A single-output-filter double dual ćuk converter

Este estudio presenta una versión innovadora de un convertidor recientemente estudiado. Se estudió recientemente un convertidor doble Ćuk dual con ventajas como la posibilidad de diseñarlo para lograr una baja ondulación de la corriente de entrada. El convertidor propuesto, denominado convertidor do...

Full description

Autores:
Posada Contreras, Johnny
Robles-Campos, Hector R.
Rosas-Caro, Julio C.
Valderrabano-González, Antonio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16202
Acceso en línea:
https://hdl.handle.net/10614/16202
https://doi.org/10.3390/electronics13101838
https://red.uao.edu.co/
Palabra clave:
DC–DC power converter
PWM
Double dual Ćuk converter
Convertidor de potencia CC-CC
PWM
Convertidor doble dual Ćuk
Rights
openAccess
License
Derechos reservados - MDPI, 2024
id REPOUAO2_7243a8d03f95ccb3f5a9a2af1a26e8a5
oai_identifier_str oai:red.uao.edu.co:10614/16202
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv A single-output-filter double dual ćuk converter
dc.title.alternative.spa.fl_str_mv Un convertidor de doble Ćuk con filtro de salida única
title A single-output-filter double dual ćuk converter
spellingShingle A single-output-filter double dual ćuk converter
DC–DC power converter
PWM
Double dual Ćuk converter
Convertidor de potencia CC-CC
PWM
Convertidor doble dual Ćuk
title_short A single-output-filter double dual ćuk converter
title_full A single-output-filter double dual ćuk converter
title_fullStr A single-output-filter double dual ćuk converter
title_full_unstemmed A single-output-filter double dual ćuk converter
title_sort A single-output-filter double dual ćuk converter
dc.creator.fl_str_mv Posada Contreras, Johnny
Robles-Campos, Hector R.
Rosas-Caro, Julio C.
Valderrabano-González, Antonio
dc.contributor.author.none.fl_str_mv Posada Contreras, Johnny
Robles-Campos, Hector R.
Rosas-Caro, Julio C.
Valderrabano-González, Antonio
dc.subject.proposal.eng.fl_str_mv DC–DC power converter
PWM
Double dual Ćuk converter
topic DC–DC power converter
PWM
Double dual Ćuk converter
Convertidor de potencia CC-CC
PWM
Convertidor doble dual Ćuk
dc.subject.proposal.spa.fl_str_mv Convertidor de potencia CC-CC
PWM
Convertidor doble dual Ćuk
description Este estudio presenta una versión innovadora de un convertidor recientemente estudiado. Se estudió recientemente un convertidor doble Ćuk dual con ventajas como la posibilidad de diseñarlo para lograr una baja ondulación de la corriente de entrada. El convertidor propuesto, denominado convertidor doble Ćuk dual mejorado, mantiene las ventajas del anterior y se caracteriza por requerir un condensador e inductor menos que su predecesor. Esto permite abordar el reto de optimizar la topología para reducir el número de componentes sin comprometer el funcionamiento. Este trabajo propone una metodología de diseño eficiente basada en el análisis teórico y la validación experimental. Los resultados demuestran que la topología mejorada no solo conserva las ventajas de la versión anterior, como la alta eficiencia y robustez, sino que también mejora la densidad de potencia al reducir el número de componentes. Estos avances abren nuevas posibilidades para aplicaciones que requieren convertidores de potencia compactos y eficientes, como sistemas de energía renovable, vehículos eléctricos y sistemas de suministro de energía portátiles. Este trabajo subraya la importancia de la innovación continua en el diseño de convertidores de potencia y sienta las bases para futuras investigaciones destinadas a optimizar las topologías de los convertidores. Se presenta una descripción detallada de los principios operativos y el modelado del convertidor. Además, se comparten los resultados de la simulación, que destacan las diferencias en la duración del estado estacionario, la tensión de salida, la ondulación de la corriente de entrada y la eficiencia operativa. También se presentan los resultados de un banco de pruebas experimental para corroborar la eficacia del convertidor mejorado
