in the literature; therefore, this contribution aims to fill that gap. Emphasis has been placed on identifying the type of engine, the physical phenomena modeled, the simplifying assumptions, and specific numerical aspects, such as mesh type, spatial and temporal discretization, and the order of the numerical schemes used. As a result, it has been found that in many cases, CFD numerical reports lack sufficient detail to ensure the reproducibility of the simulations. This work proposes guidelines for reporting CFD studies on Stirling engines to address this issue. Additionally, the need for a sufficiently detailed experimental benchmark database to validate future CFD studies is stressed. Finally, the use of Large Eddy Simulations on coupled key engine components—such as compression and expansion spaces, pistons, displacer, and regenerator—is suggested to provide further insights into the specific flow and heat transfer characteristics in Stirling enginesLos motores Stirling (SE) han atraído desde hace tiempo la atención de los investigadores de energías renovables debido a su diseño de combustión externa y su flexibilidad para operar con diversas fuentes de calor. El análisis matemático de estos dispositivos se realiza mediante una amplia gama de modelos, desde modelos básicos de orden cero hasta modelos de cuarto orden altamente detallados, que se implementan mediante simulaciones de Dinámica de Fluidos Computacional (CFD). Las características únicas de este último enfoque, combinadas con el aumento de la potencia de procesamiento, han promovido el uso de CFD como herramienta para analizar SE en los últimos años, reduciendo significativamente los costos asociados con la construcción de prototipos. Sin embargo, las simulaciones CFD de Stirling son sofisticadas debido a la variedad de fenómenos físicos involucrados, como el cambio de volumen, la transferencia de calor conjugada, la dinámica de fluidos compresibles turbulentos y el flujo a través de medios porosos en el regenerador. Además, actualmente no existe una revisión exhaustiva de las simulaciones CFD de SE en la literatura; por lo tanto, esta contribución busca llenar ese vacío. Se ha hecho hincapié en la identificación del tipo de motor, los fenómenos físicos modelados, las suposiciones simplificadoras y aspectos numéricos específicos, como el tipo de malla, la discretización espacial y temporal, y el orden de los esquemas numéricos utilizados. Como resultado, se ha encontrado que, en muchos casos, los informes numéricos de CFD carecen de suficiente detalle para garantizar la reproducibilidad de las simulaciones. Este trabajo propone directrices para informar estudios de CFD en motores Stirling para abordar este problema. Además, se enfatiza la necesidad de una base de datos de referencia experimental suficientemente detallada para validar futuros estudios de CFD. Finalmente, se sugiere el uso de simulaciones de grandes remolinos en componentes clave acoplados del motor, como espacios de compresión y expansión, pistones, desplazador y regenerador, para proporcionar una mayor comprensión de las características específicas de flujo y transferencia de calor en los motores Stirling26 páginasapplication/pdfspaMDPISuizaDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2CFD Simulation of stirling engines: A reviewSimulación CFD de motores Stirling: Una revisiónArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a852611112Processes1. Moonka, G.; Surana, H.; Singh, H.R. Study on some aspects of Stirling engine: A path to solar Stirling engines. Mater. Today Proc. 2022, 63, 737–744. [CrossRef]2. Yang, C. Promising Stirling Engine: Advancement and Applications. Highlights Sci. Eng. Technol. 