Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs

Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living pl...

Full description

Autores:
Gordillo Suárez, Marisol
Martinez Ruiz , Valentina
Pizza Londoño, Victoria Eugenia
Jurado Rosero, Javier
Daza Torres, Martha Constanza
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16232
Acceso en línea:
https://hdl.handle.net/10614/16232
https://doi.org/10.1177/11786221241272388
https://red.uao.edu.co/
Palabra clave:
Iron-polluted water
Biomaterial
Adsorption
Response surface methodology
Rights
openAccess
License
Derechos reservados - Sage Publications Ltd., 2024
id REPOUAO2_8759c179e017c5c86a80645b89931ee8
oai_identifier_str oai:red.uao.edu.co:10614/16232
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
dc.title.translated.spa.fl_str_mv Viabilidad de la biorremediación de aguas contaminadas con hierro mediante telarañas de Trichonephila Clavipes
title Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
spellingShingle Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
Iron-polluted water
Biomaterial
Adsorption
Response surface methodology
title_short Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
title_full Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
title_fullStr Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
title_full_unstemmed Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
title_sort Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs
dc.creator.fl_str_mv Gordillo Suárez, Marisol
Martinez Ruiz , Valentina
Pizza Londoño, Victoria Eugenia
Jurado Rosero, Javier
Daza Torres, Martha Constanza
dc.contributor.author.none.fl_str_mv Gordillo Suárez, Marisol
Martinez Ruiz , Valentina
Pizza Londoño, Victoria Eugenia
Jurado Rosero, Javier
Daza Torres, Martha Constanza
dc.subject.proposal.eng.fl_str_mv Iron-polluted water
Biomaterial
Adsorption
Response surface methodology
topic Iron-polluted water
Biomaterial
Adsorption
Response surface methodology
description Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living plants (phytoremediation), or biomaterials to eliminate these elements. In this study, we investigated the technical feasibility of using the Trichonephila clavipes spider web as a biomaterial for iron removal from water by bioremediation. A bibliometric analysis was carried out, where the process variables and experimental design were defined using the Response Surface Methodology, and the iron concentrations were measured before and after the experiment using X-ray fluorescence spectroscopy by dispersive energy. The model predicted an iron removal of 91.82% using 28.09 hr, 81.42 ppm of iron, and 0.062 g of spider web, with a relative error of 0.043 of the true value. This work is novel and presents a new methodology for the bioremediation of water contaminated with iron using spider webs. The results indicate a high efficiency in the removal of iron, which could have important implications in solving environmental and health problems associated with the presence of heavy metals in water
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-28T19:33:56Z
dc.date.available.none.fl_str_mv 2025-07-28T19:33:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/11786221241272388
dc.identifier.issn.spa.fl_str_mv 21582440
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16232
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1177/11786221241272388
dc.identifier.eissn.spa.fl_str_mv 21582440
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/11786221241272388
21582440
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16232
https://doi.org/10.1177/11786221241272388
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.eng.fl_str_mv Sage Journals
dc.relation.references.none.fl_str_mv Benila Smily, J. R. M., & Sumithra, P. A. (2017). Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI Journal of Biosciences, 24, 65–71. https://doi.org/10.1016/j.hjb.2017 .08.005
Bergmann, F., Stadlmayr, S., Millesi, F., Zeitlinger, M., Naghilou, A., & Radtke, C. (2022). The properties of native Trichonephila dragline silk and its biomedical applications. Biomaterials advances, 140, pp. 2. https://doi.org/10.1016/j. bioadv.2022.213089
Bosch Ariño, F. D. A. (1954). Determinación volumétrica del hierro. Anales de la Universidad de Valencia. XXVII, 34–36.
Bustamante-Cristancho, L. A. (2011). Intoxicación aguda por hierro. CES Medicina, 25(1), 79–96. Calderón Núñez, A. K. (2020). Análisis de la política pública del mínimo vital de agua potable como derecho fundamental en Colombia. Universidad de Antioquia. https:// bibliotecadigital.udea.edu.co /handle/10495/14929
Carbonell Plata, J. A. (2008). Comparación De La Resistencia a Tracción Entre El Hilo De Araña Y El Hilo De Acero. Universidad Militar Nueva Granada. http://hdl.handle. net/10654/10190
Carreño-Sayago, U. F. (2015). Tratamientos de aguas industriales con metales pesados a través de zeolitas y sistemas de biorremediación. Revisión del estado de la cuestión (pp. 70–78). Revista Ingeniería. https://doi.org/10.19053/1900771X.3940
Cisneros Gómez, J. M., & Laura Pezo, D. E. (2019). Aplicación de superficie de respuesta en la cuantificación y remoción de plomo de aguas residuales empleando nanoarcilla montmorillonita y residuos lignocelulósicos de arroz (Oryza Sativa) [Tesis de pregrado Universidad Peruana Unión]. https://repositorio.upeu.edu.pe/server/api/ core/bitstreams/bf2d 712f-22d7-479d-b2af-ada976d589f6/content
Cornell, J. A. (Ed.). (1982). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). Wiley.
