A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review

The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given t...

Full description

Autores:
Flórez-Pardo, Luz Marina
Ostos, Iván
Camargo, Carolina
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16146
Acceso en línea:
https://hdl.handle.net/10614/16146
https://red.uao.edu.co/
Palabra clave:
Methane
Metagenome
Microbiota
Syntrophy
Sequencing
DIET
GCM
SRM
Rights
openAccess
License
Derechos reservados - Frontiers Media SA, 2024
id REPOUAO2_923d746925e1a6b5a160bc342b449fdd
oai_identifier_str oai:red.uao.edu.co:10614/16146
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
dc.title.translated.none.fl_str_mv Un enfoque metagenómico para desmitificar la caja negra de la digestión anaeróbica y lograr un mayor rendimiento de biogás: una revisión
title A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
spellingShingle A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
Methane
Metagenome
Microbiota
Syntrophy
Sequencing
DIET
GCM
SRM
title_short A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
title_full A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
title_fullStr A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
title_full_unstemmed A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
title_sort A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review
dc.creator.fl_str_mv Flórez-Pardo, Luz Marina
Ostos, Iván
Camargo, Carolina
dc.contributor.author.none.fl_str_mv Flórez-Pardo, Luz Marina
Ostos, Iván
Camargo, Carolina
dc.subject.proposal.eng.fl_str_mv Methane
Metagenome
Microbiota
Syntrophy
Sequencing
DIET
GCM
SRM
topic Methane
Metagenome
Microbiota
Syntrophy
Sequencing
DIET
GCM
SRM
description The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-06-06T16:51:57Z
dc.date.available.none.fl_str_mv 2025-06-06T16:51:57Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Flórez-Pardo, L. M.; Ostos, I. y Camargo, C. (2024). A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review. En: Frontiers in Microbiology. Vol 15 pp. 1-26. https://doi.org/10.3389/fmicb.2024.1437098
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16146
dc.identifier.eissn.none.fl_str_mv 1664-302X
dc.identifier.instname.none.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.none.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Flórez-Pardo, L. M.; Ostos, I. y Camargo, C. (2024). A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review. En: Frontiers in Microbiology. Vol 15 pp. 1-26. https://doi.org/10.3389/fmicb.2024.1437098
1664-302X
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16146
https://red.uao.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 26
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 15
dc.relation.ispartofjournal.none.fl_str_mv Frontiers in Microbiology
dc.relation.references.none.fl_str_mv Abedi, S., Nozarpour, A., and Tavakoli, O. (2023). Evaluation of biogas production rate and leachate treatment in landfill through a water-energy nexus framework for integrated waste management. Energy Nexus 11:100218. doi: 10.1016/j. nexus.2023.100218 Abellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., et al. (2021). Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6, e01202–e01220. doi: 10.1128/mSphere.01202-20 Adebayo, A., Jekayinfa, S., and Linke, B. (2015). Effects of organic loading rate on biogas yield in a continuously stirred tank reactor experiment at mesophilic temperature. Br. J. Appl. Sci. Technol. 11, 1–9. doi: 10.9734/ BJAST/2015/18040 Akyol, Ç., Ince, O., Bozan, M., Ozbayram, E. G., and Ince, B. (2019). Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: a metagenomic approach. Ind. Crop. Prod. 140:111659. doi: 10.1016/j.indcrop.2019.111659 Alarcón-Vivero, M., Moena, N. R. T., Gonzalez, F., Jopia-Contreras, P., Aspé, E., Briones, H. U., et al. (2022). Anaerobic biofilm enriched with an ammonia tolerant methanogenic consortium to improve wastewater treatment in the fishing industry. Biotechnol. Lett. 44, 239–251. doi: 10.1007/s10529-021-03213-y Alengebawy, A., Mohamed, B. A., Ghimire, N., Jin, K., Liu, T., Samer, M., et al. (2022). Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions. Environ. Res. 213:113632. doi: 10.1016/j.envres.2022.113632 Alghashm, S., Song, L., Liu, L., Ouyang, C., Zhou, J. L., and Li, X. (2023). Improvement of biogas production using biochar from Digestate at different pyrolysis temperatures during OFMSW anaerobic digestion. Sustainability (Switzerland) 15, 1–15. doi: 10.3390/ su151511917 Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: the key players of Anaerobiosis. Sci. World J. 2014, 1–21. doi: 10.1155/2014/183752 Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., et al. (2014). Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146. doi: 10.1038/nmeth.3103 Araoye, T. O., Mgbachi, C., Ajenikoko, G. A., Oluwaseun, A. T., Mgbachi, C. A., and Okelola, M. O. (2018). A comparative analysis of renewable energy using biogas and solar photovoltaic systems: a case study of Ajaba, in Osun State. Asgarineshat, S., Arumugam, K., Shankari Chandra Segaran, U., Sekar, P., and Anika, A., (2022). A genome-centric metagenomics approach to explain microbial community structure in anaerobic digesters. Available at: https://hdl.handle. net/10356/156928 (Accessed September 10, 2024). Athanasopoulou, K., Boti, M. A., Adamopoulos, P. G., Skourou, P. C., and Scorilas, A. (2021). Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life 12:30. doi: 10.3390/life12010030 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021 Becker, D., Popp, D., Bonk, F., Kleinsteuber, S., Harms, H., and Centler, F. (2023). Metagenomic analysis of anaerobic microbial communities degrading short-chain fatty acids as sole carbon sources. Microorganisms 11:420. doi: 10.3390/ microorganisms11020420 Bedoya, K., Coltell-Simon, O., Cabarcas, F., and Alzate, J. F. (2019). Metagenomic assessment of the microbial community and methanogenic pathways in biosolids from a municipal wastewater treatment plant in Medellín, Colombia. Sci. Total Environ. 648, 572–581. doi: 10.1016/j.scitotenv.2018.08.119 Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., et al. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. eLife 10:e65088. doi: 10.7554/eLife.65088 Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., and Iyyappan, J. (2018). Biogas production – a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sust. Energ. Rev. 90, 570–582. doi: 10.1016/j.rser.2018.03.093 Bi, S., Westerholm, M., Hu, W., Mahdy, A., Dong, T., Sun, Y., et al. (2021). The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: a case study of a 10-year successful biogas plant. Renew. Energy 167, 644–651. doi: 10.1016/j. renene.2020.11.133 Blades, L., Morgan, K., Douglas, R., Glover, S., De Rosa, M., Cromie, T., et al. (2017). Circular biogas-based economy in a rural agricultural setting. Energy Procedia 123, 89–96. doi: 10.1016/j.egypro.2017.07.255 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9 Bovio-Winkler, P., Cabezas, A., and Etchebehere, C. (2021). Database mining to unravel the ecology of the phylum Chloroflexi in methanogenic full scale bioreactors. Front. Microbiol. 11:603234. doi: 10.3389/fmicb.2020.603234 Brandt, C., Bongcam-Rudloff, E., and Müller, B. (2020). Abundance tracking by longread Nanopore sequencing of complex microbial communities in samples from 20 different biogas/wastewater plants. Appl. Sci. 10:7518. doi: 10.3390/app10217518 Bucci, L., Ghiotto, G., Zampieri, G., Raga, R., Favaro, L., Treu, L., et al. (2024). Adaptation of anaerobic digestion microbial communities to high ammonium levels: insights from strain-resolved metagenomics. Environ. Sci. Technol. 58, 580–590. doi: 10.1021/acs.est.3c07737 Callaghan, M. (2023). Cloud computing for metagenomics: building a personalized computational platform for pipeline analyses. Methods Mol. Biol. 2649, 261–279. doi: 10.1007/978-1-0716-3072-3_13 Campanaro, S., Treu, L., Kougias, P. G., Luo, G., and Angelidaki, I. (2018). Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Res. 140, 123–134. doi: 10.1016/j.watres.2018.04.043 Campanaro, S., Treu, L., Rodriguez, L. M. R., Kovalovszki, A., Ziels, R. M., Maus, I., et al. (2019). The anaerobic digestion microbiome: a collection of 1600 metagenomeassembled genomes shows high species diversity related to methane production. bioRxiv. doi: 10.1101/680553 Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., and Kjelleberg, S. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278–288. doi: 10.1128/AEM.01177-06 Cattaneo, C. R., Rodríguez, Y., Rene, E. R., García-Depraect, O., and Muñoz, R. (2022). Biogas bioconversion into poly(3-hydroxybutyrate) by a mixed microbial culture in a novel Taylor flow bioreactor. Waste Manag. 150, 364–372. doi: 10.1016/j. wasman.2022.07.017 Chen, Z., Erickson, D. L., and Meng, J. (2020). Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 21:631. doi: 10.1186/s12864-020-07041-8 Chen, P., Guo, Y., Jia, L., Wan, J., He, T., Fang, C., et al. (2021). Interaction between functionally activate endometrial microbiota and host gene regulation in endometrial Cancer. Front. Cell Dev. Biol. 9:727286. doi: 10.3389/fcell.2021.727286 Chen, Z., Ma, J., Ma, J., Ye, J., Yu, Q., Zou, P., et al. (2024). Long-term biogas slurry application increases microbial necromass but not plant lignin contribution to soil organic carbon in paddy soils as regulated by fungal community. Waste Manag. 175, 254–264. doi: 10.1016/j.wasman.2024.01.011 Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., and Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448. doi: 10.1039/C5RA00666J Cheng, H., Medina, J. S., Zhou, J., Pinho, E. M., Meng, R., Wang, L., et al. (2024). Predicting anaerobic membrane bioreactor performance using flow-cytometry-derived high and low nucleic acid content cells. Environ. Sci. Technol. 58, 2360–2372. doi: 10.1021/acs.est.3c07702 Chukwuma, O. B., Rafatullah, M., Tajarudine, H. A., and Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. Int. J. Environ. Res. Public Health 18:6001. doi: 10.3390/ijerph18116001 Coggill, P., Finn, R. D., and Bateman, A. (2008). Identifying protein domains with the Pfam database. Curr. Protoc. Bioinformatics 23. doi: 10.1002/0471250953.bi0205s23. [Epub ahead of print]. Cortés, A., Martin, J., Rosa, B. A., Stark, K. A., Clare, S., McCarthy, C., et al. (2022). The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl. Trop. Dis. 16:e0010878. doi: 10.1371/journal.pntd.0010878 Cuber, P., Chooneea, D., Geeves, C., Salatino, S., Creedy, T. J., Griffin, C., et al. (2023). Comparing the accuracy and efficiency of third generation sequencing technologies, Oxford Nanopore technologies, and Pacific biosciences, for DNA barcode sequencing applications. Ecol. Genet. Genom. 28:100181. doi: 10.1016/j. egg.2023.100181 De Bernardini, N., Basile, A., Zampieri, G., Kovalovszki, A., De Diego Diaz, B., Offer, E., et al. (2022). Integrating metagenomic binning with flux balance analysis to unravel syntrophies in anaerobic CO2 methanation. Microbiome 10:117. doi: 10.1186/ s40168-022-01311-1 de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L., and de Araújo, J. M. (2012). Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16, 466–471. doi: 10.1016/j.bjid.2012.08.014 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-6 Eisenhofer, R., Nesme, J., Santos-Bay, L., Koziol, A., Sørensen, S. J., Alberdi, A., et al. (2024). A comparison of short-read, HiFi long-read, and hybrid strategies for genomeresolved metagenomics. Microbiol. Spectr. 12:e0359023. doi: 10.1128/spectrum.03590-23 Emrani, A., and Berrada, A. (2024). Modeling and optimal capacity configuration of dry gravity energy storage integrated in off-grid hybrid PV/wind/biogas plant incorporating renewable power generation forecast. J. Energy Storage 97, 1–20. doi: 10.1016/j. est.2024.112698 Fedailaine, M., Moussi, K., Khitous, M., Abada, S., Saber, M., and Tirichine, N. (2015). Modeling of the anaerobic digestion of organic waste for biogas production. Proc. Comput. Sci. 52, 730–737. doi: 10.1016/j.procs.2015.05.086 Fontana, A., Campanaro, S., Treu, L., Kougias, P. G., Cappa, F., Morelli, L., et al. (2018). Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. Water Res. 134, 181–191. doi: 10.1016/j. watres.2018.02.001 Gahlot, P., Aboudi, K., Ahmed, B., Tawfik, A., Khan, A. A., Khursheed, A., et al. (2021). Direct interspecies electron transfer (DIET) via conductive materials in anaerobic digestion of organic wastes. Clean Energy Resourc. Recov. 1, 227–252. doi: 10.1016/B978-0-323-85223-4.00024-5 Gaspari, M., Ghiotto, G., Centurion, V. B., Kotsopoulos, T., Santinello, D., Campanaro, S., et al. (2024). Decoding microbial responses to ammonia shock loads in biogas reactors through metagenomics and metatranscriptomics. Environ. Sci. Technol. 58, 591–602. doi: 10.1021/acs.est.3c07840 Ghiotto, G., De Bernardini, N., Giangeri, G., Tsapekos, P., Gaspari, M., Kougias, P. G., et al. (2024a). From microbial heterogeneity to evolutionary insights: a strain-resolved metagenomic study of H2S-induced changes in anaerobic biofilms. Chem. Eng. J. 485:9824. doi: 10.1016/j.cej.2024.149824 Ghiotto, G., Zampieri, G., Campanaro, S., and Treu, L. (2024b). Strain-resolved metagenomics approaches applied to biogas upgrading. Environ. Res. 240:117414. doi: 10.1016/j.envres.2023.117414 Golub, K. W., Smith, A. D., Hollister, E. B., Gentry, T. J., and Holtzapple, M. T. (2011). Investigation of intermittent air exposure on four-stage and one-stage anaerobic semicontinuous mixed-acid fermentations. Bioresour. Technol. 102, 5066–5075. doi: 10.1016/j.biortech.2011.02.011 Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., et al. (2016). Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390. doi: 10.1016/j.renene.2015.07.066 Greses, S., De Bernardini, N., Treu, L., Campanaro, S., and González-Fernández, C. (2023). Genome-centric metagenomics revealed the effect of pH on the microbiome involved in short-chain fatty acids and ethanol production. Bioresour. Technol. 377:128920. doi: 10.1016/j.biortech.2023.128920 Han, Y., Green, H., and Tao, W. (2020). Reversibility of propionic acid inhibition to anaerobic digestion: inhibition kinetics and microbial mechanism. Chemosphere 255:126840. doi: 10.1016/j.chemosphere.2020.126840 Han, G., Shin, S. G., Lee, J., Shin, J., and Hwang, S. (2017). A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semidry anaerobic digesters treating food wastes. Bioresour. Technol. 245, 869–875. doi: 10.1016/j.biortech.2017.08.167 Häntze, H., and Horton, P. (2023). Effects of spaced k-mers on alignment-free genotyping. Bioinformatics 39, i213–i221. doi: 10.1093/bioinformatics/btad202 Hauptfeld, E., Pappas, N., van Iwaarden, S., Snoek, B. L., Aldas-Vargas, A., Dutilh, B. E., et al. (2024). Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes. Nat. Commun. 15:3373. doi: 10.1038/s41467-024-47155-1 Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., et al. (2016). Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol. Biofuels 9, 1–16. doi: 10.1186/ s13068-016-0572-4 Heyer, R., Hellwig, P., Maus, I., Walke, D., Schlüter, A., Hassa, J., et al. (2024). Breakdown of hardly degradable carbohydrates (lignocellulose) in a two-stage anaerobic digestion plant is favored in the main fermenter. Water Res. 250:1020. doi: 10.1016/j. watres.2023.121020 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314. doi: 10.1093/nar/gky1085 Izumi, K., Okishio, Y., Nagao, N., Niwa, C., Yamamoto, S., and Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegradation 64, 601–608. doi: 10.1016/j.ibiod.2010.06.013 Jain, S., Jain, S., Wolf, I. T., Lee, J., and Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sust. Energ. Rev. 52, 142–154. doi: 10.1016/j. rser.2015.07.091 James, A. R. S., and Richardson, R. E. (2020). Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions. FEMS Microbiol. Ecol. 96:50. doi: 10.1093/ FEMSEC/FIAA050 Jia, Y., Wilkins, D., Lu, H., Cai, M., and Lee, P. K. H. (2016). Long-term enrichment on cellulose or xylan causes functional and taxonomic convergence of microbial communities from anaerobic digesters. Appl. Environ. Microbiol. 82, 1519–1529. doi: 10.1128/AEM.03360-15 Jiang, F., Li, Q., Wang, S., Shen, T., Wang, H., Wang, A., et al. (2023). Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing. Front. Microbiol. 13:1095497. doi: 10.3389/fmicb.2022.1095497 Johnravindar, D., Patria, R. D., Lee, J. T. E., Zhang, L., Tong, Y. W., Wang, C.-H., et al. (2021). Syntrophic interactions in anaerobic digestion: how biochar properties affect them? Sustain. Environ. 7:1945282. doi: 10.1080/27658511.2021.1945282 Jung, H., Yu, H., and Lee, C. (2023). Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO2-reducing methanogenesis. iScience 26:107504. doi: 10.1016/j.isci.2023.107504 Kalamaras, S. D., Christou, M. L., Tzenos, C. A., Vasileiadis, S., Karpouzas, D. G., and Kotsopoulos, T. A. (2023). Investigation of the critical biomass of acclimated microbial communities to high Ammonia concentrations for a successful bioaugmentation of biogas anaerobic reactors with Ammonia inhibition. Microorganisms 11:1710. doi: 10.3390/microorganisms11071710 Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323. doi: 10.1016/S1389-1723(03)90130-7 Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359 Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J., Chang, S. W., et al. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285:119105. doi: 10.1016/j.fuel.2020.119105 Khanthong, K., Kadam, R., Kim, T., and Park, J. (2023). Synergetic effects of anaerobic co-digestion of food waste and algae on biogas production. Bioresour. Technol. 