Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system

This study introduces an innovative approach to the layered model, emphasizing the physical–chemical characterization of miscible liquid systems through ultrasonic techniques, with a specific focus on the water–ethanol system used in pharmaceutical formulations. Traditional characterization methods,...

Full description

Autores:
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lopes, Jose H.
Tsuzuki, Marcos S. G.
Buiochi, Flávio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16209
Acceso en línea:
https://hdl.handle.net/10614/16209
https://doi.org/10.3390/s24134061
https://red.uao.edu.co/
Palabra clave:
Velocidad de propagación
Modelos estratificados
Agua-etanol
Propiedades parciales
Propagation velocity
Layered models
Water–ethanol
Partial properties
Rights
openAccess
License
Derechos reservados - MDPI, 2024
id REPOUAO2_7e0ff3dd9ab4898050a4a68b21b4c8a9
oai_identifier_str oai:red.uao.edu.co:10614/16209
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
dc.title.translated.spa.fl_str_mv Determinación de la velocidad de propagación parcial y del coeficiente de compresibilidad isentrópica parcial en un sistema agua-etanol
title Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
spellingShingle Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
Velocidad de propagación
Modelos estratificados
Agua-etanol
Propiedades parciales
Propagation velocity
Layered models
Water–ethanol
Partial properties
title_short Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
title_full Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
title_fullStr Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
title_full_unstemmed Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
title_sort Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system
dc.creator.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lopes, Jose H.
Tsuzuki, Marcos S. G.
Buiochi, Flávio
dc.contributor.author.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lopes, Jose H.
Tsuzuki, Marcos S. G.
Buiochi, Flávio
dc.subject.proposal.spa.fl_str_mv Velocidad de propagación
Modelos estratificados
Agua-etanol
Propiedades parciales
topic Velocidad de propagación
Modelos estratificados
Agua-etanol
Propiedades parciales
Propagation velocity
Layered models
Water–ethanol
Partial properties
dc.subject.proposal.eng.fl_str_mv Propagation velocity
Layered models
Water–ethanol
Partial properties
description This study introduces an innovative approach to the layered model, emphasizing the physical–chemical characterization of miscible liquid systems through ultrasonic techniques, with a specific focus on the water–ethanol system used in pharmaceutical formulations. Traditional characterization methods, while effective, face challenges due to the complex nature of solutions, such as the need for large pressure variations and strict temperature control. The proposed approach integrates partial molar volumes and partial propagation velocity functions into the layered model, enabling a nuanced understanding of miscibility and interactions. Ultrasonic techniques are used to calculate the isentropic compressibility coefficient for each component of the mixture as well as the total value using an additive mixing rule. Unlike conventional methods, this technique uses tabulated and experimental data to estimate the propagation velocity in the mixture, leading to a more precise computation of the isentropic compressibility coefficient. The results indicate a significant improvement in predicting the behavior of the water–ethanol system compared to the classical layered model. The methodology demonstrates the potential to provide new physicochemical insights that can be applied to other miscible systems beyond water–ethanol. This research has implications for improving the efficiency and accuracy of liquid medication formulations in the pharmaceutical industry
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-09T14:17:59Z
dc.date.available.none.fl_str_mv 2025-07-09T14:17:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Franco Guzmán, E. E.; Reyna, C. A. B.; Lopes, J. H.; Tsuzuki, M. S. G. y Buiochi, F. (2024). Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system. Sensores. 24 (13). https://doi.org/10.3390/s24134061
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16209
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/s24134061
dc.identifier.eissn.spa.fl_str_mv 14248220
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Franco Guzmán, E. E.; Reyna, C. A. B.; Lopes, J. H.; Tsuzuki, M. S. G. y Buiochi, F. (2024). Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system. Sensores. 24 (13). https://doi.org/10.3390/s24134061
14248220
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16209
https://doi.org/10.3390/s24134061
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 24
dc.relation.ispartofjournal.eng.fl_str_mv Sensors
dc.relation.references.none.fl_str_mv 1. Jiménez, J.; Manrique, J.; Martínez, F. Effect of temperature on some volumetric properties for ethanol+ water mixtures. Rev. Colomb. Cienc. Quím Farm 2004, 33, 145–155. https://www.researchgate.net/publication/292411549.