Dey, S., Kotaru, N. S. A., Veerendra, G. T. N., & Sambangi, A. (2022). The removal of iron from synthetic water by the applications of plants leaf biosorbents. Cleaner Engineering and Technology, 9, 17–18. https://doi.org/10.1016/j. clet.2022.100530
Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Phani Manoj, A. V., & Haripavan, N. (2022). Synthesis and characterization of mango leaves biosorbents for removal of iron and phosphorous from contaminated water. Applied Surface Science Advances, 11, 2. https://doi.org/10.1016/j.apsadv.2022.100292
Fito, J., Tibebu, S., & Nkambule, T. T. I. (2023). Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chemistry, 17, 4. https://doi. org/10.1186/s13065-023-00913-6
Foong, C. P., Higuchi-Takeuchi, M., Malay, A. D., Oktaviani, N. A., Thagun, C., & Numata, K. (2020). A marine photosynthetic microbial cell factory as a platform for spider silk production. Communications Biology, 3, 357. https://doi. org/10.1038/s42003-020-1099-6
Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63–75. https://doi.org/10.1016/j.jaerosci.2018.06.008
Guillén Pérez, J. A. (2020). Vertimiento de efluentes mineros de mina Marta en contaminación de las aguas del rio tinyacclla. Universidad Nacional del Centro del Perú. http://hdl.handle.net/20.500.12894/6180.
Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K., & Asiri, A. M. (2023). Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), 601. https://doi.org/10.3390/polym15030 601
Ministerio de Vivienda y Desarrollo Territorial y Ministerio de Protección Social de Colombia. (2007). Resolución 2115 de junio 22 de 2007. D.O 46.679. https://www. minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdf
Minitab Inc. (1972). Minitab. (Versión 19). [Software de Computador] Minitab Inc. https://www.minitab.com/es-mx/
Ning, D., Lu, Z., Tian, C., Yan, N., Xie, F., Li, N., & Hua, L. (2023). Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. International Journal of Biological Macromolecules, 253, 7–8. https://doi.org/10.1016/j.ijbiomac.2023.126865
OMS- Organización Mundial de la Salud. (2018). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda [Guidelines for drinking- water quality: fourth edition incorporating first addendum].
Organización Mundial de la Salud. https://iris.who.int/handle/10665/272403 Paredes, J. Y., & Ñique, M. (2016). Optimización de la Fitorremediación de Mercurio en Humedales de Flujo Continuo Empleando Eichhornia crassipes “Jacinto de Agua.” Investigación y Amazonía, 5, 44–49. https://revistas.unas.edu.pe/index. php/revia/article/viewFile/57/44
Pelit, L., Ertaş, F. N., Eroğlu, A. E., Shahwan, T., & Tural, H. (2011). Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk. Bioresource Technology, 102, 8807–8813. https://doi.org/10.1016/j.biortech.2011.07.013
Rachwał, M., Rybak, J., & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution. Environmental Pollution, 234, 543–551. https://doi.org/10.1016/j.envpol.2017.11.088
Römer, L. Y., & Scheibel, T. (2008). The elaborate structure of spider silk. Prion, 2(4), 154–161. https://doi.org/10.4161/pri.2.4.7490
Seid, S. M., & Gonfa, G. (2022). Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 1–2. https://doi.org/10.1016/j.envc.2022.100574
Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (2018). 3500- fe iron. In W. C. Lipps, T. E. Baxter, & E. Braun-Howland (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 1–2). APHA Press.
Szabó, Z. G., & Sugár, E. (1952). Stannometry volumetric determination of iron(iii), vanadate, dichromate, iodate, bromate, ferricyanide ions and iodine. Analytica Chimica Acta, 6, 293–315. https://doi.org/10.1016/s0003-2670(00)86949-4
Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, 7–8. https://doi. org/10.1016/j.susmat.2019.e00146
Vergara Buitrago, P. A., & Rodríguez-Aparicio, J. A. (2021). Análisis ambiental de la minería de carbón en el ecosistema estratégico de páramo (Boyacá, Colombia). Scientia et Technica, 26(03), 398–405.