382:129208. doi: 10.1016/j.biortech.2023.129208 Kim, N. K., Lee, S. H., Kim, Y., and Park, H. D. (2022). Current understanding and perspectives in anaerobic digestion based on genome-resolved metagenomic approaches. Bioresour. Technol. 344:126350. doi: 10.1016/j.biortech.2021.126350 Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422. doi: 10.1038/s41579-018-0029-9 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. (2019). Assembly of long, errorprone reads using repeat graphs. Nat. Biotechnol. 37, 540–546. doi: 10.1038/ s41587-019-0072-8 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736. doi: 10.1101/gr.215087.116 Krishna, D., and Kalamdhad, A. S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production - a review. J. Environ. Chem. Eng. 2, 1821–1830. doi: 10.1016/j.jece.2014.07.024 Lapierre, N., Alser, M., Eskin, E., Koslicki, D., and Mangul, S. (2020). Metalign: efficient alignment-based metagenomic profiling via containment min hash. Genome Biol. 21:242. doi: 10.1186/s13059-020-02159-0 Lei, Y., Sun, D., Dang, Y., Feng, X., Huo, D., Liu, C., et al. (2019). Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Res. 161, 570–580. doi: 10.1016/j. watres.2019.06.038 Li, Y., Jing, Z., Pan, J., Luo, G., Feng, L., Jiang, H., et al. (2022). Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste. Renew. Sust. Energ. Rev. 160:112261. doi: 10.1016/j.rser.2022.112261 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an ultrafast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/bioinformatics/btv033 Li, L., Peng, X., Wang, X., and Wu, D. (2018). Anaerobic digestion of food waste: a review focusing on process stability. Bioresour. Technol. 248, 20–28. doi: 10.1016/j. biortech.2017.07.012 Li, X., Tong, J., Yuan, M., Song, M., Gao, J., Zhu, J., et al. (2023). Demonstrating the application of batch anaerobic digestion recirculating slurry inoculation of food waste engineering from a microbiological perspective. Renew. Energy 217:9216. doi: 10.1016/j. renene.2023.119216 Liang, B., Wang, L. Y., Mbadinga, S. M., Liu, J. F., Yang, S. Z., Gu, J. D., et al. (2015). Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:117. doi: 10.1186/s13568-015-0117-4 Lindner, B. G., Gerhardt, K., Feistel, D. J., Rodriguez-R, L. M., Hatt, J. K., and Konstantinidis, K. T. (2024). A user’s guide to the bioinformatic analysis of shotgun metagenomic sequence data for bacterial pathogen detection. Int. J. Food Microbiol. 410:110488. doi: 10.1016/j.ijfoodmicro.2023.110488 Lischer, H. E. L., and Shimizu, K. K. (2017). Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinform. 18:474. doi: 10.1186/s12859-017-1911-6 Liu, D., Cen, R., Yuan, A., Wu, M., Luo, C., Chen, M., et al. (2024). Effects of continuous low-speed biogas agitation on anaerobic digestion of high-solids pig manure: performance and microbial community. J. Environ. Manag. 354:120355. doi: 10.1016/j. jenvman.2024.120355 Liu, J., Liu, F., and Pan, W. (2023). Improving the completeness of chromosome-level assembly by recalling sequences from lost Contigs. Genes (Basel) 14:1926. doi: 10.3390/ genes14101926 Liu, Y., Wachemo, A. C., Yuan, H. R., and Li, X. J. (2019). Anaerobic digestion performance and microbial community structure of corn Stover in three-stage continuously stirred tank reactors. Bioresour. Technol. 287:121339. doi: 10.1016/j. biortech.2019.121339 Lv, L., Chen, J., Liu, X., Gao, W., Sun, L., Wang, P., et al. (2023). Roles and regulation of quorum sensing in anaerobic granular sludge: research status, challenges, and perspectives. Bioresour. Technol. 387:129644. doi: 10.1016/j.biortech.2023.129644 Malolan, V. V., Shereen, M. F., Dharaneesh, A. B., Ponnusami, V., Arumugam, A., and Sudalai, S. (2022). “Pilot plant and industrial-scale operations for biodiesel production,” in Production of Biodiesel from Non-Edible Sources, (Elsevier), 179–210. Manjusha, C., and Beevi, B. S. (2016). Mathematical modeling and simulation of anaerobic digestion of solid waste. Proc. Technol. 24, 654–660. doi: 10.1016/j. protcy.2016.05.174 Mao, L., Tsui, T. H., Zhang, J., Dai, Y., and Tong, Y. W. (2021). Mixing effects on decentralized high-solid digester for horticultural waste: startup, operation and sensitive microorganisms. Bioresour. Technol. 333:125216. doi: 10.1016/j. biortech.2021.125216 Marchesi, J. R., and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3:31. doi: 10.1186/s40168-015-0094-5 Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., and Ng, W. J. (2015). Comparison of singlestage and two-phase anaerobic sludge digestion systems - performance and microbial community dynamics. Chemosphere 140, 54–62. doi: 10.1016/j.chemosphere.2014.07.028 McAteer, P. G., Christine Trego, A., Thorn, C., Mahony, T., Abram, F., and O’Flaherty, V. (2020). Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour. Technol. 307:123221. doi: 10.1016/j.biortech.2020.123221 Mehariya, S., Patel, A. K., Obulisamy, P. K., Punniyakotti, E., and Wong, J. W. C. (2018). Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Bioresour. Technol. 265, 519–531. doi: 10.1016/j. biortech.2018.04.030 Michael, C., Jennifer, D., and Michael, O. (2015). Molecular Biology. 2nd Edn. New York, NY: W. H. Freeman & Co Ltd. Murillo-Roos, M., Uribe-Lorío, L., Fuentes-Schweizer, P., Vidaurre-Barahona, D., Brenes-Guillén, L., Jiménez, I., et al. (2022). Biogas production and microbial communities of mesophilic and thermophilic anaerobic co-digestion of animal manures and food wastes in Costa Rica. Energies (Basel) 15:3252. doi: 10.3390/ en15093252 Ong, M., Williams, R., and Kaffka, S. (2014). Comparative Assessment of Technology Options for Biogas Clean‐up. Contractor Report to the California Energy Commission. California. Available at: https://ucdavis.app.box.com/s/iaog2diybkvoe5xxdjud97xsrx3ypwmq (Accessed September 7, 2024). Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., et al. (2015). Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9, 1710–1722. doi: 10.1038/ismej.2014.256 Oosterkamp, M. J., Bauer, S., Ibáñez, A. B., Méndez-García, C., Hong, P. Y., Cann, I., et al. (2019). Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage. Bioresour. Technol. Rep. 7:100254. doi: 10.1016/j.biteb.2019.100254 Orakov, A., Fullam, A., Coelho, L. P., Khedkar, S., Szklarczyk, D., Mende, D. R., et al. (2021). GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22:178. doi: 10.1186/s13059-021-02393-0 Paliy, O., and Shankar, V. (2016). Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057. doi: 10.1111/mec.13536 Palù, M., Basile, A., Zampieri, G., Treu, L., Rossi, A., Morlino, M. S., et al. (2022). KEMET – a python tool for KEGG module evaluation and microbial genome annotation expansion. Comput. Struct. Biotechnol. J. 20, 1481–1486. doi: 10.1016/j.csbj.2022.03.015 Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., and Hugenholtz, P. (2022). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794. doi: 10.1093/nar/gkab776 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114 Pasalari, H., Gholami, M., Rezaee, A., Esrafili, A., and Farzadkia, M. (2021). Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: a systematic review. Chemosphere 270:128618. doi: 10.1016/j. chemosphere.2020.128618 Peces, M., Astals, S., Jensen, P. D., and Clarke, W. P. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 141, 366–376. doi: 10.1016/j. watres.2018.05.028 Pei, Z., Liu, S., Jing, Z., Zhang, Y., Wang, J., Liu, J., et al. (2022). Understanding of the interrelationship between methane production and microorganisms in high-solid anaerobic co-digestion using microbial analysis and machine learning. J. Clean. Prod. 373:3848. doi: 10.1016/j.jclepro.2022.133848 Piadeh, F., Offie, I., Behzadian, K., Rizzuto, J. P., Bywater, A., Córdoba-Pachón, J. R., et al. (2024). A critical review for the impact of anaerobic digestion on the sustainable development goals. J. Environ. Manag. 349:119458. doi: 10.1016/j.jenvman.2023.119458 Pore, S. D., Shetty, D., Arora, P., Maheshwari, S., and Dhakephalkar, P. K. (2016). Metagenome changes in the biogas producing community during anaerobic digestion of rice straw. Bioresour. Technol. 213, 50–53. doi: 10.1016/j.biortech.2016.03.045 Portik, D. M., Brown, C. T., and Pierce-Ward, N. T. (2022). Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinform. 23:541. doi: 10.1186/s12859-022-05103-0 Prosser, J. I. (2010). Replicate or lie. Environ. Microbiol. 