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-04T19:20:48Z
dc.date.available.none.fl_str_mv 2025-07-04T19:20:48Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Posada Contreras, J.; Robles-Campos, H. R.; Rosas-Caro, J. C. y Valderrabano-González, A. (2024). A single-output-filter double dual ćuk converter. Electronics, 13(10). https://doi.org/10.3390/electronics13101838
dc.identifier.issn.spa.fl_str_mv 20799292
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16202
dc.identifier.doi.eng.fl_str_mv https://doi.org/10.3390/electronics13101838
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Posada Contreras, J.; Robles-Campos, H. R.; Rosas-Caro, J. C. y Valderrabano-González, A. (2024). A single-output-filter double dual ćuk converter. Electronics, 13(10). https://doi.org/10.3390/electronics13101838
20799292
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16202
https://doi.org/10.3390/electronics13101838
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournal.eng.fl_str_mv Electronics
dc.relation.references.none.fl_str_mv 1. Badea, I.C.;S, erban, B.A.; Anasiei, I.; Mitric˘a, D.; Olaru, M.T.; Rabin, A.; Ciurdas, , M. The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies 2024, 17, 140. [CrossRef]
2. Bordbari, M.J.; Nasiri, F. Networked Microgrids: A Review on Configuration, Operation, and Control Strategies. Energies 2024, 17, 715. [CrossRef]
3. Marchiori, L.; Morais, M.V.; Studart, A.; Albuquerque, A.; Andrade Pais, L.; Ferreira Gomes, L.; Cavaleiro, V. Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies 2024, 17, 215. [CrossRef]
4. Cárdenas Guerra, C.A.; Ospino Castro, A.J.; Peña Gallardo, R. Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region. Energies 2023, 16, 7260. [CrossRef]
5. Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC-DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. [CrossRef]
6. Antuna-Fiscal, C.A.; Leyva-Ramos, J.; Ortiz-Lopez, M.G.; Diaz-Saldierna, L.H. Control Scheme for a Quadratic-Based Step-Down On-Board DC/DC Converter to Be Used in Hybrid Electric Vehicles. Energies 2023, 16, 7065. [CrossRef]
7. Valdez-Resendiz, J.E.; Mayo-Maldonado, J.C.; Alejo-Reyes, A.; Rosas-Caro, J.C. Double-Dual DC-DC Conversion: A Survey of Contributions, Generalization, and Systematic Generation of New Topologies. IEEE Access 2023, 11, 38913–38928. [CrossRef]
8. Adamas-Pérez, H.; Ponce-Silva, M.; Mina-Antonio, J.D.; Claudio-Sánchez, A.; Rodríguez-Benítez, O. Assessment of Energy Conversion in Passive Components of Single-Phase Photovoltaic Systems Interconnected to the Grid. Electronics 2023, 12, 3341. [CrossRef]
9. Kumar, M.; Yadav, V.K.; Mathuria, K.; Verma, A.K. A Soft Switched High Gain Boost Converter With Coupled Inductor for Photovoltaic Applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 827–835. [CrossRef]
10. Forouzesh, M.; Shen, Y.; Yari, K.; Siwakoti, Y.P.; Blaabjerg, F. High–Efficiency High Step–Up DC–DC Converter With Dual Coupled Inductors for Grid–Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2018, 33, 5967–5982. [CrossRef]
11. Walczak, M.; Bychto, L. Influence of Parasitic Resistances on the Input Resistance of Buck and Boost Converters in Maximum Power Point Tracking (MPPT) Systems. Electronics 2021, 10, 18. [CrossRef]
12. Robles-Campos, H.R.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C.; Gabbar, H.A.; Babaiahgari, B. Double Dual High Step-Up Power Converter with Reduced Stored Energy. Energies 2023, 16, 3194. [CrossRef]
13. Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step–Up DC–DC Converters: A Comprehensive Review of Voltage–Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [CrossRef]
14. Janke, W.; Baczek, M.; Kra´sniewski, J.;Walczak, M. Large–signal input characteristics of selected DC–DC switching converters Part I. Continuous conduction mode. Arch. Electr. Eng. 2020, 69, 739–750.