2. Lamberti, N.; Ardia, L.; Albanese, D.; Di Matteo, M. An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics 2009, 49, 94–97. [CrossRef] [PubMed]
3. Resa, P.; Elvira, L.; De Espinosa, F.M.; Gómez-Ullate, Y. Ultrasonic velocity in water–ethanol–sucrose mixtures during alcoholic fermentation. Ultrasonics 2005, 43, 247–252. [CrossRef] [PubMed]
4. Hoche, S.; Hussein, M.A.; Becker, T. Critical process parameter of alcoholic yeast fermentation: Speed of sound and density in the temperature range 5–30 °C. Int. J. Food Sci. Technol. 2014, 49, 2441–2448. [CrossRef]
5. Figueiredo, M.K.K.; Costa-Felix, R.P.; Maggi, L.E.; Alvarenga, A.V.; Romeiro, G.A. Biofuel ethanol adulteration detection using an ultrasonic measurement method. Fuel 2012, 91, 209–212. [CrossRef]
6. Dion, J.R.; Burns, D.H. Simultaneous determination of alcohol and carbohydrate content in commercial beverages by ultrasound frequency analysis. Talanta 2011, 86, 384–392. [CrossRef] [PubMed]
7. Brunn, S.; Sorensen, P.G.; Hvidt, A. Ultrasonic properties of ethanol-water mixtures. Acta Chem. Scand. A 1974, 28, 1047–1054. [CrossRef]
8. D’Arrigo, G.; Paparelli, A. Sound propagation in water–ethanol mixtures at low temperatures. I. Ultrasonic velocity. J. Chem. Phys. 1988, 88, 405–415. [CrossRef]
9. Onori, G. Adiabatic compressibility and structure of aqueous solutions of methyl-alcohol. J. Chem. Phys. 1987, 87, 1251–1255. [CrossRef]
10. Peˇcar, D.; Doleˇcek, V. Volumetric properties of ethanol–water mixtures under high temperatures and pressures. Fluid Phase Equilibria 2005, 230, 36–44. [CrossRef]
11. Douhéret, G.; Davis, M.I.; Reis, J.C.R.; Blandamer, M.J. Isentropic compressibilities—Experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2001, 2, 148–161. [CrossRef] [PubMed]
12. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef]
13. Ernst, S.; Glinski, J. Comment: Ultrasonic velocities for deuterium oxide–water mixtures at 298.15 K. Can. J. Chem. 1979, 57, 2333–2334. [CrossRef]
14. Reyna, C.A.; Franco, E.E.; Durán, A.L.; Pereira, L.O.; Tsuzuki, M.S.; Buiochi, F. Water Content Monitoring in Water-in-Oil Emulsions Using a Piezoceramic Sensor. Machines 2021, 9, 335. [CrossRef]
15. Reyna, C.A.; Franco, E.E.; Tsuzuki, M.S.; Buiochi, F. Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics 2023, 134, 107081. [CrossRef] [PubMed]
16. Reyna, C.A.; Durán, A.L.; Pereira, L.O.; Tsuzuki, M.S.; Franco, E.E.; Buiochi, F. Development of an adjustable measuring cell for ultrasonic characterization of water-in-crude oil emulsions. In Proceedings of the 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Gainesville, FL, USA, 4–5 October 2021 ; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [CrossRef]
17. Nomoto, O. Empirical formula for sound velocity in liquid mixtures. J. Phys. Soc. Jpn. 1958, 13, 1528–1532. [CrossRef]
18. Reis, J.C.R.; Santos, Â.F.; Lampreia, I.M. Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures. ChemPhysChem 2010, 11, 508–516. [CrossRef] [PubMed]
19. Durán, A.L.; Franco, E.E.; Reyna, C.A.; Pérez, N.; Tsuzuki, M.S.; Buiochi, F. Water Content Monitoring inWater-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088. [CrossRef] [PubMed]
20. Michael Abbott, H.V.N. Schaum’s Outline of Thermodynamics with Chemical Applications, 2nd ed.; Schaum’s Outline Series; McGraw-Hill: New York, NY, USA, 1989.