12, 1806–1810. doi: 10.1111/j. 1462-2920.2010.02201.x Quince, C., Nurk, S., Raguideau, S., James, R., Soyer, O. S., Summers, J. K., et al. (2021). STRONG: metagenomics strain resolution on assembly graphs. Genome Biol. 22, 1–34. doi: 10.1186/S13059-021-02419-7/FIGURES/9 Raboni, M., and Viotti, P. (2016). Formation and destruction of polycyclic aromatic hydrocarbons (PAHs) in the flaring of the biogas collected from an automotive shredded residues landfill. Ambien. Agua Interdiscip. J. Appl. Sci. 11, 1–9. doi: 10.4136/ ambi-agua.1758 Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160. doi: 10.1111/j.1574-6941.2007.00375.x Rao, M., Zou, X., Huang, Z., Ye, J., Huang, C., Zhang, M., et al. (2024). Purification of anaerobic fermentation digestate of dairy manure by Arthrospira biomass cultivated with biogas-CO2 fixation. Biochem. Eng. J. 203:109178. doi: 10.1016/j.bej.2023.109178 Ren, J., Yuan, X., Li, J., Ma, X., Zhao, Y., Zhu, W., et al. (2014). Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure. Bioresour. Technol. 155, 342–351. doi: 10.1016/j. biortech.2013.12.120 Rhee, C., Kim, D. W., Yu, S. I., Lee, M. E., Shin, J., Kim, H. W., et al. (2021). Biogas potential assessment and characterization of Korean slaughterhouse waste for anaerobic digestion. Environ. Technol. Innov. 24:1858. doi: 10.1016/j.eti.2021.101858 Robinson, K. M., Hawkins, A. S., Santana-Cruz, I., Adkins, R. S., Shetty, A. C., Nagaraj, S., et al. (2017). Aligner optimization increases accuracy and decreases compute times in multi-species sequence data. Microb. Genom. 3:122. doi: 10.1099/ mgen.0.000122 Saha, S., Jeon, B. H., Kurade, M. B., Govindwar, S. P., Chatterjee, P. K., Oh, S. E., et al. (2019). Interspecies microbial nexus facilitated methanation of polysaccharidic wastes. Bioresour. Technol. 289:121638. doi: 10.1016/j. biortech.2019.121638 Samuel, P. O. (2015). Pro
dc.rights.eng.fl_str_mv Derechos reservados - Frontiers Media SA, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Frontiers Media SA, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 26 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers
publisher.none.fl_str_mv Frontiers
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/9dac16a6-9054-45bf-bfaf-b13052c36d9c/download
https://red.uao.edu.co/bitstreams/96505fc7-14fe-40bc-ab16-07526010b9cb/download
https://red.uao.edu.co/bitstreams/25d6b91e-1820-4eb0-8b58-9284a7bf4c6d/download
https://red.uao.edu.co/bitstreams/0ecf4cb4-f7a9-42f4-afef-b37c636bbe4f/download
bitstream.checksum.fl_str_mv ac19ceef69b26a91de059e8bce5fca4b
6987b791264a2b5525252450f99b10d1
53cd2e8e45d1bb74baefe1bda8fd0f27
ec8f17d08fc25a1e3b37977f4b19a88b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1837098994557255680
spelling Flórez-Pardo, Luz MarinaOstos, IvánCamargo, Carolina2025-06-06T16:51:57Z2025-06-06T16:51:57Z2024Flórez-Pardo, L. M.; Ostos, I. y Camargo, C. (2024). A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a review. En: Frontiers in Microbiology. Vol 15 pp. 1-26. https://doi.org/10.3389/fmicb.2024.1437098https://hdl.handle.net/10614/161461664-302XUniversidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future26 páginasapplication/pdfengFrontiersDerechos reservados - Frontiers Media SA, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A metagenomic approach to demystify the anaerobic digestión black box and achieve higher biogas yield: a reviewUn enfoque metagenómico para desmitificar la caja negra de la digestión anaeróbica y lograr un mayor rendimiento de biogás: una revisiónArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8526115Frontiers in MicrobiologyAbedi, S., Nozarpour, A., and Tavakoli, O. (2023). Evaluation of biogas production rate and leachate treatment in landfill through a water-energy nexus framework for integrated waste management. Energy Nexus 11:100218. doi: 10.1016/j. nexus.2023.100218 Abellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., et al. (2021). Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6, e01202–e01220. doi: 10.1128/mSphere.01202-20 Adebayo, A., Jekayinfa, S., and Linke, B. (2015). Effects of organic loading rate on biogas yield in a continuously stirred tank reactor experiment at mesophilic temperature. Br. J. Appl. Sci. Technol. 11, 1–9. doi: 10.9734/ BJAST/2015/18040 Akyol, Ç., Ince, O., Bozan, M., Ozbayram, E. G., and Ince, B. (2019). Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: a metagenomic approach. Ind. Crop. Prod. 140:111659. doi: 10.1016/j.indcrop.2019.111659 Alarcón-Vivero, M., Moena, N. R. T., Gonzalez, F., Jopia-Contreras, P., Aspé, E., Briones, H. U., et al. (2022). Anaerobic biofilm enriched with an ammonia tolerant methanogenic consortium to improve wastewater treatment in the fishing industry. Biotechnol. Lett. 44, 239–251. doi: 10.1007/s10529-021-03213-y Alengebawy, A., Mohamed, B. A., Ghimire, N., Jin, K., Liu, T., Samer, M., et al. (2022). Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions. Environ. Res. 213:113632. doi: 10.1016/j.envres.2022.113632 Alghashm, S., Song, L., Liu, L., Ouyang, C., Zhou, J. L., and Li, X. (2023). Improvement of biogas production using biochar from Digestate at different pyrolysis temperatures during OFMSW anaerobic digestion. Sustainability (Switzerland) 15, 1–15. doi: 10.3390/ su151511917 Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: the key players of Anaerobiosis. Sci. World J. 2014, 1–21. doi: 10.1155/2014/183752 Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., et al. (2014). Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146. doi: 10.1038/nmeth.3103 Araoye, T. O., Mgbachi, C., Ajenikoko, G. A., Oluwaseun, A. T., Mgbachi, C. A., and Okelola, M. O. (2018). A comparative analysis of renewable energy using biogas and solar photovoltaic systems: a case study of Ajaba, in Osun State. Asgarineshat, S., Arumugam, K., Shankari Chandra Segaran, U., Sekar, P., and Anika, A., (2022). A genome-centric metagenomics approach to explain microbial community structure in anaerobic digesters. Available at: https://hdl.handle. net/10356/156928 (Accessed September 10, 2024). Athanasopoulou, K., Boti, M. A., Adamopoulos, P. G., Skourou, P. C., and Scorilas, A. (2021). Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life 12:30. doi: 10.3390/life12010030 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021 Becker, D., Popp, D., Bonk, F., Kleinsteuber, S., Harms, H., and Centler, F. (2023). Metagenomic analysis of anaerobic microbial communities degrading short-chain fatty acids as sole carbon sources. Microorganisms 11:420. doi: 10.3390/ microorganisms11020420 Bedoya, K., Coltell-Simon, O., Cabarcas, F., and Alzate, J. F. (2019). Metagenomic assessment of the microbial community and methanogenic pathways in biosolids from a municipal wastewater treatment plant in Medellín, Colombia. Sci. Total Environ. 648, 572–581. doi: 10.1016/j.scitotenv.2018.08.119 Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., et al. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. eLife 10:e65088. doi: 10.7554/eLife.65088 Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., and Iyyappan, J. (2018). Biogas production – a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sust. Energ. Rev. 90, 570–582. doi: 10.1016/j.rser.2018.03.093 Bi, S., Westerholm, M., Hu, W., Mahdy, A., Dong, T., Sun, Y., et al. (2021). The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: a case study of a 10-year successful biogas plant. Renew. Energy 167, 644–651. doi: 10.1016/j. renene.2020.11.133 Blades, L., Morgan, K., Douglas, R., Glover, S., De Rosa, M., Cromie, T., et al. (2017). Circular biogas-based economy in a rural agricultural setting. Energy Procedia 123, 89–96. doi: 10.1016/j.egypro.2017.07.255 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9 Bovio-Winkler, P., Cabezas, A., and Etchebehere, C. (2021). Database mining to unravel the ecology of the phylum Chloroflexi in methanogenic full scale bioreactors. Front. Microbiol. 11:603234. doi: 10.3389/fmicb.2020.603234 Brandt, C., Bongcam-Rudloff, E., and Müller, B. (2020). Abundance tracking by longread Nanopore sequencing of complex microbial communities in samples from 20 different biogas/wastewater plants. Appl. Sci. 10:7518. doi: 10.3390/app10217518 Bucci, L., Ghiotto, G., Zampieri, G., Raga, R., Favaro, L., Treu, L., et al. (2024). Adaptation of anaerobic digestion microbial communities to high ammonium levels: insights from strain-resolved metagenomics. Environ. Sci. Technol. 58, 580–590. doi: 10.1021/acs.est.3c07737 Callaghan, M. (2023). Cloud computing for metagenomics: building a personalized computational platform for pipeline analyses. Methods Mol. Biol. 2649, 261–279. doi: 10.1007/978-1-0716-3072-3_13 Campanaro, S., Treu, L., Kougias, P. G., Luo, G., and Angelidaki, I. (2018). Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Res. 140, 123–134. doi: 10.1016/j.watres.2018.04.043 Campanaro, S., Treu, L., Rodriguez, L. M. R., Kovalovszki, A., Ziels, R. M., Maus, I., et al. (2019). The anaerobic digestion microbiome: a collection of 1600 metagenomeassembled genomes shows high species diversity related to methane production. bioRxiv. doi: 10.1101/680553 Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., and Kjelleberg, S. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278–288. doi: 10.1128/AEM.01177-06 Cattaneo, C. R., Rodríguez, Y., Rene, E. R., García-Depraect, O., and Muñoz, R. (2022). Biogas bioconversion into poly(3-hydroxybutyrate) by a mixed microbial culture in a novel Taylor flow bioreactor. Waste Manag. 150, 364–372. doi: 10.1016/j. wasman.2022.07.017 Chen, Z., Erickson, D. L., and Meng, J. (2020). Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 21:631. doi: 10.1186/s12864-020-07041-8 Chen, P., Guo, Y., Jia, L., Wan, J., He, T., Fang, C., et al. (2021). Interaction between functionally activate endometrial microbiota and host gene regulation in endometrial Cancer. Front. Cell Dev. Biol. 9:727286. doi: 10.3389/fcell.2021.727286 Chen, Z., Ma, J., Ma, J., Ye, J., Yu, Q., Zou, P., et al. (2024). Long-term biogas slurry application increases microbial necromass but not plant lignin contribution to soil organic carbon in paddy soils as regulated by fungal community. Waste Manag. 175, 254–264. doi: 10.1016/j.wasman.2024.01.011 Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., and Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448. doi: 10.1039/C5RA00666J Cheng, H., Medina, J. S., Zhou, J., Pinho, E. M., Meng, R., Wang, L., et al. (2024). Predicting anaerobic membrane bioreactor performance using flow-cytometry-derived high and low nucleic acid content cells. Environ. Sci. Technol. 58, 2360–2372. doi: 10.1021/acs.est.3c07702 Chukwuma, O. B., Rafatullah, M., Tajarudine, H. A., and Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. Int. J. Environ. Res. Public Health 18:6001. doi: 10.3390/ijerph18116001 Coggill, P., Finn, R. D., and Bateman, A. (2008). Identifying protein domains with the Pfam database. Curr. Protoc. Bioinformatics 23. doi: 10.1002/0471250953.bi0205s23. [Epub ahead of print]. Cortés, A., Martin, J., Rosa, B. A., Stark, K. A., Clare, S., McCarthy, C., et al. (2022). The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl. Trop. Dis. 16:e0010878. doi: 10.1371/journal.pntd.0010878 Cuber, P., Chooneea, D., Geeves, C., Salatino, S., Creedy, T. J., Griffin, C., et al. (2023). Comparing the accuracy and efficiency of third generation sequencing technologies, Oxford Nanopore technologies, and Pacific biosciences, for DNA barcode sequencing applications. Ecol. Genet. Genom. 28:100181. doi: 10.1016/j. egg.2023.100181 De Bernardini, N., Basile, A., Zampieri, G., Kovalovszki, A., De Diego Diaz, B., Offer, E., et al. (2022). Integrating metagenomic binning with flux balance analysis to unravel syntrophies in anaerobic CO2 methanation. Microbiome 10:117. doi: 10.1186/ s40168-022-01311-1 de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L., and de Araújo, J. M. (2012). Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16, 466–471. doi: 10.1016/j.bjid.2012.08.014 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-6 Eisenhofer, R., Nesme, J., Santos-Bay, L., Koziol, A., Sørensen, S. J., Alberdi, A., et al. (2024). A comparison of short-read, HiFi long-read, and hybrid strategies for genomeresolved metagenomics. Microbiol. Spectr. 12:e0359023. doi: 10.1128/spectrum.03590-23 Emrani, A., and Berrada, A. (2024). Modeling and optimal capacity configuration of dry gravity energy storage integrated in off-grid hybrid PV/wind/biogas plant incorporating renewable power generation forecast. J. Energy Storage 97, 1–20. doi: 10.1016/j. est.2024.112698 Fedailaine, M., Moussi, K., Khitous, M., Abada, S., Saber, M., and Tirichine, N. (2015). Modeling of the anaerobic digestion of organic waste for biogas production. Proc. Comput. Sci. 52, 730–737. doi: 10.1016/j.procs.2015.05.086 Fontana, A., Campanaro, S., Treu, L., Kougias, P. G., Cappa, F., Morelli, L., et al. (2018). Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. Water Res. 134, 181–191. doi: 10.1016/j. watres.2018.02.001 Gahlot, P., Aboudi, K., Ahmed, B., Tawfik, A., Khan, A. A., Khursheed, A., et al. (2021). Direct interspecies electron transfer (DIET) via conductive materials in anaerobic digestion of organic wastes. Clean Energy Resourc. Recov. 1, 227–252. doi: 10.1016/B978-0-323-85223-4.00024-5 Gaspari, M., Ghiotto, G., Centurion, V. B., Kotsopoulos, T., Santinello, D., Campanaro, S., et al. (2024). Decoding microbial responses to ammonia shock loads in biogas reactors through metagenomics and metatranscriptomics. Environ. Sci. Technol. 58, 591–602. doi: 10.1021/acs.est.3c07840 Ghiotto, G., De Bernardini, N., Giangeri, G., Tsapekos, P., Gaspari, M., Kougias, P. G., et al. (2024a). From microbial heterogeneity to evolutionary insights: a strain-resolved metagenomic study of H2S-induced changes in anaerobic biofilms. Chem. Eng. J. 485:9824. doi: 10.1016/j.cej.2024.149824 Ghiotto, G., Zampieri, G., Campanaro, S., and Treu, L. (2024b). Strain-resolved metagenomics approaches applied to biogas upgrading. Environ. Res. 240:117414. doi: 10.1016/j.envres.2023.117414 Golub, K. W., Smith, A. D., Hollister, E. B., Gentry, T. J., and Holtzapple, M. T. (2011). Investigation of intermittent air exposure on four-stage and one-stage anaerobic semicontinuous mixed-acid fermentations. Bioresour. Technol. 102, 5066–5075. doi: 10.1016/j.biortech.2011.02.011 Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., et al. (2016). Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390. doi: 10.1016/j.renene.2015.07.066 Greses, S., De Bernardini, N., Treu, L., Campanaro, S., and González-Fernández, C. (2023). Genome-centric metagenomics revealed the effect of pH on the microbiome involved in short-chain fatty acids and ethanol production. Bioresour. Technol. 377:128920. doi: 10.1016/j.biortech.2023.128920 Han, Y., Green, H., and Tao, W. (2020). Reversibility of propionic acid inhibition to anaerobic digestion: inhibition kinetics and microbial mechanism. Chemosphere 255:126840. doi: 10.1016/j.chemosphere.2020.126840 Han, G., Shin, S. G., Lee, J., Shin, J., and Hwang, S. (2017). A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semidry anaerobic digesters treating food wastes. Bioresour. Technol. 245, 869–875. doi: 10.1016/j.biortech.2017.08.167 Häntze, H., and Horton, P. (2023). Effects of spaced k-mers on alignment-free genotyping. Bioinformatics 39, i213–i221. doi: 10.1093/bioinformatics/btad202 Hauptfeld, E., Pappas, N., van Iwaarden, S., Snoek, B. L., Aldas-Vargas, A., Dutilh, B. E., et al. (2024). Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes. Nat. Commun. 15:3373. doi: 10.1038/s41467-024-47155-1 Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., et al. (2016). Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol. Biofuels 9, 1–16. doi: 10.1186/ s13068-016-0572-4 Heyer, R., Hellwig, P., Maus, I., Walke, D., Schlüter, A., Hassa, J., et al. (2024). Breakdown of hardly degradable carbohydrates (lignocellulose) in a two-stage anaerobic digestion plant is favored in the main fermenter. Water Res. 250:1020. doi: 10.1016/j. watres.2023.121020 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314. doi: 10.1093/nar/gky1085 Izumi, K., Okishio, Y., Nagao, N., Niwa, C., Yamamoto, S., and Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegradation 64, 601–608. doi: 10.1016/j.ibiod.2010.06.013 Jain, S., Jain, S., Wolf, I. T., Lee, J., and Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sust. Energ. Rev. 52, 142–154. doi: 10.1016/j. rser.2015.07.091 James, A. R. S., and Richardson, R. E. (2020). Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions. FEMS Microbiol. Ecol. 96:50. doi: 10.1093/ FEMSEC/FIAA050 Jia, Y., Wilkins, D., Lu, H., Cai, M., and Lee, P. K. H. (2016). Long-term enrichment on cellulose or xylan causes functional and taxonomic convergence of microbial communities from anaerobic digesters. Appl. Environ. Microbiol. 82, 1519–1529. doi: 10.1128/AEM.03360-15 Jiang, F., Li, Q., Wang, S., Shen, T., Wang, H., Wang, A., et al. (2023). Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing. Front. Microbiol. 13:1095497. doi: 10.3389/fmicb.2022.1095497 Johnravindar, D., Patria, R. D., Lee, J. T. E., Zhang, L., Tong, Y. W., Wang, C.-H., et al. (2021). Syntrophic interactions in anaerobic digestion: how biochar properties affect them? Sustain. Environ. 7:1945282. doi: 10.1080/27658511.2021.1945282 Jung, H., Yu, H., and Lee, C. (2023). Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO2-reducing methanogenesis. iScience 26:107504. doi: 10.1016/j.isci.2023.107504 Kalamaras, S. D., Christou, M. L., Tzenos, C. A., Vasileiadis, S., Karpouzas, D. G., and Kotsopoulos, T. A. (2023). Investigation of the critical biomass of acclimated microbial communities to high Ammonia concentrations for a successful bioaugmentation of biogas anaerobic reactors with Ammonia inhibition. Microorganisms 11:1710. doi: 10.3390/microorganisms11071710 Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323. doi: 10.1016/S1389-1723(03)90130-7 Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359 Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J., Chang, S. W., et al. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285:119105. doi: 10.1016/j.fuel.2020.119105 Khanthong, K., Kadam, R., Kim, T., and Park, J. (2023). Synergetic effects of anaerobic co-digestion of food waste and algae on biogas production. Bioresour. Technol. 382:129208. doi: 10.1016/j.biortech.2023.129208 Kim, N. K., Lee, S. H., Kim, Y., and Park, H. D. (2022). Current understanding and perspectives in anaerobic digestion based on genome-resolved metagenomic approaches. Bioresour. Technol. 344:126350. doi: 10.1016/j.biortech.2021.126350 Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422. doi: 10.1038/s41579-018-0029-9 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. (2019). Assembly of long, errorprone reads using repeat graphs. Nat. Biotechnol. 37, 540–546. doi: 10.1038/ s41587-019-0072-8 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736. doi: 10.1101/gr.215087.116 Krishna, D., and Kalamdhad, A. S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production - a review. J. Environ. Chem. Eng. 2, 1821–1830. doi: 10.1016/j.jece.2014.07.024 Lapierre, N., Alser, M., Eskin, E., Koslicki, D., and Mangul, S. (2020). Metalign: efficient alignment-based metagenomic profiling via containment min hash. Genome Biol. 21:242. doi: 10.1186/s13059-020-02159-0 Lei, Y., Sun, D., Dang, Y., Feng, X., Huo, D., Liu, C., et al. (2019). Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Res. 161, 570–580. doi: 10.1016/j. watres.2019.06.038 Li, Y., Jing, Z., Pan, J., Luo, G., Feng, L., Jiang, H., et al. (2022). Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste. Renew. Sust. Energ. Rev. 160:112261. doi: 10.1016/j.rser.2022.112261 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an ultrafast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/bioinformatics/btv033 Li, L., Peng, X., Wang, X., and Wu, D. (2018). Anaerobic digestion of food waste: a review focusing on process stability. Bioresour. Technol. 248, 20–28. doi: 10.1016/j. biortech.2017.07.012 Li, X., Tong, J., Yuan, M., Song, M., Gao, J., Zhu, J., et al. (2023). Demonstrating the application of batch anaerobic digestion recirculating slurry inoculation of food waste engineering from a microbiological perspective. Renew. Energy 217:9216. doi: 10.1016/j. renene.2023.119216 Liang, B., Wang, L. Y., Mbadinga, S. M., Liu, J. F., Yang, S. Z., Gu, J. D., et al. (2015). Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:117. doi: 10.1186/s13568-015-0117-4 Lindner, B. G., Gerhardt, K., Feistel, D. J., Rodriguez-R, L. M., Hatt, J. K., and Konstantinidis, K. T. (2024). A user’s guide to the bioinformatic analysis of shotgun metagenomic sequence data for bacterial pathogen detection. Int. J. Food Microbiol. 410:110488. doi: 10.1016/j.ijfoodmicro.2023.110488 Lischer, H. E. L., and Shimizu, K. K. (2017). Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinform. 18:474. doi: 10.1186/s12859-017-1911-6 Liu, D., Cen, R., Yuan, A., Wu, M., Luo, C., Chen, M., et al. (2024). Effects of continuous low-speed biogas agitation on anaerobic digestion of high-solids pig manure: performance and microbial community. J. Environ. Manag. 354:120355. doi: 10.1016/j. jenvman.2024.120355 Liu, J., Liu, F., and Pan, W. (2023). Improving the completeness of chromosome-level assembly by recalling sequences from lost Contigs. Genes (Basel) 14:1926. doi: 10.3390/ genes14101926 Liu, Y., Wachemo, A. C., Yuan, H. R., and Li, X. J. (2019). Anaerobic digestion performance and microbial community structure of corn Stover in three-stage continuously stirred tank reactors. Bioresour. Technol. 287:121339. doi: 10.1016/j. biortech.2019.121339 Lv, L., Chen, J., Liu, X., Gao, W., Sun, L., Wang, P., et al. (2023). Roles and regulation of quorum sensing in anaerobic granular sludge: research status, challenges, and perspectives. Bioresour. Technol. 387:129644. doi: 10.1016/j.biortech.2023.129644 Malolan, V. V., Shereen, M. F., Dharaneesh, A. B., Ponnusami, V., Arumugam, A., and Sudalai, S. (2022). “Pilot plant and industrial-scale operations for biodiesel production,” in Production of Biodiesel from Non-Edible Sources, (Elsevier), 179–210. Manjusha, C., and Beevi, B. S. (2016). Mathematical modeling and simulation of anaerobic digestion of solid waste. Proc. Technol. 24, 654–660. doi: 10.1016/j. protcy.2016.05.174 Mao, L., Tsui, T. H., Zhang, J., Dai, Y., and Tong, Y. W. (2021). Mixing effects on decentralized high-solid digester for horticultural waste: startup, operation and sensitive microorganisms. Bioresour. Technol. 333:125216. doi: 10.1016/j. biortech.2021.125216 Marchesi, J. R., and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3:31. doi: 10.1186/s40168-015-0094-5 Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., and Ng, W. J. (2015). Comparison of singlestage and two-phase anaerobic sludge digestion systems - performance and microbial community dynamics. Chemosphere 140, 54–62. doi: 10.1016/j.chemosphere.2014.07.028 McAteer, P. G., Christine Trego, A., Thorn, C., Mahony, T., Abram, F., and O’Flaherty, V. (2020). Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour. Technol. 307:123221. doi: 10.1016/j.biortech.2020.123221 Mehariya, S., Patel, A. K., Obulisamy, P. K., Punniyakotti, E., and Wong, J. W. C. (2018). Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Bioresour. Technol. 265, 519–531. doi: 10.1016/j. biortech.2018.04.030 Michael, C., Jennifer, D., and Michael, O. (2015). Molecular Biology. 2nd Edn. New York, NY: W. H. Freeman & Co Ltd. Murillo-Roos, M., Uribe-Lorío, L., Fuentes-Schweizer, P., Vidaurre-Barahona, D., Brenes-Guillén, L., Jiménez, I., et al. (2022). Biogas production and microbial communities of mesophilic and thermophilic anaerobic co-digestion of animal manures and food wastes in Costa Rica. Energies (Basel) 15:3252. doi: 10.3390/ en15093252 Ong, M., Williams, R., and Kaffka, S. (2014). Comparative Assessment of Technology Options for Biogas Clean‐up. Contractor Report to the California Energy Commission. California. Available at: https://ucdavis.app.box.com/s/iaog2diybkvoe5xxdjud97xsrx3ypwmq (Accessed September 7, 2024). Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., et al. (2015). Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9, 1710–1722. doi: 10.1038/ismej.2014.256 Oosterkamp, M. J., Bauer, S., Ibáñez, A. B., Méndez-García, C., Hong, P. Y., Cann, I., et al. (2019). Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage. Bioresour. Technol. Rep. 7:100254. doi: 10.1016/j.biteb.2019.100254 Orakov, A., Fullam, A., Coelho, L. P., Khedkar, S., Szklarczyk, D., Mende, D. R., et al. (2021). GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22:178. doi: 10.1186/s13059-021-02393-0 Paliy, O., and Shankar, V. (2016). Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057. doi: 10.1111/mec.13536 Palù, M., Basile, A., Zampieri, G., Treu, L., Rossi, A., Morlino, M. S., et al. (2022). KEMET – a python tool for KEGG module evaluation and microbial genome annotation expansion. Comput. Struct. Biotechnol. J. 20, 1481–1486. doi: 10.1016/j.csbj.2022.03.015 Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., and Hugenholtz, P. (2022). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794. doi: 10.1093/nar/gkab776 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114 Pasalari, H., Gholami, M., Rezaee, A., Esrafili, A., and Farzadkia, M. (2021). Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: a systematic review. Chemosphere 270:128618. doi: 10.1016/j. chemosphere.2020.128618 Peces, M., Astals, S., Jensen, P. D., and Clarke, W. P. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 141, 366–376. doi: 10.1016/j. watres.2018.05.028 Pei, Z., Liu, S., Jing, Z., Zhang, Y., Wang, J., Liu, J., et al. (2022). Understanding of the interrelationship between methane production and microorganisms in high-solid anaerobic co-digestion using microbial analysis and machine learning. J. Clean. Prod. 373:3848. doi: 10.1016/j.jclepro.2022.133848 Piadeh, F., Offie, I., Behzadian, K., Rizzuto, J. P., Bywater, A., Córdoba-Pachón, J. R., et al. (2024). A critical review for the impact of anaerobic digestion on the sustainable development goals. J. Environ. Manag. 349:119458. doi: 10.1016/j.jenvman.2023.119458 Pore, S. D., Shetty, D., Arora, P., Maheshwari, S., and Dhakephalkar, P. K. (2016). Metagenome changes in the biogas producing community during anaerobic digestion of rice straw. Bioresour. Technol. 213, 50–53. doi: 10.1016/j.biortech.2016.03.045 Portik, D. M., Brown, C. T., and Pierce-Ward, N. T. (2022). Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinform. 23:541. doi: 10.1186/s12859-022-05103-0 Prosser, J. I. (2010). Replicate or lie. Environ. Microbiol. 