2024, 88, 827–834. [CrossRef]3. Kubule, A.; Kramens, J.; Bimbere, M.; Pedišius, N.; Blumberga, D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024, 17, 383. [CrossRef]4. Bianchi, M.; De Pascale, A. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energy 2011, 88, 1500–1509. [CrossRef]5. Perozziello, C.; Grosu, L.; Vaglieco, B.M. Free-Piston Stirling Engine Technologies and Models: A Review. Energies 2021, 14, 7009. [CrossRef]6. Der Minassians, A. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation. Ph.D. Thesis, University of Berkeley, Berkeley, CA, USA, 2007.7. Féniès, G.; Formosa, F.; Ramousse, J.; Badel, A. Double acting Stirling engine: Modelling, experiments and optimization. Appl. Energy 2015, 159, 350–361. [CrossRef]8. Thombare, D.G.; Verma, S.K. Technological development in the Stirling cycle engines. Renew. Sustain. Energy Rev. 2008, 12, 1–38. [CrossRef]9. Vineeth, C.S. Stirling Engines: A Beginners Guide, 2nd ed.; 2011; Available online: https://www.google.com.co/books/edition/ Stirling_Engines/zTdzKxQaqNcC?hl=es-419&gbpv=0 (accessed on 26 May 2024).10. Wang, K.; Sanders, S.R.; Dubey, S.; Choo, F.H.; Duan, F. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renew. Sustain. Energy Rev. 2016, 62, 89–108. [CrossRef]11. Zeiler, M.; Padinger, R.; Spitzer, J.; Podesser, E. Operating experiences with biomass driven Stirling engines; 3 kW and 30 kW. In Proceedings of the 13th International Stirling Conference, Tokyo, Japan, 23–26 September 2007.12. Bataineh, K. Mathematical formulation of alpha-type Stirling engine with Ross Yoke mechanism. Energy 2018, 164, 1178–1199. [CrossRef]13. Vinoth Kumar, D. Modification of an alpha stirling engine with an venturi based working fluid control system to promote its automotive applications. Int. J. Mech. Eng. Robot. Res. 2014, 3, 101–113.14. Ahmadi, M.H.; Ahmadi, M.A.; Pourfayaz, F. Thermal models for analysis of performance of Stirling engine: A review. Renew. Sustain. Energy Rev. 2017, 68, 168–184. [CrossRef]15. Timoumi, Y.; Tlili, I.; Ben Nasrallah, S. Design and performance optimization of GPU-3 Stirling engines. Energy 2008, 33, 1100–1114. [CrossRef]16. Singh, U.R.; Kumar, A. Review on solar Stirling engine: Development and performance. Therm. Sci. Eng. Prog. 2018, 8, 244–256. [CrossRef]17. Schneider, T.; Müller, D.; Karl, J. A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power. Renew. Sustain. Energy Rev. 2020, 134, 110288. [CrossRef]18. Getie, M.Z.; Lanzetta, F.; Bégot, S.; Admassu, B.T.; Hassen, A.A. Reversed regenerative Stirling cycle machine for refrigeration application: A review. Int. J. Refrig. 2020, 118, 173–187. [CrossRef]19. Zare, S.; Tavakolpour-saleh, A.R.; Aghahosseini, A.; Sangdani, M.H.; Mirshekari, R. Design and optimization of Stirling engines using soft computing methods: A review. Appl. Energy 2021, 283, 116258. [CrossRef]20. Zayed, M.E.; Zhao, J.; Elsheikh, A.H.; Li,W.; Sadek, S.; Aboelmaaref, M.M. A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 2021, 283, 124664. [CrossRef]21. Malik, M.Z.; Shaikh, P.H.; Zhang, S.; Lashari, A.A.; Leghari, Z.H.; Baloch, M.H.; Memon, Z.A.; Caiming, C. A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Rep. 2022, 8, 4128–4154. [CrossRef]22. Boretti, A. α–Stirling hydrogen engines for concentrated solar power. Int. J. Hydrogen Energy 2021, 46, 16241–16247. [CrossRef]23. Zhu, S.; Yu, G.; Liang, K.; Dai, W.; Luo, E. A review of Stirling-engine-based combined heat and power technology. Appl. Energy 2021, 294, 116965. [CrossRef]24. Zhang, L.; Han, K.;Wang, Y.; Zhu, Y.; Zhong, S.; Zhong, G. A