15. Lopes, W.F.; Martins, M.L.d.S.; Converti, A.; Siqueira, H.V.; Illa Font, C.H. Experimental Evaluation of a 2 kW/100 kHz DC–DC Bidirectional Converter Based on a C´ uk Converter Using a Voltage-Doubler Concept. Energies 2024, 17, 362. [CrossRef]
16. Alvarez-Diazcomas, A.; Rodríguez-Reséndiz, J.; Carrillo-Serrano, R.V.; Estévez-Bén, A.A.; Álvarez-Alvarado, J.M. A Critical Comparison of the C´ uk and the Sheppard–Taylor Converter. World Electr. Veh. J. 2023, 14, 148. [CrossRef]
17. Mahafzah, K.A.; Al-Shetwi, A.Q.; Hannan, M.A.; Babu, T.S.; Nwulu, N. A New C´ uk-Based DC-DC Converter with Improved Efficiency and Lower Rated Voltage of Coupling Capacitor. Sustainability 2023, 15, 8515. [CrossRef]
18. Wang, B.; Tang,W. A New CUK-Based Z-Source Inverter. Electronics 2018, 7, 14. [CrossRef]
19. Taghizadegan Kalantari, N.; Ghabeli Sani, S.; Sarsabahi, Y. Implementation and design of an interleaved C´ uk converter with selective input current ripple elimination capability. Int. J. Circuit Theory Appl. 2021, 49, 1743–1756. [CrossRef]
20. Moradisizkoohi, H.; Elsayad, N.; Mohammed, O.A. An Integrated Interleaved Ultrahigh Step-Up DC–DC Converter Using Dual Cross-Coupled Inductors With Built-In Input Current Balancing for Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 644–657. [CrossRef]
21. Robles-Campos, H.R.; Rosas-Caro, J.C.; Valderrabano-Gonzalez, A.; Posada, J. Improved interleaved C´ uk power converter. In Proceedings of the 2023 IEEEWorkshop on Power Electronics and Power Quality Applications (PEPQA), Cali, Colombia, 5–6 October 2023; pp. 1–6.
22. Erickson, R.W.; Maksimovi´c, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer: Boston, MA, USA, 2004.
23. Mohan, N. Power Electronics: A First Course; JohnWiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–270.
24. Rashid, M. Power Electronics Handbook; Elsevier: Amsterdan, The Netherlands, 2011. 25. Simscape Toolbox Release R2022b. Matlab; The MathWorks Inc.: Natick, MA, USA, 2023.
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/16ab1eba-3f4a-452b-a7ec-033dae96f86e/download
https://red.uao.edu.co/bitstreams/689e1754-fa40-4046-a2ba-64e13cb3aa43/download
https://red.uao.edu.co/bitstreams/99ba9b73-3553-419a-b51e-81725ea28b5f/download
https://red.uao.edu.co/bitstreams/f6b4bf2a-c9af-4933-8362-66b101437219/download
bitstream.checksum.fl_str_mv 03b22164b0face1377f69ded09cbfee1
6987b791264a2b5525252450f99b10d1
7835be52c3ff806da2a5407be775120b
4b4b6f720c5370610921be0482154767
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053394938036224
spelling Posada Contreras, Johnnyvirtual::6073-1Robles-Campos, Hector R.Rosas-Caro, Julio C.Valderrabano-González, Antonio2025-07-04T19:20:48Z2025-07-04T19:20:48Z2024Posada Contreras, J.; Robles-Campos, H. R.; Rosas-Caro, J. C. y Valderrabano-González, A. (2024). A single-output-filter double dual ćuk converter. Electronics, 13(10). https://doi.org/10.3390/electronics1310183820799292https://hdl.handle.net/10614/16202https://doi.org/10.3390/electronics13101838Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Este estudio presenta una versión innovadora de un convertidor recientemente estudiado. Se estudió recientemente un convertidor doble Ćuk dual con ventajas como la posibilidad de diseñarlo para lograr una baja ondulación de la corriente de entrada. El convertidor propuesto, denominado convertidor doble Ćuk dual mejorado, mantiene las ventajas del anterior y se caracteriza por requerir un condensador e inductor menos que su predecesor. Esto permite abordar el reto de optimizar la topología para reducir el número de componentes sin comprometer el funcionamiento. Este trabajo propone una metodología de diseño eficiente basada en el análisis teórico y la validación experimental. Los resultados demuestran que la topología mejorada no solo conserva las ventajas de la versión anterior, como la alta eficiencia y robustez, sino que también mejora la densidad de potencia al reducir el número de componentes. Estos avances abren nuevas posibilidades para aplicaciones que requieren convertidores de potencia compactos y eficientes, como sistemas de energía renovable, vehículos eléctricos y sistemas de suministro de energía portátiles. Este trabajo subraya la importancia de la innovación continua en el diseño de convertidores de potencia y sienta