World Health Organization (WHO). (2003). Iron in drinking-water background document for development of WHO guidelines for drinking-water quality.
Xing, C., Munro, T., White, B., Ban, H., Copeland, C. G., & Lewis, R. V. (2014). Thermophysical properties of the dragline silk of Nephila clavipes spider. Polymer, 55(16), 4226–4231. https://doi.org/10.1016/j.polymer.2014.05.046
Yusuf, A., Amusa, H. K., Eniola, J. O., Giwa, A., Pikuda, O., Dindi, A., & Bilad, R. M. (2023). Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2–3. https://doi.org/10.1016/j.ceja.2023.100443
Zhou, H., Zhu, H., Shi, X., Wang, L., He, H., & Wang, S. (2021). Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of lowlevel multiple heavy metal ions. Chemical Engineering Journal, 412, 7–8. https://doi.org/10.1016/j.cej.2021.128670
dc.rights.eng.fl_str_mv Derechos reservados - Sage Publications Ltd., 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Sage Publications Ltd., 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Sage Publications
dc.publisher.place.spa.fl_str_mv Los Ángeles
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/4fc4713a-86f1-4fd0-aaf5-70df2c7b5005/download
https://red.uao.edu.co/bitstreams/5a5ea3d3-081b-4820-b812-3461112330da/download
https://red.uao.edu.co/bitstreams/92031d10-ae6c-4476-b261-97427e365aae/download
https://red.uao.edu.co/bitstreams/a97c97e6-4bac-49cd-a46b-a2d9689b9303/download
bitstream.checksum.fl_str_mv d87e85a9aff1f14c57a2ca03adea62be
6987b791264a2b5525252450f99b10d1
4d5ed6992a9e57fec85627a09c8183ec
c01a1e1f255487b12767b28ef5aa79b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053177819889664
spelling Gordillo Suárez, Marisolvirtual::6193-1Martinez Ruiz , ValentinaPizza Londoño, Victoria EugeniaJurado Rosero, JavierDaza Torres, Martha Constanza2025-07-28T19:33:56Z2025-07-28T19:33:56Z2024Martinez Ruiz, V.; Pizza Londoño, V. E.; Gordillo Suarez, M.; Jurado-Rosero. J. y Daza Torres, M. C. (2024). Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider webs. Sage Journals. Vol. 17. p.p. 1-9. https://doi.org/10.1177/1178622124127238821582440https://hdl.handle.net/10614/16232https://doi.org/10.1177/1178622124127238821582440Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living plants (phytoremediation), or biomaterials to eliminate these elements. In this study, we investigated the technical feasibility of using the Trichonephila clavipes spider web as a biomaterial for iron removal from water by bioremediation. A bibliometric analysis was carried out, where the process variables and experimental design were defined using the Response Surface Methodology, and the iron concentrations were measured before and after the experiment using X-ray fluorescence spectroscopy by dispersive energy. The model predicted an iron removal of 91.82% using 28.09 hr, 81.42 ppm of iron, and 0.062 g of spider web, with a relative error of 0.043 of the true value. This work is novel and presents a new methodology for the bioremediation of water contaminated with iron using spider webs. The results indicate a high efficiency in the removal of iron, which could have important implications in solving environmental and health problems associated with the presence of heavy metals in waterLos metales pesados son de gran importancia ambiental y sanitaria debido a la toxicidad que generan; por lo tanto, se ha estudiado una amplia variedad de métodos para su eliminación en el agua. Uno de los enfoques empleados es la biorremediación, que implica el uso de biomasa (microorganismos o plantas), plantas vivas (fitorremediación) o biomateriales para eliminar estos elementos. En este estudio, investigamos la viabilidad técnica de utilizar la tela de araña Trichonephila clavipes como biomaterial para la eliminación de hierro del agua mediante biorremediación. Se realizó un análisis bibliométrico, donde las variables de proceso y el diseño experimental se definieron mediante la Metodología de Superficie de Respuesta, y las concentraciones de hierro se midieron antes y después del experimento mediante espectroscopia de fluorescencia de rayos X por energía dispersiva. El modelo predijo una eliminación de hierro del 91,82% utilizando 28,09 h, 81,42 ppm de hierro y 0,062 g de tela de araña, con un error relativo de 0,043 del valor real. Este trabajo es novedoso y presenta una nueva metodología para la biorremediación de aguas contaminadas con hierro mediante telarañas. Los resultados indican una alta eficiencia en la eliminación de hierro, lo que podría tener importantes implicaciones para la solución de problemas ambientales y de salud asociados con la presencia de metales pesados en el agua9 páginasapplication/pdfengSage PublicationsLos ÁngelesDerechos reservados - Sage Publications Ltd., 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Feasibility of bioremediation of iron-contaminated water using Trichonephila Clavipes spider websViabilidad de la biorremediación de aguas contaminadas con hierro mediante telarañas de Trichonephila ClavipesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a859117Sage JournalsBenila Smily, J. R. M., & Sumithra, P. A. (2017). Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI Journal of Biosciences, 24, 65–71. https://doi.org/10.1016/j.hjb.2017 .08.005Bergmann, F., Stadlmayr, S., Millesi, F., Zeitlinger, M., Naghilou, A., & Radtke, C. (2022). The properties of native Trichonephila dragline silk and its biomedical applications. Biomaterials advances, 140, pp. 2. https://doi.org/10.1016/j. bioadv.2022.213089Bosch Ariño, F. D. A. (1954). Determinación volumétrica del hierro. Anales de la Universidad de Valencia. XXVII, 34–36.Bustamante-Cristancho, L. A. (2011). Intoxicación aguda por hierro. CES Medicina, 25(1), 79–96. Calderón Núñez, A. K. (2020). Análisis de la política pública del mínimo vital de agua potable como derecho fundamental en Colombia. Universidad de Antioquia. https:// bibliotecadigital.udea.edu.co /handle/10495/14929Carbonell Plata, J. A. (2008). Comparación De La Resistencia a Tracción Entre El Hilo De Araña Y El Hilo De Acero. Universidad Militar Nueva Granada. http://hdl.handle. net/10654/10190Carreño-Sayago, U. F. (2015). Tratamientos de aguas industriales con metales pesados a través de zeolitas y sistemas de biorremediación. Revisión del estado de la cuestión (pp. 70–78). Revista Ingeniería. https://doi.org/10.19053/1900771X.3940Cisneros Gómez, J. M., & Laura Pezo, D. E. (2019). Aplicación de superficie de respuesta en la cuantificación y remoción de plomo de aguas residuales empleando nanoarcilla montmorillonita y residuos lignocelulósicos de arroz (Oryza Sativa) [Tesis de pregrado Universidad Peruana Unión]. https://repositorio.upeu.edu.pe/server/api/ core/bitstreams/bf2d 712f-22d7-479d-b2af-ada976d589f6/contentCornell, J. A. (Ed.). (1982). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). Wiley.Dey, S., Kotaru, N. S. A., Veerendra, G. T. N., & Sambangi, A. (2022). The removal of iron from synthetic water by the applications of plants leaf biosorbents. Cleaner Engineering and Technology, 9, 17–18. https://doi.org/10.1016/j. clet.2022.100530Dey, S., Sreenivasulu, A., Veerendra, G. T. N., Phani Manoj, A. V., & Haripavan, N. (2022). Synthesis and characterization of mango leaves biosorbents for removal of iron and phosphorous from contaminated water. Applied Surface Science Advances, 11, 2. https://doi.org/10.1016/j.apsadv.2022.100292Fito, J., Tibebu, S., & Nkambule, T. T. I. (2023). Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chemistry, 17, 4. https://doi. org/10.1186/s13065-023-00913-6Foong, C. P., Higuchi-Takeuchi, M., Malay, A. D., Oktaviani, N. A., Thagun, C., & Numata, K. (2020). A marine photosynthetic microbial cell factory as a platform for spider silk production. Communications Biology, 3, 357. https://doi. org/10.1038/s42003-020-1099-6Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63–75. https://doi.org/10.1016/j.jaerosci.2018.06.008Guillén Pérez, J. A. (2020). Vertimiento de efluentes mineros de mina Marta en contaminación de las aguas del rio tinyacclla. Universidad Nacional del Centro del Perú. http://hdl.handle.net/20.500.12894/6180.Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K., & Asiri, A. M. (2023). Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), 601. https://doi.org/10.3390/polym15030 601Ministerio de Vivienda y Desarrollo Territorial y Ministerio de Protección Social de Colombia. (2007). Resolución 2115 de junio 22 de 2007. D.O 46.679. https://www. minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdfMinitab Inc. (1972). Minitab. (Versión 19). [Software de Computador] Minitab Inc. https://www.minitab.com/es-mx/Ning, D., Lu, Z., Tian, C., Yan, N., Xie, F., Li, N., & Hua, L. (2023). Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. International Journal of Biological Macromolecules, 253, 7–8. https://doi.org/10.1016/j.ijbiomac.2023.126865OMS- Organización Mundial de la Salud. (2018). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda [Guidelines for drinking- water quality: fourth edition incorporating first addendum].Organización Mundial de la Salud. https://iris.who.int/handle/10665/272403 Paredes, J. Y., & Ñique, M. (2016). Optimización de la Fitorremediación de Mercurio en Humedales de Flujo Continuo Empleando Eichhornia crassipes “Jacinto de Agua.” Investigación y Amazonía, 5, 44–49. https://revistas.unas.edu.pe/index. php/revia/article/viewFile/57/44Pelit, L., Ertaş, F. N., Eroğlu, A. E., Shahwan, T., & Tural, H. (2011). Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk. Bioresource Technology, 102, 8807–8813. https://doi.org/10.1016/j.biortech.2011.07.013Rachwał, M., Rybak, J., & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution. Environmental Pollution, 234, 543–551. https://doi.org/10.1016/j.envpol.2017.11.088Römer, L. Y., & Scheibel, T. (2008). The elaborate structure of spider silk. Prion, 2(4), 154–161. https://doi.org/10.4161/pri.2.4.7490Seid, S. M., & Gonfa, G. (2022). Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nano-composite. Environmental Challenges, 8, 1–2. https://doi.org/10.1016/j.envc.2022.100574Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. (2018). 3500- fe iron. In W. C. Lipps, T. E. Baxter, & E. Braun-Howland (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 1–2). APHA Press.Szabó, Z. G., & Sugár, E. (1952). Stannometry volumetric determination of iron(iii), vanadate, dichromate, iodate, bromate, ferricyanide ions and iodine. Analytica Chimica Acta, 6, 293–315. https://doi.org/10.1016/s0003-2670(00)86949-4Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, 7–8. https://doi. org/10.1016/j.susmat.2019.e00146Vergara Buitrago, P. A., & Rodríguez-Aparicio, J. A. (2021). Análisis ambiental de la minería de carbón en el ecosistema estratégico de páramo (Boyacá, Colombia). Scientia et Technica, 26(03), 398–405.World Health Organization (WHO). (2003). Iron in drinking-water background document for development of WHO guidelines for drinking-water quality.Xing, C., Munro, T., White, B., Ban, H., Copeland, C. G., & Lewis, R. V. (2014). Thermophysical properties of the dragline silk of Nephila clavipes spider. Polymer, 55(16), 4226–4231. https://doi.org/10.1016/j.polymer.2014.05.046Yusuf, A., Amusa, H. K., Eniola, J. O., Giwa, A., Pikuda, O., Dindi, A., & Bilad, R. M. (2023). Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2–3. https://doi.org/10.1016/j.ceja.2023.100443Zhou, H., Zhu, H., Shi, X., Wang, L., He, H., & Wang, S. (2021). Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of lowlevel multiple heavy metal ions. Chemical Engineering Journal, 412, 7–8. https://doi.org/10.1016/j.cej.2021.128670Iron-polluted waterBiomaterialAdsorptionResponse surface methodologyComunidad generalPublicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::6193-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::6193-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::6193-10000-0003-1602-5547virtual::6193-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::6193-1ORIGINALFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdfFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf745690https://red.uao.edu.co/bitstreams/4fc4713a-86f1-4fd0-aaf5-70df2c7b5005/downloadd87e85a9aff1f14c57a2ca03adea62beMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/5a5ea3d3-081b-4820-b812-3461112330da/download6987b791264a2b5525252450f99b10d1MD52TEXTFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.txtFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.txtExtracted texttext/plain44248https://red.uao.edu.co/bitstreams/92031d10-ae6c-4476-b261-97427e365aae/download4d5ed6992a9e57fec85627a09c8183ecMD53THUMBNAILFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.jpgFeasibility_of_bioremediation_of_iron-contaminated_water_using_Trichonephila_Clavipes_spider_webs.pdf.jpgGenerated Thumbnailimage/jpeg16241https://red.uao.edu.co/bitstreams/a97c97e6-4bac-49cd-a46b-a2d9689b9303/downloadc01a1e1f255487b12767b28ef5aa79b6MD5410614/16232oai:red.uao.edu.co:10614/162322025-07-31 03:02:11.398https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Sage Publications Ltd., 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==