12, 1806–1810. doi: 10.1111/j. 1462-2920.2010.02201.x Quince, C., Nurk, S., Raguideau, S., James, R., Soyer, O. S., Summers, J. K., et al. (2021). STRONG: metagenomics strain resolution on assembly graphs. Genome Biol. 22, 1–34. doi: 10.1186/S13059-021-02419-7/FIGURES/9 Raboni, M., and Viotti, P. (2016). Formation and destruction of polycyclic aromatic hydrocarbons (PAHs) in the flaring of the biogas collected from an automotive shredded residues landfill. Ambien. Agua Interdiscip. J. Appl. Sci. 11, 1–9. doi: 10.4136/ ambi-agua.1758 Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160. doi: 10.1111/j.1574-6941.2007.00375.x Rao, M., Zou, X., Huang, Z., Ye, J., Huang, C., Zhang, M., et al. (2024). Purification of anaerobic fermentation digestate of dairy manure by Arthrospira biomass cultivated with biogas-CO2 fixation. Biochem. Eng. J. 203:109178. doi: 10.1016/j.bej.2023.109178 Ren, J., Yuan, X., Li, J., Ma, X., Zhao, Y., Zhu, W., et al. (2014). Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure. Bioresour. Technol. 155, 342–351. doi: 10.1016/j. biortech.2013.12.120 Rhee, C., Kim, D. W., Yu, S. I., Lee, M. E., Shin, J., Kim, H. W., et al. (2021). Biogas potential assessment and characterization of Korean slaughterhouse waste for anaerobic digestion. Environ. Technol. Innov. 24:1858. doi: 10.1016/j.eti.2021.101858 Robinson, K. M., Hawkins, A. S., Santana-Cruz, I., Adkins, R. S., Shetty, A. C., Nagaraj, S., et al. (2017). Aligner optimization increases accuracy and decreases compute times in multi-species sequence data. Microb. Genom. 3:122. doi: 10.1099/ mgen.0.000122 Saha, S., Jeon, B. H., Kurade, M. B., Govindwar, S. P., Chatterjee, P. K., Oh, S. E., et al. (2019). Interspecies microbial nexus facilitated methanation of polysaccharidic wastes. Bioresour. Technol. 289:121638. doi: 10.1016/j. biortech.2019.121638 Samuel, P. O. (2015). Production of biogas from perennial and biennial crop wastes: peach palm and Banana’s wastes as alternative biomass in energy generation and environmental Susteinability. Am. J. Environ. Eng. 5, 79–89. doi: 10.5923/j. ajee.20150504.01 Schwan, B., Abendroth, C., Latorre-Pérez, A., Porcar, M., Vilanova, C., and Dornack, C. (2020). Chemically stressed bacterial communities in anaerobic digesters exhibit resilience and ecological flexibility. Front. Microbiol. 11:867. doi: 10.3389/ fmicb.2020.00867 Sepúlveda, G., Jaimes, L. E., Pacheco, L., and Díaz, C. A. (2018). Simulation of a biogas cleaning process using different amines. Rev. Facult. Ingeniería 27, 51–60. doi: 10.19053/01211129.v27.n47.2018.7751 Setubal, J. C. (2021). Metagenome-assembled genomes: concepts, analogies, and challenges. Biophys. Rev. 13:905. doi: 10.1007/s12551-021-00865-y Shah, S. V., Yadav Lamba, B., Tiwari, A. K., and Chen, W. H. (2024). Sustainable biogas production via anaerobic digestion with focus on CSTR technology: a review. J. Taiwan Inst. Chem. Eng. 162:105575. doi: 10.1016/j.jtice.2024.105575 Sims, D., Sudbery, I., Ilott, N. E., Heger, A., and Ponting, C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132. doi: 10.1038/nrg3642 Singleton, C. M., Petriglieri, F., Kristensen, J. M., Kirkegaard, R. H., Michaelsen, T. Y., Andersen, M. H., et al. (2021). Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat. Commun. 12:2009. doi: 10.1038/ s41467-021-22203-2 Smith, B. J., Li, X., Shi, Z. J., Abate, A., and Pollard, K. S. (2022). Scalable microbial strain inference in metagenomic data using StrainFacts. Front. Bioinform. 2:867386. doi: 10.3389/fbinf.2022.867386 Song, C., Li, W., Cai, F., Liu, G., and Chen, C. (2021). Anaerobic and microaerobic pretreatment for improving methane production from paper waste in anaerobic digestion. Front. Microbiol. 12:688290. doi: 10.3389/fmicb.2021.688290 Stolze, Y., Zakrzewski, M., Maus, I., Eikmeyer, F., Jaenicke, S., Rottmann, N., et al. (2015). Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels 8:14. doi: 10.1186/s13068-014-0193-8 Su, C., Deng, Q., Lu, Y., Qin, R., Chen, S., Wei, J., et al. (2019). Effects of hydraulic retention time on the performance and microbial community of an anaerobic baffled reactor-bioelectricity Fenton coupling reactor for treatment of traditional Chinese medicine wastewater. Bioresour. Technol. 288:121508. doi: 10.1016/j. biortech.2019.121508 Su, K., Li, L., Wang, Q., and Cao, R. (2023). A review on the interspecies electron transfer of methane production in anaerobic digestion system. Fermentation 9:467. doi: 10.3390/fermentation9050467 Subbarao, P. M. V., D’ Silva, T. C., Adlak, K., Kumar, S., Chandra, R., and Vijay, V. K. (2023). Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environ. Res. 234:116286. doi: 10.1016/j.envres.2023.116286 Sun, M., Zhang, C., Shi, Z., Zhang, C., Zhang, S., and Luo, G. (2023). Genome-centric metagenomic analysis revealed the microbial shifts in response to long-chain fatty acids (LCFA) in anaerobic digestion with hydrochar. Chem. Eng. J. 466:3249. doi: 10.1016/j. cej.2023.143249 Sun, Z., Zhao, L., Wu, J. T., Wang, Z. H., Wu, K. K., Chen, C., et al. (2023). Exogenous hydrogen supply improves in-situ biogas upgrading of sewage sludge: performance and mechanisms. Chem. Eng. J. 477:7307. doi: 10.1016/j.cej.2023.147307 Tabatabaei, M., Aghbashlo, M., Valijanian, E., Kazemi Shariat Panahi, H., Nizami, A.- S., Ghanavati, H., et al. (2020). A comprehensive review on recent biological innovations to improve biogas production, part 1: upstream strategies. Renew. Energy 146, 1204–1220. doi: 10.1016/j.renene.2019.07.037 Taş, N., de Jong, A. E., Li, Y., Trubl, G., Xue, Y., and Dove, N. C. (2021). Metagenomic tools in microbial ecology research. Curr. Opin. Biotechnol. 67, 184–191. doi: 10.1016/j. copbio.2021.01.019 Thi, N. B. D., Lin, C. Y., and Kumar, G. (2016). Electricity generation comparison of food waste-based bioenergy with wind and solar powers: a mini review. Sustain. Environ. Res. 26, 197–202. doi: 10.1016/j.serj.2016.06.001 Tijani, H., Yuzir, A., and Abdullah, N. (2018). Producing desulfurized biogas using two-stage domesticated shear-loop anaerobic contact stabilization system. Waste Manag. 78, 770–780. doi: 10.1016/j.wasman.2018.06.045 Trego, A. C., McAteer, P. G., Nzeteu, C., Mahony, T., Abram, F., Ijaz, U. Z., et al. (2021). Combined stochastic and deterministic processes drive community assembly of anaerobic microbiomes during granule flotation. Front. Microbiol. 12:666584. doi: 10.3389/fmicb.2021.666584 Treu, L., Campanaro, S., Kougias, P. G., Sartori, C., Bassani, I., and Angelidaki, I. (2018). Hydrogen-fueled microbial pathways in biogas upgrading systems revealed by genome-centric metagenomics. Front. Microbiol. 9:1079. doi: 10.3389/fmicb.2018.01079 Treu, L., Kougias, P. G., Campanaro, S., Bassani, I., and Angelidaki, I. (2016). Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresour. Technol. 216, 260–266. doi: 10.1016/j.biortech.2016.05.081 Tsapekos, P., Kougias, P. G., Treu, L., Campanaro, S., and Angelidaki, I. (2017). Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Appl. Energy 185, 126–135. doi: 10.1016/j. apenergy.2016.10.081 Turaev, D., and Rattei, T. (2016). High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved. Curr. Opin. Biotechnol. 39, 174–181. doi: 10.1016/j.copbio.2016.04.011 Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746. doi: 10.1101/gr.214270.116 Vendruscolo, E. C. G., Mesa, D., Rissi, D. V., Meyer, B. H., de Oliveira Pedrosa, F., de Souza, E. M., et al. (2020). Microbial communities network analysis of anaerobic reactors fed with bovine and swine slurry. Sci Total Environ. 742. doi: 10.1016/j. scitotenv.2020.140314 Venkiteshwaran, K., Milferstedt, K., Hamelin, J., Fujimoto, M., Johnson, M., and Zitomer, D. H. (2017). Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Res. 110, 161–169. doi: 10.1016/j. watres.2016.12.010 Villante, C., and Genovese, A. (2012). Hydromethane: a bridge towards the hydrogen economy or an unsustainable promise? Int. J. Hydrog. Energy 37, 11541–11548. doi: 10.1016/j.ijhydene.2012.03.066 Wang, Y., Li, G., Chi, M., Sun, Y., Zhang, J., Jiang, S., et al. (2018). Effects of codigestion of cucumber residues to corn Stover and pig manure ratio on methane production in solid state anaerobic digestion. Bioresour. Technol. 250, 328–336. doi: 10.1016/j.biortech.2017.11.055 Wang, P., Wang, H., Qiu, Y., Ren, L., and Jiang, B. (2018). Microbial characteristics in anaerobic digestion process of food waste for methane production–a review. Bioresour. Technol. 248, 29–36. doi: 10.1016/j.biortech.2017.06.152 Wang, Z., You, R., Han, H., Liu, W., Sun, F., and Zhu, S. (2024). Effective binning of metagenomic contigs using contrastive multi-view representation learning. Nat. Commun. 15:585. doi: 10.1038/s41467-023-44290-z Wang, M., Zhou, J., Yuan, Y. X., Dai, Y. M., Li, D., Li, Z. D., et al. (2017). Methane production characteristics and microbial community dynamics of mono-digestion and co-digestion using corn stalk and pig manure. Int. J. Hydrog. Energy 42, 4893–4901. doi: 10.1016/j.ijhydene.2016.10.144 Wang, S., Zhuang, X., Dong, W., Xin, F., Jia, H., and Wu, X. (2023). Advances in the application of quorum sensing to regulate electrode biofilms in bioelectrochemical systems. Fermentation 9:625. doi: 10.3390/fermentation9070625 Wei, Y., Zhao, H., Qi, X., Yang, T., Zhang, J., Chen, W., et al. (2023). Direct interspecies electron transfer stimulated by coupling of modified anaerobic granular sludge with microbial electrolysis cell for biogas production enhancement. Appl. Energy 341:121100. doi: 10.1016/j.apenergy.2023.121100 Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., et al. (2020). Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ.l Microb. 15:11. doi: 10.1186/ s40793-020-00358-7 Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017a). Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3:132. doi: 10.1099/mgen.0.000132 Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017b). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13:e1005595. doi: 10.1371/journal.pcbi.1005595 Wirth, R., Lakatos, G., Böjti, T., Maróti, G., Bagi, Z., Kis, M., et al. (2015). Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus. J. Biotechnol. 215, 52–61. doi: 10.1016/j. jbiotec.2015.06.396 Wu, Y.-W., Simmons, B. A., and Singer, S. W. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607. doi: 10.1093/bioinformatics/btv638 Xiao, T., and Zhou, W. (2020). The third generation sequencing: the advanced approach to genetic diseases. Transl. Pediatr. 9, 163–173. doi: 10.21037/tp.2020.03.06 Xie, H., Yang, C., Sun, Y., Igarashi, Y., Jin, T., and Luo, F. (2020). PacBio long reads improve metagenomic assemblies, gene catalogs, and genome binning. Front. Genet. 11:516269. doi: 10.3389/fgene.2020.516269 Xu, R., Yang, Z.-H., Zheng, Y., Liu, J.-B., Xiong, W.-P., Zhang, Y.-R., et al. (2018a). Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresour. Technol. 262, 184–193. doi: 10.1016/j. biortech.2018.04.083 Xu, R., Zhang, K., Liu, P., Khan, A., Xiong, J., Tian, F., et al. (2018b). A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour. Technol. 247, 1119–1127. doi: 10.1016/j. biortech.2017.09.095 Yang, C., Chowdhury, D., Zhang, Z., Cheung, W. K., Lu, A., Bian, Z., et al. (2021). A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput. Struct. Biotechnol. J. 19, 6301–6314. doi: 10.1016/j.csbj.2021.11.028 Yang, S.-F., Lu, C.-W., Yao, C.-T., and Hung, C.-M. (2019). To trim or not to trim: effects of read trimming on the de novo genome assembly of a widespread east Asian passerine, the rufous-capped babbler (Cyanoderma ruficeps Blyth). Genes (Basel) 10:737. doi: 10.3390/genes10100737 Yang, B., Wang, Y., and Qian, P.-Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17:135. doi: 10.1186/s12859-016-0992-y Ye, M., Liu, J., Ma, C., Li, Y. Y., Zou, L., Qian, G., et al. (2018). Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review. J. Clean. Prod. 192, 316–326. doi: 10.1016/j.jclepro.2018.04.244 Zhang, Y., Chen, K., and Fu, X. (2019). Scientific effects of triple Helix interactions among research institutes, industries and universities. Technovation 86–87, 33–47. doi: 10.1016/j.technovation.2019.05.003 Zhang, Q., Fan, N. S., Fu, J. J., Huang, B. C., and Jin, R. C. (2021). Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: a review. Crit. Rev. Environ. Sci. Technol. 51, 626–648. doi: 10.1080/10643389.2020. 1738166 Zhang, L., Kuroki, A., Loh, K. C., Seok, J. K., Dai, Y., and Tong, Y. W. (2020a). Highly efficient anaerobic co-digestion of food waste and horticultural waste using a three-stage thermophilic bioreactor: performance evaluation, microbial community analysis, and energy balance assessment. Energy Convers. Manag. 223:113290. doi: 10.1016/j. enconman.2020.113290 Zhang, L., Lim, E. Y., Loh, K. C., Ok, Y. S., Lee, J. T. E., Shen, Y., et al. (2020b). Biochar enhanced thermophilic anaerobic digestion of food waste: focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Convers. Manag. 209:112654. doi: 10.1016/j.enconman.2020.112654 Zhang, L., Loh, K. C., Lim, J. W., and Zhang, J. (2019a). Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: a review. Renew. Sust. Energ. Rev. 100, 110–126. doi: 10.1016/j. rser.2018.10.021 Zhang, L., Loh, K. C., Lim, J. W., and Zhang, J. (2023). Uncovering microbiome adaptations in a full-scale biogas plant: insights from MAG-centric metagenomics and metaproteomics. Microorganisms 11:2412. doi: 10.3390/ microorganisms11102412 Zhang, L., Loh, K. C., Zhang, J., Mao, L., Tong, Y. W., Wang, C. H., et al. (2019b). Three-stage anaerobic co-digestion of food waste and waste activated sludge: identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters. Bioresour. Technol. 285:121333. doi: 10.1016/j. biortech.2019.121333 Zhang, L., Tsui, T. H., Tong, Y. W., Aggarangsi, P., and Liu, R. (2024). Applying current-carrying-coil-based magnetic field (CCC-MF) to promote anaerobic digestion of chicken manure: performance evaluation, mitigation of ammonia inhibition, microbial community analysis, and pilot-scale validation. Energy Convers. Manag. 300:7908. doi: 10.1016/j.enconman.2023.117908 Zhang, X., Wang, Y., Jiao, P., Zhang, M., Deng, Y., Jiang, C., et al. (2023). Microbiomefunctionality in anaerobic digesters: a critical review. Water Res. 249:120891. doi: 10.1016/j.watres.2023.120891 Zhang, S., Xiao, M., Liang, C., Chui, C., Wang, N., Shi, J., et al. (2022). Multivariate insights into enhanced biogas production in thermophilic dry anaerobic co-digestion of food waste with kitchen waste or garden waste: process properties, microbial communities and metagenomic analyses. Bioresour. Technol. 361:127684. doi: 10.1016/j. biortech.2022.127684 Zhao, W., Chen, X., Ma, H., Li, D., Yang, H., Hu, T., et al. (2024). Impact of cosubstrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. Bioresour. Technol. 400:130678. doi: 10.1016/j.biortech.2024.130678 Zhao, Y., Hu, K., Yu, J., Khan, M. T. A., Cai, Y., Zhao, X., et al. (2023). Biogas residues improved microbial diversity and disease suppression function under extent indigenous soil microbial biomass. Life 13:774. doi: 10.3390/life13030774 Zhao, C., Mu, H., Zhao, Y., Wang, L., and Zuo, B. (2018). Microbial characteristics analysis and kinetic studies on substrate composition to methane after microbial and nutritional regulation of fruit and vegetable wastes anaerobic digestion. Bioresour. Technol. 249, 315–321. doi: 10.1016/j.biortech.2017.10.041 Zhou, J., Smith, J. A., Li, M., and Holmes, D. E. (2023). Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens. MBio 14:e0036023. doi: 10.1128/ mbio.00360-23 Zhou, Z., Tran, P. Q., Breister, A. M., Liu, Y., Kieft, K., Cowley, E. S., et al. (2022). METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10:33. doi: 10.1186/s40168-021-01213-8 Zhu, X., Campanaro, S., Treu, L., Kougias, P. G., and Angelidaki, I. (2019). Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genomecentric metagenomics. Water Res. 151, 271–279. doi: 10.1016/j.watres.2018.12.041 Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A. (2013). The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677. doi: 10.1093/ bioinformatics/btt476 Zou, H., Wu, L. X., Tan, L., Shang, F. F., and Zhou, H. H. (2020). Significance of singlenucleotide variants in long intergenic non-protein coding RNAs. Front. Cell Dev. Biol. 8:347. doi: 10.3389/fcell.2020.00347MethaneMetagenomeMicrobiotaSyntrophySequencingDIETGCMSRMComunidad generalPublicationORIGINALA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdfA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2633939https://red.uao.edu.co/bitstreams/9dac16a6-9054-45bf-bfaf-b13052c36d9c/downloadac19ceef69b26a91de059e8bce5fca4bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/96505fc7-14fe-40bc-ab16-07526010b9cb/download6987b791264a2b5525252450f99b10d1MD52TEXTA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdf.txtA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdf.txtExtracted texttext/plain100630https://red.uao.edu.co/bitstreams/25d6b91e-1820-4eb0-8b58-9284a7bf4c6d/download53cd2e8e45d1bb74baefe1bda8fd0f27MD53THUMBNAILA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdf.jpgA_metagenomic_approach_to_demystify_the_anaerobic_digestión_black_box_and_achieve_higher.pdf.jpgGenerated Thumbnailimage/jpeg12067https://red.uao.edu.co/bitstreams/0ecf4cb4-f7a9-42f4-afef-b37c636bbe4f/downloadec8f17d08fc25a1e3b37977f4b19a88bMD5410614/16146oai:red.uao.edu.co:10614/161462025-06-15 03:03:39.666https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Frontiers Media SA, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==