las bases para futuras investigaciones destinadas a optimizar las topologías de los convertidores. Se presenta una descripción detallada de los principios operativos y el modelado del convertidor. Además, se comparten los resultados de la simulación, que destacan las diferencias en la duración del estado estacionario, la tensión de salida, la ondulación de la corriente de entrada y la eficiencia operativa. También se presentan los resultados de un banco de pruebas experimental para corroborar la eficacia del convertidor mejoradoThis study introduces an innovative version of a recently studied converter. A Double Dual Ćuk Converter was recently studied with advantages like the possibility of designing it for achieving a low-input current ripple. The proposed converter, called the Improved Double Dual Ćuk Converter, maintains the advantages of the former one, and it is characterized by requiring one less capacitor and inductor than its predecessor. This allows addressing the challenge of optimizing the topology to reduce component count without compromising the operation; this work proposes an efficient design methodology based on theoretical analysis and experimental validation. Results demonstrate that the improved topology not only retains the advantages of the previous version, including high efficiency and robustness, but also enhances power density by reducing the number of components. These advancements open new possibilities for applications requiring compact and efficient power converters, such as renewable energy systems, electric vehicles, and portable power supply systems. This work underscores the importance of continuous innovation in power converter design and lays the groundwork for future research aimed at optimizing converter topologies. A detailed discussion of the operating principles and modeling of the converter is provided. Furthermore, simulation outcomes highlighting differences in steady-state duration, output voltage, input current ripple, and operational efficiency are shared. The results from an experimental test bench are also presented to corroborate the efficacy of the improved converter17 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A single-output-filter double dual ćuk converterUn convertidor de doble Ćuk con filtro de salida únicaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851710113Electronics1. Badea, I.C.;S, erban, B.A.; Anasiei, I.; Mitric˘a, D.; Olaru, M.T.; Rabin, A.; Ciurdas, , M. The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies 2024, 17, 140. [CrossRef]2. Bordbari, M.J.; Nasiri, F. Networked Microgrids: A Review on Configuration, Operation, and Control Strategies. Energies 2024, 17, 715. [CrossRef]3. Marchiori, L.; Morais, M.V.; Studart, A.; Albuquerque, A.; Andrade Pais, L.; Ferreira Gomes, L.; Cavaleiro, V. Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies 2024, 17, 215. [CrossRef]4. Cárdenas Guerra, C.A.; Ospino Castro, A.J.; Peña Gallardo, R. Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region. Energies 2023, 16, 7260. [CrossRef]5. Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC-DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. [CrossRef]6. Antuna-Fiscal, C.A.; Leyva-Ramos, J.; Ortiz-Lopez, M.G.; Diaz-Saldierna, L.H. Control Scheme for a Quadratic-Based Step-Down On-Board DC/DC Converter to Be Used in Hybrid Electric Vehicles. Energies 2023, 16, 7065. [CrossRef]7. Valdez-Resendiz, J.E.; Mayo-Maldonado, J.C.; Alejo-Reyes, A.; Rosas-Caro, J.C. Double-Dual DC-DC Conversion: A Survey of Contributions, Generalization, and Systematic Generation of New Topologies. IEEE Access 2023, 11, 38913–38928. [CrossRef]8. Adamas-Pérez, H.; Ponce-Silva, M.; Mina-Antonio, J.D.; Claudio-Sánchez, A.; Rodríguez-Benítez, O. Assessment of Energy Conversion in Passive Components of Single-Phase Photovoltaic Systems Interconnected to the Grid. Electronics 2023, 12, 3341. [CrossRef]9. Kumar, M.; Yadav, V.K.; Mathuria, K.; Verma, A.K. A Soft Switched High Gain Boost Converter With Coupled Inductor for Photovoltaic Applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 827–835. [CrossRef]10. Forouzesh, M.; Shen, Y.; Yari, K.; Siwakoti, Y.P.; Blaabjerg, F. High–Efficiency High Step–Up DC–DC Converter With Dual Coupled Inductors for Grid–Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2018, 33, 5967–5982. [CrossRef]11. Walczak, M.; Bychto, L. Influence of Parasitic Resistances on the Input Resistance of Buck and Boost Converters in Maximum Power Point Tracking (MPPT) Systems. Electronics 2021, 10, 18. [CrossRef]12. Robles-Campos, H.R.