bibliometric analysis of Stirling engine and in-depth review of its application for energy supply systems. Energy Rev. 2023, 2, 100048. [CrossRef]25. Martini, R. Stirling Engine Design Manual, 2nd ed.; NASA Report CR-168088; NASA: Washington, DC, USA, 1983.26. Chen, N.C.J.; Griffin, F.P. A Review of Stirling Engine Mathematical Models; Oak Ridge National Laboratory ORNL/CON-135; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1983.27. West, C.D. Principles and Applications of Stirling Engines, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1986.28. Urieli, I.; Berchowitz, D.M. Stirling Cycle Engine Analysis, 1st ed.; Taylor and Francis: London, UK, 1984.29. Urieli, I. A Computer Simulation of Stirling Cycle Machines. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 1977.30. Finkelstein, T. Generalized Thermodynamic Analysis of Stirling Engines; SAE Technical Paper 600222; SAE:Warrendale, PA, USA, 1960. [CrossRef]31. Dyson, R.W.;Wilson, S.D.; Tew, R.C. Review of Computational Stirling Analysis Methods; NASA/TM—2004-213300 Report; NASA: Washington, DC, USA, 2004.32. Alfarawi, S.; Al-Dadah, R.; Mahmoud, S. Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation. Energy Convers. Manag. 2016, 124, 130–140. [CrossRef]33. Chen,W.L.;Wong, K.L.; Chang, Y.F. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine. Int. J. Heat Mass Transf. 2014, 75, 145–155. [CrossRef]34. Kuban, L.; Stempka, J.; Tyliszczak, A. A 3D-CFD study of a γ-type Stirling engine. Energy 2019, 169, 142–159. [CrossRef]35. Mahkamov, K. Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling. J. Energy Resour. Technol. 2006, 128, 203–215. [CrossRef]36. Versteeg, H.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson: Essex, UK, 2007.37. López, O.D.; Quiñones, J.J.; Lain, S. RANS and Hybrid RANS-LES simulations of an H-type Darrieus vertical axis water turbine. Energies 2018, 11, 2348. [CrossRef]38. Lain, S.; García, M.; Quintero, B.; Orrego, S. CFD numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33. [CrossRef]39. O’Brien, J.M.; Young, T.M.; Early, J.M.; Griffin, P.C. An assessment of commercial CFD turbulence models for near wake HAWT modelling. J. Wind. Eng. Ind. Aerodyn. 2018, 176, 32–53. [CrossRef]40. Sanaye, S.; Farvizi, A. Optimizing a vertical axis wind turbine with helical blades: Application of 3D CFD and Taguchi method. Energy Rep. 2024, 12, 2527–2547. [CrossRef]41. Lain, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]42. Nassini, P.C.; Pampaloni, D.; Meloni, R.; Andreini, A. Lean blow-out prediction in an industrial gas turbine combustor through a LES-based CFD analysis. Combust. Flame 2021, 229, 111391. [CrossRef]43. Baratta, M.; Chiriches, S.; Goel, P.; Misul, D. CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transp. Eng. 2020, 2, 100018. [CrossRef]44. Chaturvedi, S.; Santhosh, R.; Mashruk, S.; Yadav, R.; Valera-Medina, A. Prediction of NOx emissions and pathways in premixed ammonia-hydrogen-air combustion using CFD-CRN methodology. J. Energy Inst. 2023, 111, 101406. [CrossRef]45. Li, Z.; Tang, D.; Du, J.; Li, T. Study of the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility. Appl. Therm. Eng. 2011, 31, 1780–1789. [CrossRef]46. Khoshvaght-Aliabadi, M.; Ghodrati, P.; Mahian, O.; Kang, Y.T. CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants’ supercritical CO2 cycle. Energy 2024, 292, 130418. [CrossRef]47. Tarodiya, R.; Khullar, S.; Levy, A. Particulate flow and erosion modeling of a Pelton turbine injector using CFD-DEM simulations. Powder Technol. 