21. Llano-Restrepo, M.; Carrero-Mantilla, J.I. Futility or usefulness of common implementations of the area and slope consistency tests for partial molar properties in binary mixtures. Fluid Phase Equilibria 2015, 398, 72–79. [CrossRef]
22. Freedman, A. Transient fields of acoustic radiators. J. Acoust. Soc. Am. 1970, 48, 135–138. [CrossRef]
23. Ocheltree, K.B.; Frizzel, L. Sound field calculation for rectangular sources. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 242–248. [CrossRef] [PubMed]
24. Nobre, L.C.; Cristino, A.F.; Santos, Â.F.; de Castro, C.A.N.; Lampreia, I.M. Ultrasound speed study of the ternary liquid mixture (water+ ethanol+ 1-propanol) at T = 293.15 K and P = 0.1 MPa. J. Chem. Thermodyn. 2020, 150, 106226. [CrossRef]
25. Vatandas, M.; Koc, A.B.; Koc, C. Ultrasonic velocity measurements in ethanol–water and methanol–water mixtures. Eur. Food Res. Technol. 2007, 225, 525–532. [CrossRef]
26. Meister, E.C. Measurement of the temperature and concentration dependent sound velocity in ethanol-water liquid mixtures. In Physikalisch-Chemisches Praktikum; ETH: Zurich, Switzerland, 2015.
27. Martin, K.; Spinks, D. Measurement of the speed of sound in ethanol/water mixtures. Ultrasound Med. Biol. 2001, 27, 289–291. [CrossRef] [PubMed]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3fef25a0-4526-4d4b-9cee-bf85df9a27f3/download
https://red.uao.edu.co/bitstreams/83edb40d-5ff8-4882-b0bd-1f4217cef77c/download
https://red.uao.edu.co/bitstreams/1f30a70c-3d93-48d5-8fc9-f6afa890ddcc/download
https://red.uao.edu.co/bitstreams/c30f3430-438b-40de-8956-6f018977cdd5/download
bitstream.checksum.fl_str_mv b9257514f9f4b56e0d82af3990ac313e
6987b791264a2b5525252450f99b10d1
67f2d278d1050e4422ccf24b17eb3dba
cb519cd14a735b34dccac2225bcce067
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053099735580672
spelling Franco Guzmán, Ediguer Enriquevirtual::6102-1Reyna, Carlos A. B.Lopes, Jose H.Tsuzuki, Marcos S. G.Buiochi, Flávio2025-07-09T14:17:59Z2025-07-09T14:17:59Z2024Franco Guzmán, E. E.; Reyna, C. A. B.; Lopes, J. H.; Tsuzuki, M. S. G. y Buiochi, F. (2024). Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol system. Sensores. 24 (13). https://doi.org/10.3390/s24134061https://hdl.handle.net/10614/16209https://doi.org/10.3390/s2413406114248220Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This study introduces an innovative approach to the layered model, emphasizing the physical–chemical characterization of miscible liquid systems through ultrasonic techniques, with a specific focus on the water–ethanol system used in pharmaceutical formulations. Traditional characterization methods, while effective, face challenges due to the complex nature of solutions, such as the need for large pressure variations and strict temperature control. The proposed approach integrates partial molar volumes and partial propagation velocity functions into the layered model, enabling a nuanced understanding of miscibility and interactions. Ultrasonic techniques are used to calculate the isentropic compressibility coefficient for each component of the mixture as well as the total value using an additive mixing rule. Unlike conventional methods, this technique uses tabulated and experimental data to estimate the propagation velocity in the mixture, leading to a more precise computation of the isentropic compressibility coefficient. The results indicate a significant improvement in predicting the behavior of the water–ethanol system compared to the classical layered model. The methodology demonstrates the potential to provide new physicochemical insights that can be applied to other miscible systems beyond water–ethanol. This research has implications for improving the efficiency and accuracy of liquid medication formulations in the pharmaceutical industryEste estudio presenta un enfoque innovador para el modelo estratificado, que enfatiza la caracterización fisicoquímica de sistemas líquidos miscibles mediante técnicas ultrasónicas, con especial atención al sistema agua-etanol utilizado en formulaciones farmacéuticas. Si bien los métodos tradicionales de caracterización son eficaces, presentan desafíos debido a la complejidad de las soluciones, como la necesidad de grandes variaciones de presión y un control estricto de la temperatura. El enfoque propuesto integra volúmenes molares parciales y funciones de velocidad de propagación parcial en el modelo estratificado, lo que permite una comprensión más detallada de la miscibilidad y las interacciones. Se utilizan técnicas ultrasónicas para calcular el coeficiente de compresibilidad isentrópica de cada componente de la mezcla, así como el valor total mediante una regla de mezcla aditiva. A diferencia de los métodos convencionales, esta técnica utiliza datos tabulados y experimentales para estimar la velocidad de propagación en la mezcla, lo que permite un cálculo más preciso del coeficiente de compresibilidad isentrópica. Los resultados indican una mejora significativa en la predicción del comportamiento del sistema agua-etanol en comparación con el modelo estratificado clásico. La metodología demuestra el potencial de proporcionar nuevos conocimientos fisicoquímicos aplicables a otros sistemas miscibles, además del agua-etanol. Esta investigación tiene implicaciones para mejorar la eficiencia y precisión de las formulaciones de medicamentos líquidos en la industria farmacéutica11 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Determination of partial propagation velocity and partial isentropic compressibility coefficient in water–ethanol systemDeterminación de la velocidad de propagación parcial y del coeficiente de compresibilidad isentrópica parcial en un sistema agua-etanolArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851113124Sensors1. Jiménez, J.; Manrique, J.; Martínez, F. Effect of temperature on some volumetric properties for ethanol+ water mixtures. Rev. Colomb. Cienc. Quím Farm 2004, 33, 145–155. https://www.researchgate.net/publication/292411549.2. Lamberti, N.; Ardia, L.; Albanese, D.; Di Matteo, M. An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics 2009, 49, 94–97. [CrossRef] [PubMed]3. Resa, P.; Elvira, L.; De Espinosa, F.M.; Gómez-Ullate, Y. Ultrasonic velocity in water–ethanol–sucrose mixtures during alcoholic fermentation. Ultrasonics 2005, 43, 247–252. [CrossRef] [PubMed]4. Hoche, S.; Hussein, M.A.; Becker, T. Critical process parameter of alcoholic yeast fermentation: Speed of sound and density in the temperature range 5–30 °C. Int. J. Food Sci. Technol. 2014, 49, 2441–2448. [CrossRef]5. Figueiredo, M.K.K.; Costa-Felix, R.P.; Maggi, L.E.; Alvarenga, A.V.; Romeiro, G.A. Biofuel ethanol adulteration detection using an ultrasonic measurement method. Fuel 2012, 91, 209–212. [CrossRef]6. Dion, J.R.; Burns, D.H. Simultaneous determination of alcohol and carbohydrate content in commercial beverages by ultrasound frequency analysis. Talanta 2011, 86, 384–392. [CrossRef] [PubMed]7. Brunn, S.; Sorensen, P.G.; Hvidt, A. Ultrasonic properties of ethanol-water mixtures. Acta Chem. Scand. A 1974, 28, 1047–1054. [CrossRef]8. D’Arrigo, G.; Paparelli, A. Sound propagation in water–ethanol mixtures at low temperatures. I. Ultrasonic velocity. J. Chem. Phys. 1988, 88, 405–415. [CrossRef]9. Onori, G. Adiabatic compressibility and structure of aqueous solutions of methyl-alcohol. J. Chem. Phys. 1987, 87, 1251–1255. [CrossRef]10. Peˇcar, D.; Doleˇcek, V. Volumetric properties of ethanol–water mixtures under high temperatures and pressures. Fluid Phase Equilibria 2005, 230, 36–44. [CrossRef]11. Douhéret, G.; Davis, M.I.; Reis, J.C.R.; Blandamer, M.J. Isentropic compressibilities—Experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2001, 2, 148–161. [CrossRef] [PubMed]12. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef]13. Ernst, S.; Glinski, J. Comment: Ultrasonic velocities for deuterium oxide–water mixtures at 298.15 K. Can. J. Chem. 1979, 57, 2333–2334. [CrossRef]14. Reyna, C.A.; Franco, E.E.; Durán, A.L.; Pereira, L.O.; Tsuzuki, M.S.; Buiochi, F. Water Content Monitoring in Water-in-Oil Emulsions Using a Piezoceramic Sensor. Machines 2021, 9, 335. [CrossRef]15. Reyna, C.A.; Franco, E.E.; Tsuzuki, M.S.; Buiochi, F. Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics 2023, 134, 107081. [CrossRef] [PubMed]16. Reyna, C.A.; Durán, A.L.; Pereira, L.O.; Tsuzuki, M.S.; Franco, E.E.; Buiochi, F. Development of an adjustable measuring cell for ultrasonic characterization of water-in-crude oil emulsions. In Proceedings of the 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Gainesville, FL, USA, 4–5 October 2021 ; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [CrossRef]17. Nomoto, O. Empirical formula for sound velocity in liquid mixtures. J. Phys. Soc. Jpn. 1958, 13, 1528–1532. [CrossRef]18. Reis, J.C.R.; Santos, Â.F.; Lampreia, I.M. Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures. ChemPhysChem 2010, 11, 508–516. [CrossRef] [PubMed]19. Durán, A.L.; Franco, E.E.; Reyna, C.A.; Pérez, N.; Tsuzuki, M.S.; Buiochi, F. Water Content Monitoring inWater-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088. [CrossRef] [PubMed]20. Michael Abbott, H.V.N. Schaum’s Outline of Thermodynamics with Chemical Applications, 2nd ed.; Schaum’s Outline Series; McGraw-Hill: New York, NY, USA, 1989.21. Llano-Restrepo, M.; Carrero-Mantilla, J.I. Futility or usefulness of common implementations of the area and slope consistency tests for partial molar properties in binary mixtures. Fluid Phase Equilibria 2015, 398, 72–79. [CrossRef]22. Freedman, A. Transient fields of acoustic radiators. J. Acoust. Soc. Am. 1970, 48, 135–138. [CrossRef]23. Ocheltree, K.B.; Frizzel, L. Sound field calculation for rectangular sources. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 242–248. [CrossRef] [PubMed]24. Nobre, L.C.; Cristino, A.F.; Santos, Â.F.; de Castro, C.A.N.; Lampreia, I.M. Ultrasound speed study of the ternary liquid mixture (water+ ethanol+ 1-propanol) at T = 293.15 K and P = 0.1 MPa. J. Chem. Thermodyn. 2020, 150, 106226. [CrossRef]25. Vatandas, M.; Koc, A.B.; Koc, C. Ultrasonic velocity measurements in ethanol–water and methanol–water mixtures. Eur. Food Res. Technol. 2007, 225, 525–532. [CrossRef]26. Meister, E.C. Measurement of the temperature and concentration dependent sound velocity in ethanol-water liquid mixtures. In Physikalisch-Chemisches Praktikum; ETH: Zurich, Switzerland, 2015.27. Martin, K.; Spinks, D. Measurement of the speed of sound in ethanol/water mixtures. Ultrasound Med. Biol. 2001, 27, 289–291. [CrossRef] [PubMed]Velocidad de propagaciónModelos estratificadosAgua-etanolPropiedades parcialesPropagation velocityLayered modelsWater–ethanolPartial propertiesComunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::6102-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::6102-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::6102-10000-0001-7518-704Xvirtual::6102-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::6102-1ORIGINALDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdfDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf940684https://red.uao.edu.co/bitstreams/3fef25a0-4526-4d4b-9cee-bf85df9a27f3/downloadb9257514f9f4b56e0d82af3990ac313eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/83edb40d-5ff8-4882-b0bd-1f4217cef77c/download6987b791264a2b5525252450f99b10d1MD52TEXTDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdf.txtDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdf.txtExtracted texttext/plain33747https://red.uao.edu.co/bitstreams/1f30a70c-3d93-48d5-8fc9-f6afa890ddcc/download67f2d278d1050e4422ccf24b17eb3dbaMD53THUMBNAILDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdf.jpgDetermination_of_partial_propagation_velocity_and_partial_isentropic_compressibility_coefficient_in_water–etanol_system.pdf.jpgGenerated Thumbnailimage/jpeg16131https://red.uao.edu.co/bitstreams/c30f3430-438b-40de-8956-6f018977cdd5/downloadcb519cd14a735b34dccac2225bcce067MD5410614/16209oai:red.uao.edu.co:10614/162092025-07-10 03:00:28.191https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==