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C.; Gabbar, H.A.; Babaiahgari, B. Double Dual High Step-Up Power Converter with Reduced Stored Energy. Energies 2023, 16, 3194. [CrossRef]13. Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step–Up DC–DC Converters: A Comprehensive Review of Voltage–Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [CrossRef]14. Janke, W.; Baczek, M.; Kra´sniewski, J.;Walczak, M. Large–signal input characteristics of selected DC–DC switching converters Part I. Continuous conduction mode. Arch. Electr. Eng. 2020, 69, 739–750.15. Lopes, W.F.; Martins, M.L.d.S.; Converti, A.; Siqueira, H.V.; Illa Font, C.H. Experimental Evaluation of a 2 kW/100 kHz DC–DC Bidirectional Converter Based on a C´ uk Converter Using a Voltage-Doubler Concept. Energies 2024, 17, 362. [CrossRef]16. Alvarez-Diazcomas, A.; Rodríguez-Reséndiz, J.; Carrillo-Serrano, R.V.; Estévez-Bén, A.A.; Álvarez-Alvarado, J.M. A Critical Comparison of the C´ uk and the Sheppard–Taylor Converter. World Electr. Veh. J. 2023, 14, 148. [CrossRef]17. Mahafzah, K.A.; Al-Shetwi, A.Q.; Hannan, M.A.; Babu, T.S.; Nwulu, N. A New C´ uk-Based DC-DC Converter with Improved Efficiency and Lower Rated Voltage of Coupling Capacitor. Sustainability 2023, 15, 8515. [CrossRef]18. Wang, B.; Tang,W. A New CUK-Based Z-Source Inverter. Electronics 2018, 7, 14. [CrossRef]19. Taghizadegan Kalantari, N.; Ghabeli Sani, S.; Sarsabahi, Y. Implementation and design of an interleaved C´ uk converter with selective input current ripple elimination capability. Int. J. Circuit Theory Appl. 2021, 49, 1743–1756. [CrossRef]20. Moradisizkoohi, H.; Elsayad, N.; Mohammed, O.A. An Integrated Interleaved Ultrahigh Step-Up DC–DC Converter Using Dual Cross-Coupled Inductors With Built-In Input Current Balancing for Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 644–657. [CrossRef]21. Robles-Campos, H.R.; Rosas-Caro, J.C.; Valderrabano-Gonzalez, A.; Posada, J. Improved interleaved C´ uk power converter. In Proceedings of the 2023 IEEEWorkshop on Power Electronics and Power Quality Applications (PEPQA), Cali, Colombia, 5–6 October 2023; pp. 1–6.22. Erickson, R.W.; Maksimovi´c, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer: Boston, MA, USA, 2004.23. Mohan, N. Power Electronics: A First Course; JohnWiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–270.24. Rashid, M. Power Electronics Handbook; Elsevier: Amsterdan, The Netherlands, 2011. 25. Simscape Toolbox Release R2022b. Matlab; The MathWorks Inc.: Natick, MA, USA, 2023.DC–DC power converterPWMDouble dual Ćuk converterConvertidor de potencia CC-CCPWMConvertidor doble dual ĆukComunidad generalPublication11ddcf21-b409-4913-9535-44b2a15539d0virtual::6073-111ddcf21-b409-4913-9535-44b2a15539d0virtual::6073-1https://scholar.google.com/citations?user=icvmhSkAAAAJ&hl=es&authuser=6virtual::6073-10000-0001-7576-1021virtual::6073-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000193488virtual::6073-1ORIGINALA_single-output-filter_double_dual_ćuk_converter.pdfA_single-output-filter_double_dual_ćuk_converter.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf1229510https://red.uao.edu.co/bitstreams/16ab1eba-3f4a-452b-a7ec-033dae96f86e/download03b22164b0face1377f69ded09cbfee1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/689e1754-fa40-4046-a2ba-64e13cb3aa43/download6987b791264a2b5525252450f99b10d1MD52TEXTA_single-output-filter_double_dual_ćuk_converter.pdf.txtA_single-output-filter_double_dual_ćuk_converter.pdf.txtExtracted texttext/plain40633https://red.uao.edu.co/bitstreams/99ba9b73-3553-419a-b51e-81725ea28b5f/download7835be52c3ff806da2a5407be775120bMD53THUMBNAILA_single-output-filter_double_dual_ćuk_converter.pdf.jpgA_single-output-filter_double_dual_ćuk_converter.pdf.jpgGenerated Thumbnailimage/jpeg15786https://red.uao.edu.co/bitstreams/f6b4bf2a-c9af-4933-8362-66b101437219/download4b4b6f720c5370610921be0482154767MD5410614/16202oai:red.uao.edu.co:10614/162022025-07-05 03:03:17.87https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==