2022, 399, 117168. [CrossRef]48. Ahmed, S.; Hassan, A.; Zubair, R.; Rashid, S.; Ullah, A. Design modification in an industrial multistage orifice to avoid cavitation using CFD simulation. J. Taiwan Inst. Chem. Eng. 2023, 148, 104833. [CrossRef]49. López, O.D.; Mejía, O.E.; Escorcia, K.M.; Suárez, F.; Lain, S. Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications. Processes 2021, 9, 1933. [CrossRef]50. Krzemianowski, Z.; Kaniecki, M. Low-head high specific speed Kaplan turbine for small hydropower—Design, CFD loss analysis and basic, cavitation and runaway investigations: A case study. Energy Convers. Manag. 2023, 276, 116558. [CrossRef]51. Tushar Choudahry, S. Computational analysis of IR-SOFC: Thermodynamic, electrochemical process and flow configuration dependency. Int. J. Hydrogen Energy 2016, 41, 1259–1271. [CrossRef]52. Gadhewal, R.; Ananthula, V.V.; Patnaikuni, V.S. CFD simulation of hot spot in PEM fuel cell with diverging and converging flow channels. Mater. Today Proc. 2023, 72, 410–416. [CrossRef]53. Zhang, L.; Yu, X.; Lv, Q.; Cao, F.;Wang, X. Study of transient indoor temperature for a HVAC room using a modified CFD method. Energy Procedia 2019, 160, 420–427. [CrossRef]54. Lain, S.; Sommerfeld, M.; Quintero, B. Numerical simulation of secondary flow in pneumatic conveying of solid particles in a horizontal circular pipe. Braz. J. Chem. Eng. 2009, 26, 583–594. [CrossRef]55. Zhang, J.; Poon, K.H.; Kwok, H.H.L.; Hou, F.; Cheng, J.C.P. Predictive control of HVAC by multiple output GRU—CFD integration approach to manage multiple IAQ for commercial heritage building preservation. Build. Environ. 2023, 245, 110802. [CrossRef]56. Lain, S.; Sommerfeld, M. A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Braz. J. Chem. Eng. 2007, 24, 535–546. [CrossRef]57. Islam, M.T.; Chen, Y.; Seong, D.; Verhougstraete, M.; Son, Y.J. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Heliyon 2024, 10, e35092. [CrossRef]58. Salazar, J.L.; Chen,W.L. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β -type Stirling engine. Energy Convers. Manag. 2014, 88, 177–188. [CrossRef]59. Chen,W.L. A study on the effects of geometric parameters in a low-temperature differential gamma-type Stirling engine using CFD. Int. J. Heat Mass Transf. 2017, 107, 1002–1013. [CrossRef]60. Chen, W.L.; Yang, Y.C.; Salazar, J.L. CFD parametric study on the performance of a low-temperature-differential γ -type Stirling engine. Energy Convers. Manag. 2015, 106, 635–643. [CrossRef]61. Kato, Y.; Saitoh, S.; Ishimatsu, K.; Iwamoto, M. Effect of geometry and speed on the temperatures estimated by CFD for an isothermal model of a gamma configuration low temperature differential Stirling engine with Flat-shaped heat exchangers. Appl. Therm. Eng. 2017, 115, 111–122. [CrossRef]62. Mohammadi, M.A.; Jafarian, A. CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine. Energy 2018, 153, 287–300. [CrossRef]63. Caughley, A.; Sellier, M.; Gschwendtner, M.; Tucker, A. CFD analysis of a diaphragm free-piston Stirling cryocooler. Cryogenics 2016, 79, 7–16. [CrossRef]64. Regalado-Rodríguez, N.; Militello, C. Comparative study of the effects of increasing heat transfer area within compression and expansion chambers in combination with modified pistons in Stirling engines. A simulation approach based on CFD and a numerical thermodynamic model. Energy Convers. Manag. 2022, 263, 115930. [CrossRef]65. Dai, Z.; Wang, C.; Zhang, D.; Tian, W.; Qiu, S.; Su, G.H. Design and heat transfer optimization of a 1 kW free-piston Stirling engine for space reactor power system. Nucl. Eng. Technol. 