Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living pl...
- Autores:
-
Gordillo Suárez, Marisol
Martinez Ruiz , Valentina
Pizza Londoño, Victoria Eugenia
Jurado Rosero, Javier
Daza Torres, Martha Constanza
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/16232
- Acceso en línea:
- https://hdl.handle.net/10614/16232
https://doi.org/10.1177/11786221241272388
https://red.uao.edu.co/
- Palabra clave:
- Iron-polluted water
Biomaterial
Adsorption
Response surface methodology
- Rights
- openAccess
- License
- Derechos reservados - Sage Publications Ltd., 2024
| id |
REPOUAO2_8759c179e017c5c86a80645b89931ee8 |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16232 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| dc.title.translated.spa.fl_str_mv |
Viabilidad de la biorremediación de aguas contaminadas con hierro mediante telarañas de Trichonephila Clavipes |
| title |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| spellingShingle |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs Iron-polluted water Biomaterial Adsorption Response surface methodology |
| title_short |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| title_full |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| title_fullStr |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| title_full_unstemmed |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| title_sort |
Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs |
| dc.creator.fl_str_mv |
Gordillo Suárez, Marisol Martinez Ruiz , Valentina Pizza Londoño, Victoria Eugenia Jurado Rosero, Javier Daza Torres, Martha Constanza |
| dc.contributor.author.none.fl_str_mv |
Gordillo Suárez, Marisol Martinez Ruiz , Valentina Pizza Londoño, Victoria Eugenia Jurado Rosero, Javier Daza Torres, Martha Constanza |
| dc.subject.proposal.eng.fl_str_mv |
Iron-polluted water Biomaterial Adsorption Response surface methodology |
| topic |
Iron-polluted water Biomaterial Adsorption Response surface methodology |
| description |
Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living plants (phytoremediation), or biomaterials to eliminate these elements. In this study, we investigated the technical feasibility of using the Trichonephila clavipes spider web as a biomaterial for iron removal from water by bioremediation. A bibliometric analysis was carried out, where the process variables and experimental design were defined using the Response Surface Methodology, and the iron concentrations were measured before and after the experiment using X-ray fluorescence spectroscopy by dispersive energy. The model predicted an iron removal of 91.82% using 28.09 hr, 81.42 ppm of iron, and 0.062 g of spider web, with a relative error of 0.043 of the true value. This work is novel and presents a new methodology for the bioremediation of water contaminated with iron using spider webs. The results indicate a high efficiency in the removal of iron, which could have important implications in solving environmental and health problems associated with the presence of heavy metals in water |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-28T19:33:56Z |
| dc.date.available.none.fl_str_mv |
2025-07-28T19:33:56Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/11786221241272388 |
| dc.identifier.issn.spa.fl_str_mv |
21582440 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16232 |
| dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1177/11786221241272388 |
| dc.identifier.eissn.spa.fl_str_mv |
21582440 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/11786221241272388 21582440 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16232 https://doi.org/10.1177/11786221241272388 https://red.uao.edu.co/ |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
9 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
17 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
Sage Journals |
| dc.relation.references.none.fl_str_mv |
Benila Smily, J. R. M., & Sumithra, P. A. (2017). Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI Journal of Biosciences, 24, 65–71. https://doi.org/10.1016/j.hjb.2017 .08.005 Bergmann, F., Stadlmayr, S., Millesi, F., Zeitlinger, M., Naghilou, A., & Radtke, C. (2022). The properties of native Trichonephila dragline silk and its biomedical applications. Biomaterials advances, 140, pp. 2. https://doi.org/10.1016/j. bioadv.2022.213089 Bosch Ariño, F. D. A. (1954). Determinación volumétrica del hierro. Anales de la Universidad de Valencia. XXVII, 34–36. Bustamante-Cristancho, L. A. (2011). Intoxicación aguda por hierro. CES Medicina, 25(1), 79–96. Calderón Núñez, A. K. (2020). Análisis de la política pública del mínimo vital de agua potable como derecho fundamental en Colombia. Universidad de Antioquia. https:// bibliotecadigital.udea.edu.co /handle/10495/14929 Carbonell Plata, J. A. (2008). Comparación De La Resistencia a Tracción Entre El Hilo De Araña Y El Hilo De Acero. Universidad Militar Nueva Granada. http://hdl.handle. net/10654/10190 Carreño-Sayago, U. F. (2015). Tratamientos de aguas industriales con metales pesados a través de zeolitas y sistemas de biorremediación. Revisión del estado de la cuestión (pp. 70–78). Revista Ingeniería. https://doi.org/10.19053/1900771X.3940 Cisneros Gómez, J. M., & Laura Pezo, D. E. (2019). Aplicación de superficie de respuesta en la cuantificación y remoción de plomo de aguas residuales empleando nanoarcilla montmorillonita y residuos lignocelulósicos de arroz (Oryza Sativa) [Tesis de pregrado Universidad Peruana Unión]. https://repositorio.upeu.edu.pe/server/api/ core/bitstreams/bf2d 712f-22d7-479d-b2af-ada976d589f6/content Cornell, J. A. (Ed.). (1982). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). Wiley. Dey, S., Kotaru, N. S. A., Veerendra, G. T. N., & Sambangi, A. (2022). The removal of iron from synthetic water by the applications of plants leaf biosorbents. Cleaner Engineering and Technology, 9, 17–18. https://doi.org/10.1016/j. clet.2022.100530 Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Phani Manoj, A. V., & Haripavan, N. (2022). Synthesis and characterization of mango leaves biosorbents for removal of iron and phosphorous from contaminated water. Applied Surface Science Advances, 11, 2. https://doi.org/10.1016/j.apsadv.2022.100292 Fito, J., Tibebu, S., & Nkambule, T. T. I. (2023). Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chemistry, 17, 4. https://doi. org/10.1186/s13065-023-00913-6 Foong, C. P., Higuchi-Takeuchi, M., Malay, A. D., Oktaviani, N. A., Thagun, C., & Numata, K. (2020). A marine photosynthetic microbial cell factory as a platform for spider silk production. Communications Biology, 3, 357. https://doi. org/10.1038/s42003-020-1099-6 Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63–75. https://doi.org/10.1016/j.jaerosci.2018.06.008 Guillén Pérez, J. A. (2020). Vertimiento de efluentes mineros de mina Marta en contaminación de las aguas del rio tinyacclla. Universidad Nacional del Centro del Perú. http://hdl.handle.net/20.500.12894/6180. Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K., & Asiri, A. M. (2023). Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), 601. https://doi.org/10.3390/polym15030 601 Ministerio de Vivienda y Desarrollo Territorial y Ministerio de Protección Social de Colombia. (2007). Resolución 2115 de junio 22 de 2007. D.O 46.679. https://www. minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdf Minitab Inc. (1972). Minitab. (Versión 19). [Software de Computador] Minitab Inc. https://www.minitab.com/es-mx/ Ning, D., Lu, Z., Tian, C., Yan, N., Xie, F., Li, N., & Hua, L. (2023). Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. International Journal of Biological Macromolecules, 253, 7–8. https://doi.org/10.1016/j.ijbiomac.2023.126865 OMS- Organización Mundial de la Salud. (2018). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda [Guidelines for drinking- water quality: fourth edition incorporating first addendum]. Organización Mundial de la Salud. https://iris.who.int/handle/10665/272403 Paredes, J. Y., & Ñique, M. (2016). Optimización de la Fitorremediación de Mercurio en Humedales de Flujo Continuo Empleando Eichhornia crassipes “Jacinto de Agua.” Investigación y Amazonía, 5, 44–49. https://revistas.unas.edu.pe/index. php/revia/article/viewFile/57/44 Pelit, L., Ertaş, F. N., Eroğlu, A. E., Shahwan, T., & Tural, H. (2011). Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk. Bioresource Technology, 102, 8807–8813. https://doi.org/10.1016/j.biortech.2011.07.013 Rachwał, M., Rybak, J., & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution. Environmental Pollution, 234, 543–551. https://doi.org/10.1016/j.envpol.2017.11.088 Römer, L. Y., & Scheibel, T. (2008). The elaborate structure of spider silk. Prion, 2(4), 154–161. https://doi.org/10.4161/pri.2.4.7490 Seid, S. M., & Gonfa, G. (2022). Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 1–2. https://doi.org/10.1016/j.envc.2022.100574 Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (2018). 3500- fe iron. In W. C. Lipps, T. E. Baxter, & E. Braun-Howland (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 1–2). APHA Press. Szabó, Z. G., & Sugár, E. (1952). Stannometry volumetric determination of iron(iii), vanadate, dichromate, iodate, bromate, ferricyanide ions and iodine. Analytica Chimica Acta, 6, 293–315. https://doi.org/10.1016/s0003-2670(00)86949-4 Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, 7–8. https://doi. org/10.1016/j.susmat.2019.e00146 Vergara Buitrago, P. A., & Rodríguez-Aparicio, J. A. (2021). Análisis ambiental de la minería de carbón en el ecosistema estratégico de páramo (Boyacá, Colombia). Scientia et Technica, 26(03), 398–405. World Health Organization (WHO). (2003). Iron in drinking-water background document for development of WHO guidelines for drinking-water quality. Xing, C., Munro, T., White, B., Ban, H., Copeland, C. G., & Lewis, R. V. (2014). Thermophysical properties of the dragline silk of Nephila clavipes spider. Polymer, 55(16), 4226–4231. https://doi.org/10.1016/j.polymer.2014.05.046 Yusuf, A., Amusa, H. K., Eniola, J. O., Giwa, A., Pikuda, O., Dindi, A., & Bilad, R. M. (2023). Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2–3. https://doi.org/10.1016/j.ceja.2023.100443 Zhou, H., Zhu, H., Shi, X., Wang, L., He, H., & Wang, S. (2021). Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of lowlevel multiple heavy metal ions. Chemical Engineering Journal, 412, 7–8. https://doi.org/10.1016/j.cej.2021.128670 |
| dc.rights.eng.fl_str_mv |
Derechos reservados - Sage Publications Ltd., 2024 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
Derechos reservados - Sage Publications Ltd., 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
9 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Sage Publications |
| dc.publisher.place.spa.fl_str_mv |
Los Ángeles |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/4fc4713a-86f1-4fd0-aaf5-70df2c7b5005/download https://red.uao.edu.co/bitstreams/5a5ea3d3-081b-4820-b812-3461112330da/download https://red.uao.edu.co/bitstreams/92031d10-ae6c-4476-b261-97427e365aae/download https://red.uao.edu.co/bitstreams/a97c97e6-4bac-49cd-a46b-a2d9689b9303/download |
| bitstream.checksum.fl_str_mv |
d87e85a9aff1f14c57a2ca03adea62be 6987b791264a2b5525252450f99b10d1 4d5ed6992a9e57fec85627a09c8183ec c01a1e1f255487b12767b28ef5aa79b6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053177819889664 |
| spelling |
Gordillo Suárez, Marisolvirtual::6193-1Martinez Ruiz , ValentinaPizza Londoño, Victoria EugeniaJurado Rosero, JavierDaza Torres, Martha Constanza2025-07-28T19:33:56Z2025-07-28T19:33:56Z2024Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/1178622124127238821582440https://hdl.handle.net/10614/16232https://doi.org/10.1177/1178622124127238821582440Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living plants (phytoremediation), or biomaterials to eliminate these elements. In this study, we investigated the technical feasibility of using the Trichonephila clavipes spider web as a biomaterial for iron removal from water by bioremediation. A bibliometric analysis was carried out, where the process variables and experimental design were defined using the Response Surface Methodology, and the iron concentrations were measured before and after the experiment using X-ray fluorescence spectroscopy by dispersive energy. The model predicted an iron removal of 91.82% using 28.09 hr, 81.42 ppm of iron, and 0.062 g of spider web, with a relative error of 0.043 of the true value. This work is novel and presents a new methodology for the bioremediation of water contaminated with iron using spider webs. The results indicate a high efficiency in the removal of iron, which could have important implications in solving environmental and health problems associated with the presence of heavy metals in waterLos metales pesados son de gran importancia ambiental y sanitaria debido a la toxicidad que generan; por lo tanto, se ha estudiado una amplia variedad de métodos para su eliminación en el agua. Uno de los enfoques empleados es la biorremediación, que implica el uso de biomasa (microorganismos o plantas), plantas vivas (fitorremediación) o biomateriales para eliminar estos elementos. En este estudio, investigamos la viabilidad técnica de utilizar la tela de araña Trichonephila clavipes como biomaterial para la eliminación de hierro del agua mediante biorremediación. Se realizó un análisis bibliométrico, donde las variables de proceso y el diseño experimental se definieron mediante la Metodología de Superficie de Respuesta, y las concentraciones de hierro se midieron antes y después del experimento mediante espectroscopia de fluorescencia de rayos X por energía dispersiva. El modelo predijo una eliminación de hierro del 91,82% utilizando 28,09 h, 81,42 ppm de hierro y 0,062 g de tela de araña, con un error relativo de 0,043 del valor real. Este trabajo es novedoso y presenta una nueva metodología para la biorremediación de aguas contaminadas con hierro mediante telarañas. Los resultados indican una alta eficiencia en la eliminación de hierro, lo que podría tener importantes implicaciones para la solución de problemas ambientales y de salud asociados con la presencia de metales pesados en el agua9 páginasapplication/pdfengSage PublicationsLos ÁngelesDerechos reservados - Sage Publications Ltd., 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider websViabilidad de la biorremediación de aguas contaminadas con hierro mediante telarañas de Trichonephila ClavipesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a859117Sage JournalsBenila Smily, J. R. M., & Sumithra, P. A. (2017). Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI Journal of Biosciences, 24, 65–71. https://doi.org/10.1016/j.hjb.2017 .08.005Bergmann, F., Stadlmayr, S., Millesi, F., Zeitlinger, M., Naghilou, A., & Radtke, C. (2022). The properties of native Trichonephila dragline silk and its biomedical applications. Biomaterials advances, 140, pp. 2. https://doi.org/10.1016/j. bioadv.2022.213089Bosch Ariño, F. D. A. (1954). Determinación volumétrica del hierro. Anales de la Universidad de Valencia. XXVII, 34–36.Bustamante-Cristancho, L. A. (2011). Intoxicación aguda por hierro. CES Medicina, 25(1), 79–96. Calderón Núñez, A. K. (2020). Análisis de la política pública del mínimo vital de agua potable como derecho fundamental en Colombia. Universidad de Antioquia. https:// bibliotecadigital.udea.edu.co /handle/10495/14929Carbonell Plata, J. A. (2008). Comparación De La Resistencia a Tracción Entre El Hilo De Araña Y El Hilo De Acero. Universidad Militar Nueva Granada. http://hdl.handle. net/10654/10190Carreño-Sayago, U. F. (2015). Tratamientos de aguas industriales con metales pesados a través de zeolitas y sistemas de biorremediación. Revisión del estado de la cuestión (pp. 70–78). Revista Ingeniería. https://doi.org/10.19053/1900771X.3940Cisneros Gómez, J. M., & Laura Pezo, D. E. (2019). Aplicación de superficie de respuesta en la cuantificación y remoción de plomo de aguas residuales empleando nanoarcilla montmorillonita y residuos lignocelulósicos de arroz (Oryza Sativa) [Tesis de pregrado Universidad Peruana Unión]. https://repositorio.upeu.edu.pe/server/api/ core/bitstreams/bf2d 712f-22d7-479d-b2af-ada976d589f6/contentCornell, J. A. (Ed.). (1982). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). Wiley.Dey, S., Kotaru, N. S. A., Veerendra, G. T. N., & Sambangi, A. (2022). The removal of iron from synthetic water by the applications of plants leaf biosorbents. Cleaner Engineering and Technology, 9, 17–18. https://doi.org/10.1016/j. clet.2022.100530Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Phani Manoj, A. V., & Haripavan, N. (2022). Synthesis and characterization of mango leaves biosorbents for removal of iron and phosphorous from contaminated water. Applied Surface Science Advances, 11, 2. https://doi.org/10.1016/j.apsadv.2022.100292Fito, J., Tibebu, S., & Nkambule, T. T. I. (2023). Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chemistry, 17, 4. https://doi. org/10.1186/s13065-023-00913-6Foong, C. P., Higuchi-Takeuchi, M., Malay, A. D., Oktaviani, N. A., Thagun, C., & Numata, K. (2020). A marine photosynthetic microbial cell factory as a platform for spider silk production. Communications Biology, 3, 357. https://doi. org/10.1038/s42003-020-1099-6Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63–75. https://doi.org/10.1016/j.jaerosci.2018.06.008Guillén Pérez, J. A. (2020). Vertimiento de efluentes mineros de mina Marta en contaminación de las aguas del rio tinyacclla. Universidad Nacional del Centro del Perú. http://hdl.handle.net/20.500.12894/6180.Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K., & Asiri, A. M. (2023). Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), 601. https://doi.org/10.3390/polym15030 601Ministerio de Vivienda y Desarrollo Territorial y Ministerio de Protección Social de Colombia. (2007). Resolución 2115 de junio 22 de 2007. D.O 46.679. https://www. minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdfMinitab Inc. (1972). Minitab. (Versión 19). [Software de Computador] Minitab Inc. https://www.minitab.com/es-mx/Ning, D., Lu, Z., Tian, C., Yan, N., Xie, F., Li, N., & Hua, L. (2023). Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. International Journal of Biological Macromolecules, 253, 7–8. https://doi.org/10.1016/j.ijbiomac.2023.126865OMS- Organización Mundial de la Salud. (2018). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda [Guidelines for drinking- water quality: fourth edition incorporating first addendum].Organización Mundial de la Salud. https://iris.who.int/handle/10665/272403 Paredes, J. Y., & Ñique, M. (2016). Optimización de la Fitorremediación de Mercurio en Humedales de Flujo Continuo Empleando Eichhornia crassipes “Jacinto de Agua.” Investigación y Amazonía, 5, 44–49. https://revistas.unas.edu.pe/index. php/revia/article/viewFile/57/44Pelit, L., Ertaş, F. N., Eroğlu, A. E., Shahwan, T., & Tural, H. (2011). Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk. Bioresource Technology, 102, 8807–8813. https://doi.org/10.1016/j.biortech.2011.07.013Rachwał, M., Rybak, J., & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution. Environmental Pollution, 234, 543–551. https://doi.org/10.1016/j.envpol.2017.11.088Römer, L. Y., & Scheibel, T. (2008). The elaborate structure of spider silk. Prion, 2(4), 154–161. https://doi.org/10.4161/pri.2.4.7490Seid, S. M., & Gonfa, G. (2022). Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 1–2. https://doi.org/10.1016/j.envc.2022.100574Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (2018). 3500- fe iron. In W. C. Lipps, T. E. Baxter, & E. Braun-Howland (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 1–2). APHA Press.Szabó, Z. G., & Sugár, E. (1952). Stannometry volumetric determination of iron(iii), vanadate, dichromate, iodate, bromate, ferricyanide ions and iodine. Analytica Chimica Acta, 6, 293–315. https://doi.org/10.1016/s0003-2670(00)86949-4Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, 7–8. https://doi. org/10.1016/j.susmat.2019.e00146Vergara Buitrago, P. A., & Rodríguez-Aparicio, J. A. (2021). Análisis ambiental de la minería de carbón en el ecosistema estratégico de páramo (Boyacá, Colombia). Scientia et Technica, 26(03), 398–405.World Health Organization (WHO). (2003). Iron in drinking-water background document for development of WHO guidelines for drinking-water quality.Xing, C., Munro, T., White, B., Ban, H., Copeland, C. G., & Lewis, R. V. (2014). Thermophysical properties of the dragline silk of Nephila clavipes spider. Polymer, 55(16), 4226–4231. https://doi.org/10.1016/j.polymer.2014.05.046Yusuf, A., Amusa, H. K., Eniola, J. O., Giwa, A., Pikuda, O., Dindi, A., & Bilad, R. M. (2023). Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2–3. https://doi.org/10.1016/j.ceja.2023.100443Zhou, H., Zhu, H., Shi, X., Wang, L., He, H., & Wang, S. (2021). Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of lowlevel multiple heavy metal ions. Chemical Engineering Journal, 412, 7–8. https://doi.org/10.1016/j.cej.2021.128670Iron-polluted waterBiomaterialAdsorptionResponse surface methodologyComunidad generalPublicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::6193-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::6193-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::6193-10000-0003-1602-5547virtual::6193-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::6193-1ORIGINALFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdfFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf745690https://red.uao.edu.co/bitstreams/4fc4713a-86f1-4fd0-aaf5-70df2c7b5005/downloadd87e85a9aff1f14c57a2ca03adea62beMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/5a5ea3d3-081b-4820-b812-3461112330da/download6987b791264a2b5525252450f99b10d1MD52TEXTFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.txtFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.txtExtracted texttext/plain44248https://red.uao.edu.co/bitstreams/92031d10-ae6c-4476-b261-97427e365aae/download4d5ed6992a9e57fec85627a09c8183ecMD53THUMBNAILFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.jpgFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.jpgGenerated Thumbnailimage/jpeg16241https://red.uao.edu.co/bitstreams/a97c97e6-4bac-49cd-a46b-a2d9689b9303/downloadc01a1e1f255487b12767b28ef5aa79b6MD5410614/16232oai:red.uao.edu.co:10614/162322025-07-31 03:02:11.398https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Sage Publications Ltd., 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