2021, 53, 2184–2194. [CrossRef]66. Papurello, D.; Bertino, D.; Santarelli, M. CFD Performance Analysis of a Dish-Stirling System for Microgeneration. Processes 2021, 9, 1142. [CrossRef]67. Almajri, A.K.; Mahmoud, S.; Al-Dadah, R. Modelling and parametric study of an efficient Alpha type Stirling engine performance based on 3D CFD analysis. Energy Convers. Manag. 2017, 145, 93–106. [CrossRef]68. Ahmed, H.; Almajri, A.K.; Mahmoud, S.; Al-Dadah, R.; Ahmad, A. CFD modelling and parametric study of small-scale Alpha type Stirling Cryocooler. Energy Procedia 2017, 142, 1668–1673. [CrossRef]69. Abuelyamen, A.; Ben-Mansour, R. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling. Int. J. Therm. Sci. 2018, 132, 411–423. [CrossRef]70. Buli ´nsky, Z.; Szczygieł, I.; Krysinski, T.; Stanek,W.; Czarnowska, L.; Gładysz, P.; Kabaj, A. Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy. Energy 2017, 141, 2559–2571. [CrossRef]71. Buli ´nsky, Z.; Szczygieł, I.; Kabaj, A.; Krysinski, T.; Gładysz, P.; Czarnowska, L.; Stanek, W. Performance analysis of the small-scale α-type stirling engine using computational fluid dynamics tools. J. Energy Resour. Technol. 2018, 140, 032001. [CrossRef]72. Buli ´nsky, Z.; Kabaj, A.; Krysi ´ nski, T.; Szczygieł, I.; Stanek, W.; Rutczyk, B.; Czarnowska, L.; Gładysz, P. A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions. Energy Convers. Manag. 2019, 195, 125–138. [CrossRef]73. Xiao, G.; Sultan, U.; Ni, M.; Peng, H.; Zhou, X.; Wang, S.; Luo, Z. Design optimization with computational fluid dynamic analysis of β-type Stirling engine. Appl. Therm. Eng. 2018, 113, 87–102. [CrossRef]74. Kumaravelu, T.; Saadon, S.; Abu Talib, A.R. Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system. Energy 2022, 239, 121881. [CrossRef]75. Aksoy, F.; Cinar, C. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism. Energy Convers. Manag. 2013, 75, 319–324. [CrossRef]76. El-Ghafour, S.A.; El-Ghandour, M.; Mikhael, N.N. Three-dimensional computational fluid dynamics simulation of Stirling engine. Energy Convers. Manag. 2019, 180, 533–549. [CrossRef]77. Chi, C.; Mou, J.; Lin, M.; Hong, G. CFD simulation and investigation on the operating mechanism of a beta-type free piston Stirling engine. Appl. Therm. Eng. 2020, 166, 114751. [CrossRef]78. Cheng, C.H.; Chen, Y.F. Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine. Appl. Therm. Eng. 2017, 121, 554–561. [CrossRef]79. Castro Caetano, B.; Figueiredo Lara, I.; Ungaretti Borges, M.; Sandoval, O.R.; Molina Valle, R. A novel methodology on beta-type Stirling engine simulation using CFD. Energy Convers. Manag. 2019, 184, 510–520. [CrossRef]80. Rogdakis, E.; Bitsikas, P.; Dogkas, G.; Antonakos, G. Three-dimensional CFD study of a β-type Stirling Engine. Therm. Sci. Eng. Prog. 2019, 11, 302–316. [CrossRef]81. Bitsikas, P.; Rogdakis, E.; Dogkas, G. CFD study of heat transfer in Stirling engine regenerator. Therm. Sci. Eng. Prog. 2020, 17, 100492. [CrossRef]82. Ben-Mansour, R.; Abuelyamen, A.; Mokheimer, E.M.A. CFD analysis of radiation impact on Stirling engine performance. Energy Convers. Manag. 2017, 152, 354–356. [CrossRef]83. Arslan, T.A.; Solmaz, H.; Ipci, D.; Aksoy, F. Investigation of the effect of compression ratio on performance of a beta type Stirling engine with rhombic mechanism by CFD analysis. Environ. Prog. Sustain. Energy 2023, 42, e14076. [CrossRef]84. Abuelyamen, A.; Ben-Mansour, R.; Abualhamayel, H.; Mokheimer, E.M.A. Parametric study on beta-type Stirling engine. Energy Convers. Manag. 2017, 145, 53–63. [CrossRef]85. Thieme, L. High-Power Baseline and Motoring Test Results for the GPU-3 Stirling Engine; DOE/NASA/51040-31, NASA TM-82646; NASA:Washington, DC, USA, 1981.86. Yu, G.Y.; Luo, E.C.; Dai, W.; Hu, J.Y. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics. J. Appl. Phys. 2007, 102, 074901. [CrossRef]87. Xia, M.; Chen, X. Analysis of resonant frequency of moving magnet linear compressor of stirling cryocooler. Int. J. Refrig. 2010, 33, 739–744. [CrossRef]88. Chen, G.;Wang, Y.; Tang, L.;Wang, K.; Yu, Z. Large Eddy Simulation of thermally induced oscillatory flow in a thermoacustic engine. Appl. Energy 2020, 276, 115458. [CrossRef]89. Mahkamov, K. An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of theWorking Process of a Solar Stirling Engine. J. Sol. Energy Eng. 2006, 128, 45–53. [CrossRef]90. Qiu, S.; Gao, Y.; Rinker, G.; Yanaga, K. Development of an advanced free-piston Stirling engine for micro combined heating and power application. Appl. Energy 2019, 235, 987–1000. [CrossRef]91. Zhao,W.; Li, R.; Li, H.; Zhang, Y.; Qiu, S. Numerical analysis of fluid dynamics and thermodynamics in Stirling engine. Appl. Therm. Eng. 2021, 189, 116727. [CrossRef]92. Umair, M.; Shah, A.N.; Kamran, M.S.; Farhan, M.; Anwar, Z. The CFD methodology for simulating pumping loss from displacer and piston seals of free piston Stirling engine. Therm. Sci. 2022, 26, 13–23. [CrossRef]93. Kim, H.S.; Gwak, I.C.; Lee, S.H. Numerical analysis of heat transfer area effect on cooling performance in regenerator of free-piston Stirling cooler. Case Stud. Therm. Eng. 2022, 32, 101875. [CrossRef]94. Costa, S.C.; Barrutia, H.; Esnaola, J.A.; Tutar, M. Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2013, 67, 57–65. [CrossRef]95. Costa, S.C.; Barrutia, H.; Esnaola, J.A.; Tutar, M. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2014, 79, 255–264. [CrossRef]96. Costa, S.C.; Tutar, M.; Barreno, I.; Esnaola, J.A.; Barrutia, H.; García, D.; Gonzalez, M.A.; Prieto, J.I. Experimental and numerical flow investigation of Stirling engine regenerator. Energy 2014, 72, 800–812. [CrossRef]97. Costa, S.C.; Barreno, I.; Tutar, M.; Esnaola, J.A.; Barrutia, H. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator. Energy Convers. Manag. 2015, 89, 473–483. [CrossRef]98. Barreno, I.; Costa, S.C.; Cordon, M.; Tutar, M.; Urrutibeascoa, I.; Gomez, X.; Castillo, G. Numerical correlation for the pressure drops in Stirling engine heat exchangers. Int. J. Therm. Sci. 2015, 97, 68–81. [CrossRef]99. York, B.T.; MacDonald, B.D. Influence of misalignment and spacing on the pressure drop through wire mesh Stirling engine regenerators. Energy Convers. Manag. 2021, 245, 114588. [CrossRef]100. Mancisidor, A.M.; Gil, E.; Garciandia, F.; San Sebastian, M.; Lizaso, O.; Escubi, M. Stirling engine regenerator based on lattice structures manufactured by selective laser melting. Procedia CIRP 2018, 74, 72–75. [CrossRef]101. Beni, H.M.; Mortazavi, H. Mathematical modeling of the solar regenerative heat exchanger under turbulent oscillating flow: Applications of renewable and sustainable energy and artificial heart. Results Eng. 2022, 13, 100321. [CrossRef]102. Zhao, Y.; Dang, H. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics 2016, 73, 53–59. [CrossRef]103. Dang, H.; Zhao, Y. CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30–35 K using mixed stainless steel mesh regenerator matrices. Cryogenics 2016, 78, 40–50. [CrossRef]104. Zhao, Y.; Yu, G.; Tan, J.; Mao, X.; Li, J.; Zha, R.; Li, N.; Dang, H. CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170 Hz. Cryogenics 2018, 90, 30–40. [CrossRef]105. Clearman, W.M.; Cha, J.S.; Ghiaasiaan, S.M.; Kirkconnell, C.S. Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators. Cryogenics 2008, 48, 112–121. [CrossRef]106. Karabulut, H.; Yücesu, H.S.; Koca, A. Manufacturing and testing of a V-type Stirling engine. Turk. J. Eng. Environ. Sci. 2000, 24, 71–80.107. Sun, H.; Yu, G.; Zhao, D.; Dai, W.; Luo, E. Numerical and experimental investigations on coiled resonance tube of a duplex Stirling cryocooler. Appl. Therm. Eng. 2024, 238, 121930. [CrossRef]108. Phung, D.T.; Cheng, C.H. Investigating dynamic characteristics and thermal-lag phenomenon in a thermal-lag engine using a CFD-mechanism dynamics model. Appl. Therm. Eng. 2024, 236, 121926. [CrossRef]109. Papis-Fraczek, K.; Zoładek, M.; Filipowicz, M. The possibilities of upgrading an existing concentrating solar thermal system—Case study. Energy Rep. 2021, 7, 28–32. [CrossRef]110. Li, Z.; Haramura, Y.; Tang, D.; Guo, C. Analysis on the heat transfer characteristics of a micro-channel type porous-sheets Stirling regenerator. Int. J. Therm. Sci. 2015, 94, 37–49. [CrossRef]111. Li, Z.; Haramura, Y.; Kato, Y.; Tang, D. Analysis of a high-performance model Stirling engine with compact porous-sheets heat exchangers. Energy 2014, 64, 31–43. [CrossRef]112. García, D.; Suárez, M.J.; Blanco, E.; Prieto, J.I. Experimental correlations and CFD model of a non-tubular heater for a Stirling solar engine micro-cogeneration unit. Appl. Therm. Eng. 2019, 153, 715–725. [CrossRef]113. Andersson, B.; Andersson, R.; Håkanson, L.; Mortensen, M.; Sudiyo, R.; vanWachem, B. Best practice guidelines. In Computational Fluid Dynamics for Engineers, 1st ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 174–180. [CrossRef]114. Roache, P.J. Verification and Validation in Computational Science and Engineering, 1st ed.; Hermosa Publishers: Albuquerque, NM, USA, 1998.115. Impagnatiello, M.; Bolla, M.; Keskinen, K.; Giannakopoulos, G.; Frouzakis, C.E.; Wright, Y.M.; Bolouchos, K. Systematic assessment of data-driven approaches for wall heat transfer modelling for LES in IC engines using DNS data. Int. J. Heat Mass Transf. 2022, 183, 122109. [CrossRef]Numerical simulationStirling engineCFDTransient compressible flowDynamic meshesHeat transferSimulación numéricaMotor StirlingCFDFlujo compresible transitorioMallas dinámicasTransferencia de calorComunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::6088-14fe867b8-314c-46eb-bc5e-ed04f402ae3avirtual::6089-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::6088-14fe867b8-314c-46eb-bc5e-ed04f402ae3avirtual::6089-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::6088-1https://scholar.google.com.co/citations?user=OAgYYS4AAAAJ&hl=esvirtual::6089-10000-0002-0269-2608virtual::6088-10000-0001-7949-3511virtual::6089-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::6088-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000692026virtual::6089-1ORIGINALCFD_Simulation_of_stirling_engines_A_review.pdfCFD_Simulation_of_stirling_engines_A_review.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf4174342https://red.uao.edu.co/bitstreams/9b15b505-1730-4aaf-af4f-7f694a00aad1/downloadd840b1bea2a9cf0963f4132df6e7b2bfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/7088461b-cad0-4450-8f72-6b08e497f50b/download6987b791264a2b5525252450f99b10d1MD52TEXTCFD_Simulation_of_stirling_engines_A_review.pdf.txtCFD_Simulation_of_stirling_engines_A_review.pdf.txtExtracted texttext/plain100378https://red.uao.edu.co/bitstreams/5c8f9fc7-f2b0-40bf-946b-b46075166409/download8691471a030707ed1430b9d9a4abc1d2MD53THUMBNAILCFD_Simulation_of_stirling_engines_A_review.pdf.jpgCFD_Simulation_of_stirling_engines_A_review.pdf.jpgGenerated Thumbnailimage/jpeg15287https://red.uao.edu.co/bitstreams/7aa98093-3270-48cb-ba04-fd0ee915ea01/download3216fe4a2d34b319273e50e2cede01b6MD5410614/16167oai:red.uao.edu.co:10614/161672025-06-15 03:04:06.118https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |