Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0
El consumo de energía es un tema de interés creciente a nivel mundial. La cantidad de emisión de gases tipo invernadero que genera y la disminución significativa de los recursos renovables que se utilizan como materias primas en los sistemas de manufactura han motivado programas a nivel mundial para...
- Autores:
-
Gutiérrez Marroquín, William
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/16269
- Acceso en línea:
- https://hdl.handle.net/10614/16269
https://red.uao.edu.co/
- Palabra clave:
- Doctorado en Ingeniería
Analítica de datos
Consumo energético
Inteligencia artificial
Modelo de información
Pyme
OPC UA
Transformación digital
Data analytics
Energy consumption
Artificial intelligence
Information model
SMEs
OPC UA
Digital transformation
- Rights
- openAccess
- License
- Derechos reservados - Universidad Autónoma de Occidente, 2023
| id |
REPOUAO2_6bb8d06f1e3b7a1186a8f32bd2d8d840 |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16269 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| title |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| spellingShingle |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 Doctorado en Ingeniería Analítica de datos Consumo energético Inteligencia artificial Modelo de información Pyme OPC UA Transformación digital Data analytics Energy consumption Artificial intelligence Information model SMEs OPC UA Digital transformation |
| title_short |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| title_full |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| title_fullStr |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| title_full_unstemmed |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| title_sort |
Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0 |
| dc.creator.fl_str_mv |
Gutiérrez Marroquín, William |
| dc.contributor.advisor.none.fl_str_mv |
López Sotelo, Jesús Alfonso Ortíz, Jesús Hamilton |
| dc.contributor.author.none.fl_str_mv |
Gutiérrez Marroquín, William |
| dc.contributor.corporatename.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.contributor.jury.none.fl_str_mv |
García Melo, José Isidro Rivera Abarca, Marco Esteban |
| dc.subject.proposal.spa.fl_str_mv |
Doctorado en Ingeniería Analítica de datos Consumo energético Inteligencia artificial Modelo de información Pyme OPC UA Transformación digital |
| topic |
Doctorado en Ingeniería Analítica de datos Consumo energético Inteligencia artificial Modelo de información Pyme OPC UA Transformación digital Data analytics Energy consumption Artificial intelligence Information model SMEs OPC UA Digital transformation |
| dc.subject.proposal.eng.fl_str_mv |
Data analytics Energy consumption Artificial intelligence Information model SMEs OPC UA Digital transformation |
| description |
El consumo de energía es un tema de interés creciente a nivel mundial. La cantidad de emisión de gases tipo invernadero que genera y la disminución significativa de los recursos renovables que se utilizan como materias primas en los sistemas de manufactura han motivado programas a nivel mundial para mitigar el impacto en el uso de la energía. Los principales consumidores de energía son las fábricas, por ello, se demanda la generación de estrategias para la medición, el seguimiento y la gestión del consumo de energía. En esta tesis doctoral se implementa una plataforma que permite estimar el consumo energético mediante técnicas de inteligencia artificial, bajo el concepto de Industria 4.0, que permiten la transformación digital de la empresa de manufactura. La metodología de desarrollo de la tesis comprende las cuatro fases del ciclo PHVA: planeación, en la cual se establecen las condiciones necesarias para resolver el problema planteado y el diseño de las estrategias propuestas; implementación, en donde se elaboran todos los componentes de la propuesta de solución teniendo en cuenta las especificaciones de diseño; verificación, en la que se presenta el funcionamiento de la plataforma implementada de conformidad con las especificaciones definidas; y acción, en la cual se desarrollan actividades de validación de la propuesta implementada. La gran contribución de esta tesis es el desarrollo de una plataforma de estimación de consumos energéticos que integra un sistema automático para la adquisición de los datos del proceso industrial, en la cual la información de todos y cada uno de los dispositivos que integran la máquina o proceso industrial se adquieren en conexión directa con el equipo de control, utilizando protocolos de comunicación abiertos, aprovechando la tecnología disponible en el sistema de fabricación. El sistema de información se ha construido bajo la arquitectura RAMI, he incluye cada una de las especificaciones técnicas de los equipos que conforman la máquina o proceso industrial y abre el camino hacia su transformación digital, estableciendo así su integración vertical y horizontal, como se propone en la Industria 4.0. La implementación de un prototipo de fábrica de refrescos, en el que se integran los componentes de la plataforma de estimación de consumo energético, permite estructurar una metodología para abordar el proceso de transformación digital en una pequeña y mediana empresa. La plataforma de estimación desarrollada facilita la toma de decisiones a nivel de operación o mantenimiento en el sistema de fabricación implementado, a través de los modelos de estimación de consumo obtenidos mediante técnicas de aprendizaje automático. |
| publishDate |
2023 |
| dc.date.available.none.fl_str_mv |
2023 2025-08-19T19:14:31Z |
| dc.date.issued.none.fl_str_mv |
2023-05-16 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-19T19:14:31Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Gutiérrez Marroquín, W. (2023). Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/16269 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16269 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Gutiérrez Marroquín, W. (2023). Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/16269 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16269 https://red.uao.edu.co/ |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
[1] R. Del Pilar Castrillon and A. M. Quintero, “The energy planning according to the ISO 50001 contribute to the consolidation of a Sustainable Campus to the Universidad Autonoma de Occidente,” in IEEE ICA-ACCA 2018 - IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0 - Proceedings, 2019, doi: 10.1109/ICA-ACCA.2018.8609765. [2] A. M. Gontarz, D. Hampl, L. Weiss, y K. Wegener, “Resource Consumption Monitoring in Manufacturing Environments,” Procedia CIRP, vol. 26, pp. 264–269, 2015, doi: https://doi.org/10.1016/j.procir.2014.07.098. [3] H. Kathiriya, A. Pandya, V. Dubay, y A. Bavarva, “State of Art: Energy Efficient Protocols for Self-Powered Wireless Sensor Network in IIoT to Support Industry 4.0,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020, pp. 1311–1314, doi: 10.1109/ICRITO48877.2020.9198036. [4] O. Laayati, M. Bouzi, y A. Chebak, “Smart energy management: Energy consumption metering, monitoring and prediction for mining industry,” 2020, doi: 10.1109/ICECOCS50124.2020.9314532. [5] Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., p. 101994, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2019.08.002. [6] A. Mayr et al., “Machine Learning in Production – Potentials, Challenges and Exemplary Applications,” Procedia CIRP, vol. 86, pp. 49–54, 2019, doi: https://doi.org/10.1016/j.procir.2020.01.035. [7] Y. H. Kuo y A. Kusiak, “From data to big data in production research: the past and future trends,” Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4828–4853, 2019, doi: 10.1080/00207543.2018.1443230. [8] T. Ahmad et al., “Energetics Systems and artificial intelligence: Applications of industry 4.0,” Energy Reports, vol. 8, pp. 334–361, 2022, doi: 10.1016/j.egyr.2021.11.256. [9] E. C. W. Lou, A. Lee, y A. Welfle, “Greenhouse gases (GHG) performance of refurbishment projects – Lessons from UK higher education student accommodation case studies,” J. Clean. Prod., vol. 154, pp. 309–317, 2017, doi: 10.1016/j.jclepro.2017.03.226. 200 [10] D. Nigohosyan, A. Vutsova, y I. Vassileva, “Effectiveness and efficiency of the EU-supported energy efficiency measures for SMEs in Bulgaria in the period 2014–2020: programme design implications,” Energy Effic., vol. 14, no. 2, 2021, doi: 10.1007/s12053-021-09933-4. [11] S. Menezes, S. Creado, y R. Y. Zhong, “Smart Manufacturing Execution Systems for Small and Medium-sized Enterprises,” Procedia CIRP, vol. 72, pp. 1009–1014, 2018, doi: 10.1016/j.procir.2018.03.272. [12] D. Goerzig y T. Bauernhansl, “Enterprise Architectures for the Digital Transformation in Small and Medium-sized Enterprises,” Procedia CIRP, vol. 67, pp. 540–545, 2018, doi: 10.1016/j.procir.2017.12.257. [13] H. Haavikko, K. Kärhä, M. Hourula, y T. Palander, “Attitudes of small and medium-sized enterprises towards energy efficiency in wood procurement: A case study of stora enso in finland,” Croat. J. For. Eng., vol. 40, no. 1, pp. 107–123, 2019, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061965319&partnerID=40&md5=9f2c3ff90ef27e6ba1e84f69a9ca952c. [14] R. M. J. Olmos y A. S. Cifuentes, “Potential of Improvement of energy efficiency in Mexican’s small and medium-sized manufacturing companies, a case study,” in ECOS 2020 - Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2020, pp. 2122–2131, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095778078&partnerID=40&md5=d7f4d16589992118198b7ffd8cc06cc3. [15] Y.-H. Kuo y A. Kusiak, “From data to big data in production research: the past and future trends,” Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4828–4853, 2019, doi: 10.1080/00207543.2018.1443230. [16] A. Gaspari y G. D’Emilia, “A maintenance assessment measurement-based method for SMEs: Case study of an Italian mechanical reality,” in 17th IMEKO TC 10 and EUROLAB Virtual Conference “Global Trends in Testing, Diagnostics and Inspection for 2030,” 2020, pp. 117–122, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097709169&partnerID=40&md5=f3928b7c677c384a9c04f3cec43fed6f. [17] C. Malesios, D. De, A. Moursellas, P. K. Dey, y K. Evangelinos, “Sustainability performance analysis of small and medium sized enterprises: Criteria, methods and framework,” Socioecon. Plann. Sci., p. 100993, 2020, doi: https://doi.org/10.1016/j.seps.2020.100993. 201 [18] M.-C. Chiu y J.-Y. Chiou, “Technical service platform planning based on a company’s competitive advantage and future market trends: A case study of an IC foundry,” Comput. Ind. Eng., vol. 99, pp. 503–517, 2016, doi: https://doi.org/10.1016/j.cie.2016.02.019. [19] S. Kolla, M. Minufekr, y P. Plapper, “Deriving essential components of lean and industry 4.0 assessment model for manufacturing SMEs,” Procedia CIRP, vol. 81, pp. 753–758, 2019, doi: https://doi.org/10.1016/j.procir.2019.03.189. [20] A. Massaro, G. Mastandrea, L. D’Oriano, G. R. Rana, N. Savino, y A. Galiano, “Systems for an intelligent application of Automated Processes in industry: A case study from ‘PMI IoT Industry 4.0’ project,” in 2020 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2020 - Proceedings, 2020, pp. 21–26, doi: 10.1109/MetroInd4.0IoT48571.2020.9138231. [21] H. D. Mohammadian, “IoT-education technologies as solutions towards smes’ educational challenges and I4.0 readiness,” in IEEE Global Engineering Education Conference, EDUCON, 2020, vol. 2020-April, pp. 1674–1683, doi: 10.1109/EDUCON45650.2020.9125248. [22] R. Ricci, D. Battaglia, y P. Neirotti, “External knowledge search, opportunity recognition and industry 4.0 adoption in SMEs,” Int. J. Prod. Econ., vol. 240, 2021, doi: 10.1016/j.ijpe.2021.108234. [23] J. D. Chaves, M. I. Gallego, D. Aguilar, F. Gonzalez Perez, J. R. Vidal Medina, and E. C. Quispe, “Estimation of the Energy Saving Potentials in Foundry Industries Based on ISO 50001,” IEEE Lat. Am. Trans., vol. 18, no. 12, pp. 2155–2165, 2020, doi: 10.1109/TLA.2020.9400444. [24] S. Kotsilitis, K. Chairetakis, K. Katsari, y E. Marcoulaki, “The SUPREEMO experiment for smart monitoring for energy efficiency and predictive maintenance of electric motor systems,” in 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020, 2020, pp. 3415–3422, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110315467&partnerID=40&md5=b7d50b3b619f152f7da57c731b40c29b. [25] M. B. Purushothaman, J. Seadon, y D. Moore, “Waste reduction using lean tools in a multicultural environment,” J. Clean. Prod., vol. 265, 2020, doi: 10.1016/j.jclepro.2020.121681. 202 [26] S. Ren, J.-S. Kim, W.-S. Cho, S. Soeng, S. Kong, y K.-H. Lee, “Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI,” in 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, 2021, pp. 480–482, doi: 10.1109/ICAIIC51459.2021.9415189. [27] H. Fleischmann, J. Kohl, y J. Franke, “A reference architecture for the development of socio-cyber-physical condition monitoring systems,” 2016 11th Syst. Syst. Eng. Conf. SoSE 2016, vol. 0, 2016, doi: 10.1109/SYSOSE.2016.7542963. [28] P. Marcon et al., “The Asset Administration Shell of Operator in the Platform of Industry 4.0,” in Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018, 2019, [En línea]. Disponible en: https://scopus.proxyuao.elogim.com/inward/record.uri?eid=2-s2.0-85062693843&partnerID=40&md5=01f612494736440117d58bdb44fb8fcf. [29] K. Suri, J. Cadavid, M. Alferez, S. Dhouib, y S. Tucci-Piergiovanni, “Modeling business motivation and underlying processes for RAMI 4.0-aligned cyber-physical production systems,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–6, 2017, doi: 10.1109/ETFA.2017.8247702. [30] P. Onu y C. Mbohwa, “Industry 4.0 opportunities in manufacturing SMEs: Sustainability outlook,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.095. [31] Y. Lu y F. Ju, “Smart Manufacturing Systems based on Cyber-physical Manufacturing Services (CPMS),” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15883–15889, 2017, doi: 10.1016/j.ifacol.2017.08.2349. [32] Y. Cortés et al., “El Entorno de la Industria 4 . 0 : Implicaciones y Perspectivas Futuras Implicaciones y Perspectivas Futuras,” 2017. [33] V. Tsiatsis, S. Karnouskos, J. Höller, D. Boyle, y C. Mulligan, “Chapter 5 - Technology Fundamentals,” in Internet of Things (Second Edition), Second Edi., V. Tsiatsis, S. Karnouskos, J. Höller, D. Boyle, and C. Mulligan, Eds. Academic Press, 2019, pp. 67–126. [34] T. N. Agassi, M. Ushada, y A. Suyantohadi, “Industrial design of kansei engineering-based sensor for industry,” Manag. Prod. Eng. Rev., vol. 11, no. 1, pp. 13–22, 2020, doi: 10.24425/mper.2020.132939. 203 [35] O. Vaananen y T. Hamalainen, “LoRa-Based sensor node energy consumption with data compression,” in 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, 2021, pp. 6–11, doi: 10.1109/MetroInd4.0IoT51437.2021.9488434. [36] J. Wan et al., “Toward Dynamic Resources Management for IoT-Based Manufacturing,” no. February, pp. 52–59, 2018, doi: 10.1109/MCOM.2018.1700629. [37] F. Zezulka, P. Marcon, Z. Bradac, J. Arm, T. Benesl, y I. Vesely, “Communication Systems for Industry 4.0 and the IIoT,” IFAC-PapersOnLine, vol. 51, no. 6, pp. 150–155, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.07.145. [38] A. Casali, “¿ Qué es la Inteligencia Artificial ? ¿ Qué es la Inteligencia Artificial ?,” Researchgate, vol. 1–6, no. March, 2015, [En línea]. Disponible en: https://www.ibm.com/es-es/cloud/learn/what-is-artificial-intelligence%0Ahttps://bluumi.net/la-inteligencia-artificial/%0Ahttps://www.researchgate.net/publication/268275299_Que_es_la_Inteligencia_Artificial. [39] A. Adadi y M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI),” IEEE Access, vol. 6, pp. 52138–52160, 2018, doi: 10.1109/ACCESS.2018.2870052. [40] C. R. Tuyishime, F. Nzanywayingoma, y O. Gatera, “IoT-based Intelligent Energy Efficiency Management System for Smart Industries (IoT-IEEMS),” in 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Jul. 2021, pp. 248–254, doi: 10.1109/IAICT52856.2021.9532542. [41] M. S. Packianather, A. Davies, S. Harraden, S. Soman, y J. White, “Data Mining Techniques Applied to a Manufacturing SME,” Procedia CIRP, vol. 62, pp. 123–128, 2017, doi: 10.1016/j.procir.2016.06.120. [42] V. Terziyan, S. Gryshko, y M. Golovianko, “Patented intelligence: Cloning human decision models for Industry 4.0,” J. Manuf. Syst., vol. 48, no. November 2017, pp. 204–217, 2018, doi: 10.1016/j.jmsy.2018.04.019. [43] M. Meister, J. Beßle, A. Cviko, T. Böing, y J. Metternich, “Manufacturing Analytics for problem-solving processes in production,” Procedia CIRP, vol. 81, pp. 1–6, 2019, doi: https://doi.org/10.1016/j.procir.2019.03.001. 204 [44] Y. He, P. Wu, Y. Wang, F. Tao, y B. K. K. Hon, “An OPC UA based framework for predicting energy consumption of machine tools,” Procedia CIRP, vol. 90, pp. 568–572, 2020, doi: https://doi.org/10.1016/j.procir.2020.02.133. [45] P. Theodoropoulos, C. C. Spandonidis, N. Themelis, C. Giordamlis, y S. Fassois, “Evaluation of different deep-learning models for the prediction of a ship’s propulsion power,” J. Mar. Sci. Eng., vol. 9, no. 2, pp. 1–26, 2021, doi: 10.3390/jmse9020116. [46] B. A. Krizhevsky, I. Sutskever, y G. E. Hinton, “Cnn实际训练的,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2012. [47] J. Silva, J. C. M. Herazo, R. H. R. Millán, O. B. P. Lezama, W. B. Morgado Gamero, y N. Varela, “Early warning method for the commodity prices based on artificial neural networks: SMEs case,” in Procedia Computer Science, 2019, vol. 151, pp. 1243–1248, doi: 10.1016/j.procs.2019.04.179. [48] T. Stock y G. Seliger, “Opportunities of Sustainable Manufacturing in Industry 4.0,” Procedia CIRP, vol. 40, no. Icc, pp. 536–541, 2016, doi: 10.1016/j.procir.2016.01.129. [49] S. Mittal, M. A. Khan, D. Romero, y T. Wuest, “A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs),” J. Manuf. Syst., vol. 49, no. November, pp. 194–214, 2018, doi: 10.1016/j.jmsy.2018.10.005. [50] M. L. Quevedo, J. S. Santoyo Díaz, y N. E. Ochoa Guevara, “Software libre para implementar soluciones de almacenamiento privado en la nube,” Inge Cuc, vol. 14, no. 2, pp. 71–80, 2018, doi: 10.17981/ingecuc.14.2.2018.07. [51] F. Fava, L. Gardossi, P. Brigidi, P. Morone, D. A. R. Carosi, y A. Lenzi, “The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country,” N. Biotechnol., vol. 61, pp. 124–136, 2021, doi: https://doi.org/10.1016/j.nbt.2020.11.009. [52] P. Mengal et al., “Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe,” N. Biotechnol., vol. 40, pp. 31–39, 2018, doi: https://doi.org/10.1016/j.nbt.2017.06.002. [53] C. A. T. Romero, D. F. Castro, J. H. Ortiz, O. I. Khalaf, y M. A. Vargas, “Synergy between circular economy and industry 4.0: A literature review,” Sustain., vol. 13, no. 8, pp. 1–18, 2021, doi: 10.3390/su13084331. 205 [54] J. Hicking, V. Zeller, y G. Schuh, Goal-oriented approach to enable new business models for SME using smart products, vol. 540. 2018. [55] F. Simetinger y J. Basl, “A pilot study: An assessment of manufacturing SMEs using a new Industry 4.0 Maturity Model for Manufacturing Small- and Middle-sized Enterprises (I4MMSME),” Procedia Comput. Sci., vol. 200, pp. 1068–1077, 2022, doi: https://doi.org/10.1016/j.procs.2022.01.306. [56] A. Villa y T. Taurino, “SME innovation and development in the context of industry 4.0,” Procedia Manuf., vol. 39, pp. 1415–1420, 2019, doi: 10.1016/j.promfg.2020.01.311. [57] F. Imran, K. Shahzad, A. Butt, y J. Kantola, “Digital Transformation of Industrial Organizations: Toward an Integrated Framework,” Journal of Change Management, vol. 21, no. 4. pp. 451–479, 2021, doi: 10.1080/14697017.2021.1929406. [58] D. Bamunuarachchi, D. Georgakopoulos, A. Banerjee, y P. P. Jayaraman, “Digital twins supporting efficient digital industrial transformation,” Sensors, vol. 21, no. 20. 2021, doi: 10.3390/s21206829. [59] N. T. Dung, N. M. Tri, y L. N. Minh, “Digital transformation meets national development requirements,” Linguist. Cult. Rev., vol. 5, no. S2, pp. 892–905, 2021, doi: 10.21744/lingcure.v5ns2.1536. [60] S. H. Bonilla, H. R. O. Silva, M. T. da Silva, R. F. Gonçalves, y J. B. Sacomano, “Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges,” Sustain., vol. 10, no. 10, 2018, doi: 10.3390/su10103740. [61] C. Huemer et al., “Interoperability and Integration in Future Production Systems,” in 2018 IEEE 20th Conference on Business Informatics (CBI), 2018, vol. 02, pp. 175–177, doi: 10.1109/CBI.2018.10067. [62] R. Pribiš, L. Beňo, y P. Drahoš, “Implementation of Micro embedded OPC Unified Architecture server-client,” IFAC-PapersOnLine, vol. 52, no. 27, pp. 114–120, 2019, doi: https://doi.org/10.1016/j.ifacol.2019.12.742. [63] Y. S. Yoo, S. H. S. Newaz, y I. W. Lee, “Developing a Real-time OPC UA based Aggregated Monitoring System for Small-scale Distributed Energy Resources among Microgrids,” Int. Conf. ICT Converg., vol. 2021-Octob, pp. 1470–1473, 2021, doi: 10.1109/ICTC52510.2021.9620859. 206 [64] A. Sidorenko, M. Volkmann, W. Motsch, A. Wagner, y M. Ruskowski, “An OPC UA Model of the Skill Execution Interaction Protocol for the Active Asset Administration Shell,” Procedia Manuf., vol. 55, pp. 191–199, 2021, doi: https://doi.org/10.1016/j.promfg.2021.10.027. [65] Z. Jiang, Y. Chang, y X. Liu, “Design of software-defined gateway for industrial interconnection,” J. Ind. Inf. Integr., vol. 18, p. 100130, 2020, doi: https://doi.org/10.1016/j.jii.2020.100130. [66] F. Kastner, B. Jansen, S. Schwanewilms, y M. Hubner, “A rapid control prototyping platform methodology for decentralized automation,” Conf. Des. Archit. Signal Image Process. DASIP, vol. 2017-Septe, pp. 1–2, 2017, doi: 10.1109/DASIP.2017.8122125. [67] D. Mourtzis, N. Milas, y A. Vlachou, “An Internet of Things-Based Monitoring System for Shop-Floor Control,” J. Comput. Inf. Sci. Eng., vol. 18, no. 2, Jun. 2018, doi: 10.1115/1.4039429. [68] S. P. Muniraj y X. Xu, “An Implementation of OPC UA for Machine-to-Machine Communications in a Smart Factory,” Procedia Manuf., vol. 53, pp. 52–58, 2021, doi: https://doi.org/10.1016/j.promfg.2021.06.009. [69] P. Marcon et al., “The Asset Administration Shell of Operator in the Platform of Industry 4.0,” Proc. 2018 18th Int. Conf. Mechatronics - Mechatronika, ME 2018, 2019. [70] IEEE, “IEEE 62890: Standard for Modeling and Simulation of Electric Power Distribution Systems.” IEE, New York, NY, USA, 2018. [71] G. J. Hahn, “Industry 4.0: a supply chain innovation perspective,” Int. J. Prod. Res., vol. 58, no. 5, pp. 1425–1441, 2020, doi: 10.1080/00207543.2019.1641642. [72] T. Burns, J. Cosgrove, y F. Doyle, “A Review of Interoperability Standards for Industry 4.0.,” Procedia Manuf., vol. 38, pp. 646–653, 2019, doi: https://doi.org/10.1016/j.promfg.2020.01.083. [73] Y. S. Akil, H. Miyauchi, S. Mangngenre, y K. Amar, “Preliminary Analysis of Electricity Energy Efficiency in SMEs,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 885, no. 1, doi: 10.1088/1757-899X/885/1/012048. 207 [74] C. Brandoni, F. Polonara, G. Ciriachi, y B. Marchetti, “Employment impact of renewable energy generation on sustainable communities,” in Proceedings of the Summer School Francesco Turco, 2013, vol. 11-13-Sept, pp. 346–351, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982987992&partnerID=40&md5=188bc6e1ef9327849929352d38aea78f. [75] British Standards Institution, “Energy management systems : Requirements with guidance for use.” Geneva, Switzerland, p. 22, 2012. [76] M. H. Song y M. Fischer, “Daily plan-do-check-act (PDCA) cycles with level of development (LOD) 400 objects for foremen,” Adv. Eng. Informatics, vol. 44, no. February, 2020, doi: 10.1016/j.aei.2020.101091. [77] P. Rosa, C. Sassanelli, A. Urbinati, D. Chiaroni, y S. Terzi, “Assessing relations between Circular Economy and Industry 4.0: a systematic literature review,” Int. J. Prod. Res., vol. 58, no. 6, pp. 1662–1687, 2020, doi: 10.1080/00207543.2019.1680896. [78] A. Ruiz Sierra et al., “The bio-based industries joint undertaking: A high impact initiative that is transforming the bio-based industries in Europe,” N. Biotechnol., vol. 60, pp. 105–112, 2021, doi: https://doi.org/10.1016/j.nbt.2020.09.003. [79] D. Ulas, “Digital Transformation Process and SMEs,” Procedia Comput. Sci., vol. 158, pp. 662–671, 2019, doi: 10.1016/j.procs.2019.09.101. [80] C. Berger, A. Hees, S. Braunreuther, y G. Reinhart, “Characterization of Cyber-Physical Sensor Systems,” Procedia CIRP, vol. 41, pp. 638–643, 2016, doi: https://doi.org/10.1016/j.procir.2015.12.019. [81] J.-Y. Chen, K.-C. Tai, y G.-C. Chen, “Application of Programmable Logic Controller to Build-up an Intelligent Industry 4.0 Platform,” in Procedia CIRP, 2017, vol. 63, pp. 150–155, doi: 10.1016/j.procir.2017.03.116. [82] “IEC” International Electrotechnical Commission, “IEC 61131: Programming languages for programmable controllers," IEC".” Geneva, Switzerland, 1993. [83] P. Mazur, M. Chmiel, y R. Czerwinski, “Central processing unit of IEC 61131-3-based PLC,” IFAC-PapersOnLine, vol. 49, no. 25, pp. 454–459, 2016, doi: 10.1016/j.ifacol.2016.12.061. 208 [84] C. Faller y M. Höftmann, “Service-oriented communication model for cyber-physical-production-systems,” Procedia CIRP, vol. 67, pp. 156–161, 2018, doi: https://doi.org/10.1016/j.procir.2017.12.192. [85] M. de A. y D. Sostenible, “NTC 5001: Eficiencia energética en edificios - Requisitos técnicos para la construcción, rehabilitación y mantenimiento de edificios," Ministerio de Ambiente y Desarrollo Sostenible.” Bogotá, Colombia, 2018. [86] I. E. Commission, “Electromagnetic compatibility (EMC) Part 4-30: Testing and measurement techniques Power quality measurement methods,” IEC Standard, vol. 61000-4–30. Geneva, Switzerland, 2003. [87] W. Murray, M. Adonis, y A. Raji, “Voltage control in future electrical distribution networks,” Renew. Sustain. Energy Rev., vol. 146, p. 111100, 2021, doi: https://doi.org/10.1016/j.rser.2021.111100. [88] W. M. Mohammed, B. R. Ferrer, U. Iftikhar, J. L. M. Lastra, y J. H. Simarro, “Supporting a Cloud Platform with Streams of Factory Shop Floor Data in the Context of the Intustry 4.0,” in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 2018, pp. 786–791, doi: 10.1109/INDIN.2018.8471981. [89] (IEC) International Electrotechnical Commission, “IEC 62264-3: Enterprise-control system integration - Part 3: Reference model.” Geneva, Switzerland, 2005. [90] BSI Group., “Functional safety : safety instrumented systems for the process industry sector. Part 1, Framework, definitions, system, hardware and software requirements.” Geneva, Switzerland, p. 84, 2003. [91] A. Lopez, E. Estevez, O. Casquero, y M. Marcos, “Using industrial standards for modeling flexible manufacturing systems,” in Proceedings - 2020 IEEE Conference on Industrial Cyberphysical Systems, ICPS 2020, 2020, pp. 41–46, doi: 10.1109/ICPS48405.2020.9274785. [92] A. Garcia, X. Oregui, U. Arrieta, y I. Valverde, “Methodology and Tools to Integrate Industry 4.0 CPS into Process Design and Management: ISA-88 Use Case,” Inf., vol. 13, no. 5, 2022, doi: 10.3390/info13050226. [93] L. Novais, J. M. Maqueira, y Á. Ortiz-Bas, “A systematic literature review of cloud computing use in supply chain integration,” Comput. Ind. Eng., vol. 129, pp. 296–314, 2019, doi: https://doi.org/10.1016/j.cie.2019.01.056. 209 [94] J. Zhang, C. Deng, P. Zheng, X. Xu, y Z. Ma, “Development of an edge computing-based cyber-physical machine tool,” Robot. Comput. Integr. Manuf., vol. 67, p. 102042, 2021, doi: https://doi.org/10.1016/j.rcim.2020.102042. [95] Z. Huang, J. Kim, A. Sadri, S. Dowey, y M. S. Dargusch, “Industry 4.0: Development of a multi-agent system for dynamic value stream mapping in SMEs,” J. Manuf. Syst., vol. 52, pp. 1–12, 2019, doi: https://doi.org/10.1016/j.jmsy.2019.05.001. [96] F. Pethig, O. Niggemann, y A. Walter, “Towards Industrie 4.0 compliant configuration of condition monitoring services,” in Proceedings - 2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017, 2017, pp. 271–276, doi: 10.1109/INDIN.2017.8104783. [97] M. Fahmideh y G. Beydoun, “Big data analytics architecture design—An application in manufacturing systems,” Comput. Ind. Eng., vol. 128, no. xxxx, pp. 948–963, 2019, doi: 10.1016/j.cie.2018.08.004. [98] B. R. Ferrer, W. M. Mohammed, E. Chen, y J. L. M. Lastra, “Connecting web-based IoT devices to a cloud-based manufacturing platform,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 8628–8633, doi: 10.1109/IECON.2017.8217516. [99] I. Althomali, G. M. Kapfhammer, y P. McMinn, “Automated visual classification of DOM-based presentation failure reports for responsive web pages,” Softw. Test. Verif. Reliab., vol. 31, no. 4, pp. 1–50, 2021, doi: 10.1002/stvr.1756. [100] M. Web Docs, “Tecnología para desarrolladores web,” MDN Web Docs, 2021. https://developer.mozilla.org/es/docs/Web. |
| dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2023 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.spax.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
321 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingeniería |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Ciencias Básicas |
| dc.publisher.place.spa.fl_str_mv |
Cali |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/d21b5aa8-54fe-4493-a026-d858b14403bb/download https://red.uao.edu.co/bitstreams/94d9dc59-ad21-4d9c-a418-7570a887d5b5/download https://red.uao.edu.co/bitstreams/ba82297b-1b1f-497b-b964-4bec5d32b5e4/download https://red.uao.edu.co/bitstreams/bca9b059-42ca-45d1-89f3-328db605f947/download https://red.uao.edu.co/bitstreams/a74e9c69-0ee1-40ff-88a6-1b5e5d4cf4d6/download https://red.uao.edu.co/bitstreams/c388c4a5-cbf6-4c3a-8478-0ec9ad154400/download https://red.uao.edu.co/bitstreams/cebd1ecd-a30b-47cc-8180-d32aa9b64fe5/download https://red.uao.edu.co/bitstreams/3905fcf5-ce7a-438e-be70-5467b6f74a28/download https://red.uao.edu.co/bitstreams/27559763-e60b-40a1-85af-deb5dd9187a7/download https://red.uao.edu.co/bitstreams/691b0fb9-dba1-4c06-8a56-53535971d476/download |
| bitstream.checksum.fl_str_mv |
6987b791264a2b5525252450f99b10d1 700ee956633f1905a722ee9020a537af a6f015ef4fc11c99b2cd971141c4d713 35332ed8046a1eebd0e626d80bf733b4 a2cfe012c2c45a8040c6eab0a9bacf76 f23eb32a20a417b1f4c2ccf28a141b95 5bcf8efbeedf46970e79b960660e6773 24b4f3601dea24d95c0668bc5a14d555 ae48508ff16251e936f415e90ff8e55f b99f77504e83855de4e9acc3cc88371c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053218495201280 |
| spelling |
López Sotelo, Jesús Alfonsovirtual::6257-1Ortíz, Jesús HamiltonGutiérrez Marroquín, WilliamUniversidad Autónoma de OccidenteGarcía Melo, José IsidroRivera Abarca, Marco Esteban2025-08-19T19:14:31Z20232025-08-19T19:14:31Z2023-05-16Gutiérrez Marroquín, W. (2023). Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/16269https://hdl.handle.net/10614/16269Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/El consumo de energía es un tema de interés creciente a nivel mundial. La cantidad de emisión de gases tipo invernadero que genera y la disminución significativa de los recursos renovables que se utilizan como materias primas en los sistemas de manufactura han motivado programas a nivel mundial para mitigar el impacto en el uso de la energía. Los principales consumidores de energía son las fábricas, por ello, se demanda la generación de estrategias para la medición, el seguimiento y la gestión del consumo de energía. En esta tesis doctoral se implementa una plataforma que permite estimar el consumo energético mediante técnicas de inteligencia artificial, bajo el concepto de Industria 4.0, que permiten la transformación digital de la empresa de manufactura. La metodología de desarrollo de la tesis comprende las cuatro fases del ciclo PHVA: planeación, en la cual se establecen las condiciones necesarias para resolver el problema planteado y el diseño de las estrategias propuestas; implementación, en donde se elaboran todos los componentes de la propuesta de solución teniendo en cuenta las especificaciones de diseño; verificación, en la que se presenta el funcionamiento de la plataforma implementada de conformidad con las especificaciones definidas; y acción, en la cual se desarrollan actividades de validación de la propuesta implementada. La gran contribución de esta tesis es el desarrollo de una plataforma de estimación de consumos energéticos que integra un sistema automático para la adquisición de los datos del proceso industrial, en la cual la información de todos y cada uno de los dispositivos que integran la máquina o proceso industrial se adquieren en conexión directa con el equipo de control, utilizando protocolos de comunicación abiertos, aprovechando la tecnología disponible en el sistema de fabricación. El sistema de información se ha construido bajo la arquitectura RAMI, he incluye cada una de las especificaciones técnicas de los equipos que conforman la máquina o proceso industrial y abre el camino hacia su transformación digital, estableciendo así su integración vertical y horizontal, como se propone en la Industria 4.0. La implementación de un prototipo de fábrica de refrescos, en el que se integran los componentes de la plataforma de estimación de consumo energético, permite estructurar una metodología para abordar el proceso de transformación digital en una pequeña y mediana empresa. La plataforma de estimación desarrollada facilita la toma de decisiones a nivel de operación o mantenimiento en el sistema de fabricación implementado, a través de los modelos de estimación de consumo obtenidos mediante técnicas de aprendizaje automático.Energy consumption is a topic of growing interest worldwide. The amount of greenhouse gas emissions it generates and the significant decreasing in renewable resources, which are used as raw materials in manufacturing systems, have motivated worldwide programs to mitigate the impact on energy use. Main consumers of energy are the factories; therefore, the generation of strategies for the measurement, monitoring and management of energy consumption is required. In this doctoral thesis, it is implemented a platform that allows estimating energy consumption through artificial intelligence techniques, under the Industry 4.0 concept, allowing the digital transformation of the manufacturing companies. The thesis development methodology comprises the four phases of the PDCA cycle: planning, in which the necessary conditions to solve the problem and design the proposed strategies are established; doing (implementation), where the components of the solution proposal are elaborated according to the design specifications; checking, in which the operation of the implemented platform is presented in accordance with the defined specifications; and action, where validation activities of the implemented proposal are developed. Major contribution of this thesis is the development of an energy consumption estimation platform that integrates an automatic system for the acquisition of industrial process data which the information of each and every one of the devices that make up the machine or industrial process are acquired in direct connection with the control equipment by using open communication protocols, taking advantage of the technology available in the manufacturing system. The information system has been built under the RAMI architecture, which includes each of the technical specifications of the equipment that makes up the machine or industrial process and allows opening the way towards its digital transformation, thus establishing its vertical and horizontal integration, the way it is proposed by Industry 4.0. The implementation of a soft drink factory prototype, in which the components of the energy consumption estimation platform are integrated, makes it possible to structure a methodology to address the digital transformation process in a small and medium-sized company. The developed estimation platform facilitates decision-making at the operation or maintenance level in the implemented manufacturing system, through consumption estimation models obtained through automatic learning techniquesTesis (Doctor en Ingeniería)-- Universidad Autónoma de Occidente, 2023DoctoradoDoctor(a) en Ingeniería321 páginasapplication/pdfspaUniversidad Autónoma de OccidenteDoctorado en IngenieríaFacultad de Ingeniería y Ciencias BásicasCaliDerechos reservados - Universidad Autónoma de Occidente, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto de la industria 4.0Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] R. Del Pilar Castrillon and A. M. Quintero, “The energy planning according to the ISO 50001 contribute to the consolidation of a Sustainable Campus to the Universidad Autonoma de Occidente,” in IEEE ICA-ACCA 2018 - IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0 - Proceedings, 2019, doi: 10.1109/ICA-ACCA.2018.8609765.[2] A. M. Gontarz, D. Hampl, L. Weiss, y K. Wegener, “Resource Consumption Monitoring in Manufacturing Environments,” Procedia CIRP, vol. 26, pp. 264–269, 2015, doi: https://doi.org/10.1016/j.procir.2014.07.098.[3] H. Kathiriya, A. Pandya, V. Dubay, y A. Bavarva, “State of Art: Energy Efficient Protocols for Self-Powered Wireless Sensor Network in IIoT to Support Industry 4.0,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020, pp. 1311–1314, doi: 10.1109/ICRITO48877.2020.9198036.[4] O. Laayati, M. Bouzi, y A. Chebak, “Smart energy management: Energy consumption metering, monitoring and prediction for mining industry,” 2020, doi: 10.1109/ICECOCS50124.2020.9314532.[5] Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., p. 101994, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2019.08.002.[6] A. Mayr et al., “Machine Learning in Production – Potentials, Challenges and Exemplary Applications,” Procedia CIRP, vol. 86, pp. 49–54, 2019, doi: https://doi.org/10.1016/j.procir.2020.01.035.[7] Y. H. Kuo y A. Kusiak, “From data to big data in production research: the past and future trends,” Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4828–4853, 2019, doi: 10.1080/00207543.2018.1443230.[8] T. Ahmad et al., “Energetics Systems and artificial intelligence: Applications of industry 4.0,” Energy Reports, vol. 8, pp. 334–361, 2022, doi: 10.1016/j.egyr.2021.11.256.[9] E. C. W. Lou, A. Lee, y A. Welfle, “Greenhouse gases (GHG) performance of refurbishment projects – Lessons from UK higher education student accommodation case studies,” J. Clean. Prod., vol. 154, pp. 309–317, 2017, doi: 10.1016/j.jclepro.2017.03.226. 200[10] D. Nigohosyan, A. Vutsova, y I. Vassileva, “Effectiveness and efficiency of the EU-supported energy efficiency measures for SMEs in Bulgaria in the period 2014–2020: programme design implications,” Energy Effic., vol. 14, no. 2, 2021, doi: 10.1007/s12053-021-09933-4.[11] S. Menezes, S. Creado, y R. Y. Zhong, “Smart Manufacturing Execution Systems for Small and Medium-sized Enterprises,” Procedia CIRP, vol. 72, pp. 1009–1014, 2018, doi: 10.1016/j.procir.2018.03.272.[12] D. Goerzig y T. Bauernhansl, “Enterprise Architectures for the Digital Transformation in Small and Medium-sized Enterprises,” Procedia CIRP, vol. 67, pp. 540–545, 2018, doi: 10.1016/j.procir.2017.12.257.[13] H. Haavikko, K. Kärhä, M. Hourula, y T. Palander, “Attitudes of small and medium-sized enterprises towards energy efficiency in wood procurement: A case study of stora enso in finland,” Croat. J. For. Eng., vol. 40, no. 1, pp. 107–123, 2019, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061965319&partnerID=40&md5=9f2c3ff90ef27e6ba1e84f69a9ca952c.[14] R. M. J. Olmos y A. S. Cifuentes, “Potential of Improvement of energy efficiency in Mexican’s small and medium-sized manufacturing companies, a case study,” in ECOS 2020 - Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2020, pp. 2122–2131, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095778078&partnerID=40&md5=d7f4d16589992118198b7ffd8cc06cc3.[15] Y.-H. Kuo y A. Kusiak, “From data to big data in production research: the past and future trends,” Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4828–4853, 2019, doi: 10.1080/00207543.2018.1443230.[16] A. Gaspari y G. D’Emilia, “A maintenance assessment measurement-based method for SMEs: Case study of an Italian mechanical reality,” in 17th IMEKO TC 10 and EUROLAB Virtual Conference “Global Trends in Testing, Diagnostics and Inspection for 2030,” 2020, pp. 117–122, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097709169&partnerID=40&md5=f3928b7c677c384a9c04f3cec43fed6f.[17] C. Malesios, D. De, A. Moursellas, P. K. Dey, y K. Evangelinos, “Sustainability performance analysis of small and medium sized enterprises: Criteria, methods and framework,” Socioecon. Plann. Sci., p. 100993, 2020, doi: https://doi.org/10.1016/j.seps.2020.100993. 201[18] M.-C. Chiu y J.-Y. Chiou, “Technical service platform planning based on a company’s competitive advantage and future market trends: A case study of an IC foundry,” Comput. Ind. Eng., vol. 99, pp. 503–517, 2016, doi: https://doi.org/10.1016/j.cie.2016.02.019.[19] S. Kolla, M. Minufekr, y P. Plapper, “Deriving essential components of lean and industry 4.0 assessment model for manufacturing SMEs,” Procedia CIRP, vol. 81, pp. 753–758, 2019, doi: https://doi.org/10.1016/j.procir.2019.03.189.[20] A. Massaro, G. Mastandrea, L. D’Oriano, G. R. Rana, N. Savino, y A. Galiano, “Systems for an intelligent application of Automated Processes in industry: A case study from ‘PMI IoT Industry 4.0’ project,” in 2020 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2020 - Proceedings, 2020, pp. 21–26, doi: 10.1109/MetroInd4.0IoT48571.2020.9138231.[21] H. D. Mohammadian, “IoT-education technologies as solutions towards smes’ educational challenges and I4.0 readiness,” in IEEE Global Engineering Education Conference, EDUCON, 2020, vol. 2020-April, pp. 1674–1683, doi: 10.1109/EDUCON45650.2020.9125248.[22] R. Ricci, D. Battaglia, y P. Neirotti, “External knowledge search, opportunity recognition and industry 4.0 adoption in SMEs,” Int. J. Prod. Econ., vol. 240, 2021, doi: 10.1016/j.ijpe.2021.108234.[23] J. D. Chaves, M. I. Gallego, D. Aguilar, F. Gonzalez Perez, J. R. Vidal Medina, and E. C. Quispe, “Estimation of the Energy Saving Potentials in Foundry Industries Based on ISO 50001,” IEEE Lat. Am. Trans., vol. 18, no. 12, pp. 2155–2165, 2020, doi: 10.1109/TLA.2020.9400444.[24] S. Kotsilitis, K. Chairetakis, K. Katsari, y E. Marcoulaki, “The SUPREEMO experiment for smart monitoring for energy efficiency and predictive maintenance of electric motor systems,” in 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020, 2020, pp. 3415–3422, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110315467&partnerID=40&md5=b7d50b3b619f152f7da57c731b40c29b.[25] M. B. Purushothaman, J. Seadon, y D. Moore, “Waste reduction using lean tools in a multicultural environment,” J. Clean. Prod., vol. 265, 2020, doi: 10.1016/j.jclepro.2020.121681. 202[26] S. Ren, J.-S. Kim, W.-S. Cho, S. Soeng, S. Kong, y K.-H. Lee, “Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI,” in 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, 2021, pp. 480–482, doi: 10.1109/ICAIIC51459.2021.9415189.[27] H. Fleischmann, J. Kohl, y J. Franke, “A reference architecture for the development of socio-cyber-physical condition monitoring systems,” 2016 11th Syst. Syst. Eng. Conf. SoSE 2016, vol. 0, 2016, doi: 10.1109/SYSOSE.2016.7542963.[28] P. Marcon et al., “The Asset Administration Shell of Operator in the Platform of Industry 4.0,” in Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018, 2019, [En línea]. Disponible en: https://scopus.proxyuao.elogim.com/inward/record.uri?eid=2-s2.0-85062693843&partnerID=40&md5=01f612494736440117d58bdb44fb8fcf.[29] K. Suri, J. Cadavid, M. Alferez, S. Dhouib, y S. Tucci-Piergiovanni, “Modeling business motivation and underlying processes for RAMI 4.0-aligned cyber-physical production systems,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–6, 2017, doi: 10.1109/ETFA.2017.8247702.[30] P. Onu y C. Mbohwa, “Industry 4.0 opportunities in manufacturing SMEs: Sustainability outlook,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.095.[31] Y. Lu y F. Ju, “Smart Manufacturing Systems based on Cyber-physical Manufacturing Services (CPMS),” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15883–15889, 2017, doi: 10.1016/j.ifacol.2017.08.2349.[32] Y. Cortés et al., “El Entorno de la Industria 4 . 0 : Implicaciones y Perspectivas Futuras Implicaciones y Perspectivas Futuras,” 2017.[33] V. Tsiatsis, S. Karnouskos, J. Höller, D. Boyle, y C. Mulligan, “Chapter 5 - Technology Fundamentals,” in Internet of Things (Second Edition), Second Edi., V. Tsiatsis, S. Karnouskos, J. Höller, D. Boyle, and C. Mulligan, Eds. Academic Press, 2019, pp. 67–126.[34] T. N. Agassi, M. Ushada, y A. Suyantohadi, “Industrial design of kansei engineering-based sensor for industry,” Manag. Prod. Eng. Rev., vol. 11, no. 1, pp. 13–22, 2020, doi: 10.24425/mper.2020.132939. 203[35] O. Vaananen y T. Hamalainen, “LoRa-Based sensor node energy consumption with data compression,” in 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, 2021, pp. 6–11, doi: 10.1109/MetroInd4.0IoT51437.2021.9488434.[36] J. Wan et al., “Toward Dynamic Resources Management for IoT-Based Manufacturing,” no. February, pp. 52–59, 2018, doi: 10.1109/MCOM.2018.1700629.[37] F. Zezulka, P. Marcon, Z. Bradac, J. Arm, T. Benesl, y I. Vesely, “Communication Systems for Industry 4.0 and the IIoT,” IFAC-PapersOnLine, vol. 51, no. 6, pp. 150–155, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.07.145.[38] A. Casali, “¿ Qué es la Inteligencia Artificial ? ¿ Qué es la Inteligencia Artificial ?,” Researchgate, vol. 1–6, no. March, 2015, [En línea]. Disponible en: https://www.ibm.com/es-es/cloud/learn/what-is-artificial-intelligence%0Ahttps://bluumi.net/la-inteligencia-artificial/%0Ahttps://www.researchgate.net/publication/268275299_Que_es_la_Inteligencia_Artificial.[39] A. Adadi y M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI),” IEEE Access, vol. 6, pp. 52138–52160, 2018, doi: 10.1109/ACCESS.2018.2870052.[40] C. R. Tuyishime, F. Nzanywayingoma, y O. Gatera, “IoT-based Intelligent Energy Efficiency Management System for Smart Industries (IoT-IEEMS),” in 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Jul. 2021, pp. 248–254, doi: 10.1109/IAICT52856.2021.9532542.[41] M. S. Packianather, A. Davies, S. Harraden, S. Soman, y J. White, “Data Mining Techniques Applied to a Manufacturing SME,” Procedia CIRP, vol. 62, pp. 123–128, 2017, doi: 10.1016/j.procir.2016.06.120.[42] V. Terziyan, S. Gryshko, y M. Golovianko, “Patented intelligence: Cloning human decision models for Industry 4.0,” J. Manuf. Syst., vol. 48, no. November 2017, pp. 204–217, 2018, doi: 10.1016/j.jmsy.2018.04.019.[43] M. Meister, J. Beßle, A. Cviko, T. Böing, y J. Metternich, “Manufacturing Analytics for problem-solving processes in production,” Procedia CIRP, vol. 81, pp. 1–6, 2019, doi: https://doi.org/10.1016/j.procir.2019.03.001. 204[44] Y. He, P. Wu, Y. Wang, F. Tao, y B. K. K. Hon, “An OPC UA based framework for predicting energy consumption of machine tools,” Procedia CIRP, vol. 90, pp. 568–572, 2020, doi: https://doi.org/10.1016/j.procir.2020.02.133.[45] P. Theodoropoulos, C. C. Spandonidis, N. Themelis, C. Giordamlis, y S. Fassois, “Evaluation of different deep-learning models for the prediction of a ship’s propulsion power,” J. Mar. Sci. Eng., vol. 9, no. 2, pp. 1–26, 2021, doi: 10.3390/jmse9020116.[46] B. A. Krizhevsky, I. Sutskever, y G. E. Hinton, “Cnn实际训练的,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2012.[47] J. Silva, J. C. M. Herazo, R. H. R. Millán, O. B. P. Lezama, W. B. Morgado Gamero, y N. Varela, “Early warning method for the commodity prices based on artificial neural networks: SMEs case,” in Procedia Computer Science, 2019, vol. 151, pp. 1243–1248, doi: 10.1016/j.procs.2019.04.179.[48] T. Stock y G. Seliger, “Opportunities of Sustainable Manufacturing in Industry 4.0,” Procedia CIRP, vol. 40, no. Icc, pp. 536–541, 2016, doi: 10.1016/j.procir.2016.01.129.[49] S. Mittal, M. A. Khan, D. Romero, y T. Wuest, “A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs),” J. Manuf. Syst., vol. 49, no. November, pp. 194–214, 2018, doi: 10.1016/j.jmsy.2018.10.005.[50] M. L. Quevedo, J. S. Santoyo Díaz, y N. E. Ochoa Guevara, “Software libre para implementar soluciones de almacenamiento privado en la nube,” Inge Cuc, vol. 14, no. 2, pp. 71–80, 2018, doi: 10.17981/ingecuc.14.2.2018.07.[51] F. Fava, L. Gardossi, P. Brigidi, P. Morone, D. A. R. Carosi, y A. Lenzi, “The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country,” N. Biotechnol., vol. 61, pp. 124–136, 2021, doi: https://doi.org/10.1016/j.nbt.2020.11.009.[52] P. Mengal et al., “Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe,” N. Biotechnol., vol. 40, pp. 31–39, 2018, doi: https://doi.org/10.1016/j.nbt.2017.06.002.[53] C. A. T. Romero, D. F. Castro, J. H. Ortiz, O. I. Khalaf, y M. A. Vargas, “Synergy between circular economy and industry 4.0: A literature review,” Sustain., vol. 13, no. 8, pp. 1–18, 2021, doi: 10.3390/su13084331. 205[54] J. Hicking, V. Zeller, y G. Schuh, Goal-oriented approach to enable new business models for SME using smart products, vol. 540. 2018.[55] F. Simetinger y J. Basl, “A pilot study: An assessment of manufacturing SMEs using a new Industry 4.0 Maturity Model for Manufacturing Small- and Middle-sized Enterprises (I4MMSME),” Procedia Comput. Sci., vol. 200, pp. 1068–1077, 2022, doi: https://doi.org/10.1016/j.procs.2022.01.306.[56] A. Villa y T. Taurino, “SME innovation and development in the context of industry 4.0,” Procedia Manuf., vol. 39, pp. 1415–1420, 2019, doi: 10.1016/j.promfg.2020.01.311.[57] F. Imran, K. Shahzad, A. Butt, y J. Kantola, “Digital Transformation of Industrial Organizations: Toward an Integrated Framework,” Journal of Change Management, vol. 21, no. 4. pp. 451–479, 2021, doi: 10.1080/14697017.2021.1929406.[58] D. Bamunuarachchi, D. Georgakopoulos, A. Banerjee, y P. P. Jayaraman, “Digital twins supporting efficient digital industrial transformation,” Sensors, vol. 21, no. 20. 2021, doi: 10.3390/s21206829.[59] N. T. Dung, N. M. Tri, y L. N. Minh, “Digital transformation meets national development requirements,” Linguist. Cult. Rev., vol. 5, no. S2, pp. 892–905, 2021, doi: 10.21744/lingcure.v5ns2.1536.[60] S. H. Bonilla, H. R. O. Silva, M. T. da Silva, R. F. Gonçalves, y J. B. Sacomano, “Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges,” Sustain., vol. 10, no. 10, 2018, doi: 10.3390/su10103740.[61] C. Huemer et al., “Interoperability and Integration in Future Production Systems,” in 2018 IEEE 20th Conference on Business Informatics (CBI), 2018, vol. 02, pp. 175–177, doi: 10.1109/CBI.2018.10067.[62] R. Pribiš, L. Beňo, y P. Drahoš, “Implementation of Micro embedded OPC Unified Architecture server-client,” IFAC-PapersOnLine, vol. 52, no. 27, pp. 114–120, 2019, doi: https://doi.org/10.1016/j.ifacol.2019.12.742.[63] Y. S. Yoo, S. H. S. Newaz, y I. W. Lee, “Developing a Real-time OPC UA based Aggregated Monitoring System for Small-scale Distributed Energy Resources among Microgrids,” Int. Conf. ICT Converg., vol. 2021-Octob, pp. 1470–1473, 2021, doi: 10.1109/ICTC52510.2021.9620859. 206[64] A. Sidorenko, M. Volkmann, W. Motsch, A. Wagner, y M. Ruskowski, “An OPC UA Model of the Skill Execution Interaction Protocol for the Active Asset Administration Shell,” Procedia Manuf., vol. 55, pp. 191–199, 2021, doi: https://doi.org/10.1016/j.promfg.2021.10.027.[65] Z. Jiang, Y. Chang, y X. Liu, “Design of software-defined gateway for industrial interconnection,” J. Ind. Inf. Integr., vol. 18, p. 100130, 2020, doi: https://doi.org/10.1016/j.jii.2020.100130.[66] F. Kastner, B. Jansen, S. Schwanewilms, y M. Hubner, “A rapid control prototyping platform methodology for decentralized automation,” Conf. Des. Archit. Signal Image Process. DASIP, vol. 2017-Septe, pp. 1–2, 2017, doi: 10.1109/DASIP.2017.8122125.[67] D. Mourtzis, N. Milas, y A. Vlachou, “An Internet of Things-Based Monitoring System for Shop-Floor Control,” J. Comput. Inf. Sci. Eng., vol. 18, no. 2, Jun. 2018, doi: 10.1115/1.4039429.[68] S. P. Muniraj y X. Xu, “An Implementation of OPC UA for Machine-to-Machine Communications in a Smart Factory,” Procedia Manuf., vol. 53, pp. 52–58, 2021, doi: https://doi.org/10.1016/j.promfg.2021.06.009.[69] P. Marcon et al., “The Asset Administration Shell of Operator in the Platform of Industry 4.0,” Proc. 2018 18th Int. Conf. Mechatronics - Mechatronika, ME 2018, 2019.[70] IEEE, “IEEE 62890: Standard for Modeling and Simulation of Electric Power Distribution Systems.” IEE, New York, NY, USA, 2018.[71] G. J. Hahn, “Industry 4.0: a supply chain innovation perspective,” Int. J. Prod. Res., vol. 58, no. 5, pp. 1425–1441, 2020, doi: 10.1080/00207543.2019.1641642.[72] T. Burns, J. Cosgrove, y F. Doyle, “A Review of Interoperability Standards for Industry 4.0.,” Procedia Manuf., vol. 38, pp. 646–653, 2019, doi: https://doi.org/10.1016/j.promfg.2020.01.083.[73] Y. S. Akil, H. Miyauchi, S. Mangngenre, y K. Amar, “Preliminary Analysis of Electricity Energy Efficiency in SMEs,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 885, no. 1, doi: 10.1088/1757-899X/885/1/012048. 207[74] C. Brandoni, F. Polonara, G. Ciriachi, y B. Marchetti, “Employment impact of renewable energy generation on sustainable communities,” in Proceedings of the Summer School Francesco Turco, 2013, vol. 11-13-Sept, pp. 346–351, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982987992&partnerID=40&md5=188bc6e1ef9327849929352d38aea78f.[75] British Standards Institution, “Energy management systems : Requirements with guidance for use.” Geneva, Switzerland, p. 22, 2012.[76] M. H. Song y M. Fischer, “Daily plan-do-check-act (PDCA) cycles with level of development (LOD) 400 objects for foremen,” Adv. Eng. Informatics, vol. 44, no. February, 2020, doi: 10.1016/j.aei.2020.101091.[77] P. Rosa, C. Sassanelli, A. Urbinati, D. Chiaroni, y S. Terzi, “Assessing relations between Circular Economy and Industry 4.0: a systematic literature review,” Int. J. Prod. Res., vol. 58, no. 6, pp. 1662–1687, 2020, doi: 10.1080/00207543.2019.1680896.[78] A. Ruiz Sierra et al., “The bio-based industries joint undertaking: A high impact initiative that is transforming the bio-based industries in Europe,” N. Biotechnol., vol. 60, pp. 105–112, 2021, doi: https://doi.org/10.1016/j.nbt.2020.09.003.[79] D. Ulas, “Digital Transformation Process and SMEs,” Procedia Comput. Sci., vol. 158, pp. 662–671, 2019, doi: 10.1016/j.procs.2019.09.101.[80] C. Berger, A. Hees, S. Braunreuther, y G. Reinhart, “Characterization of Cyber-Physical Sensor Systems,” Procedia CIRP, vol. 41, pp. 638–643, 2016, doi: https://doi.org/10.1016/j.procir.2015.12.019.[81] J.-Y. Chen, K.-C. Tai, y G.-C. Chen, “Application of Programmable Logic Controller to Build-up an Intelligent Industry 4.0 Platform,” in Procedia CIRP, 2017, vol. 63, pp. 150–155, doi: 10.1016/j.procir.2017.03.116.[82] “IEC” International Electrotechnical Commission, “IEC 61131: Programming languages for programmable controllers," IEC".” Geneva, Switzerland, 1993.[83] P. Mazur, M. Chmiel, y R. Czerwinski, “Central processing unit of IEC 61131-3-based PLC,” IFAC-PapersOnLine, vol. 49, no. 25, pp. 454–459, 2016, doi: 10.1016/j.ifacol.2016.12.061. 208[84] C. Faller y M. Höftmann, “Service-oriented communication model for cyber-physical-production-systems,” Procedia CIRP, vol. 67, pp. 156–161, 2018, doi: https://doi.org/10.1016/j.procir.2017.12.192.[85] M. de A. y D. Sostenible, “NTC 5001: Eficiencia energética en edificios - Requisitos técnicos para la construcción, rehabilitación y mantenimiento de edificios," Ministerio de Ambiente y Desarrollo Sostenible.” Bogotá, Colombia, 2018.[86] I. E. Commission, “Electromagnetic compatibility (EMC) Part 4-30: Testing and measurement techniques Power quality measurement methods,” IEC Standard, vol. 61000-4–30. Geneva, Switzerland, 2003.[87] W. Murray, M. Adonis, y A. Raji, “Voltage control in future electrical distribution networks,” Renew. Sustain. Energy Rev., vol. 146, p. 111100, 2021, doi: https://doi.org/10.1016/j.rser.2021.111100.[88] W. M. Mohammed, B. R. Ferrer, U. Iftikhar, J. L. M. Lastra, y J. H. Simarro, “Supporting a Cloud Platform with Streams of Factory Shop Floor Data in the Context of the Intustry 4.0,” in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 2018, pp. 786–791, doi: 10.1109/INDIN.2018.8471981.[89] (IEC) International Electrotechnical Commission, “IEC 62264-3: Enterprise-control system integration - Part 3: Reference model.” Geneva, Switzerland, 2005.[90] BSI Group., “Functional safety : safety instrumented systems for the process industry sector. Part 1, Framework, definitions, system, hardware and software requirements.” Geneva, Switzerland, p. 84, 2003.[91] A. Lopez, E. Estevez, O. Casquero, y M. Marcos, “Using industrial standards for modeling flexible manufacturing systems,” in Proceedings - 2020 IEEE Conference on Industrial Cyberphysical Systems, ICPS 2020, 2020, pp. 41–46, doi: 10.1109/ICPS48405.2020.9274785.[92] A. Garcia, X. Oregui, U. Arrieta, y I. Valverde, “Methodology and Tools to Integrate Industry 4.0 CPS into Process Design and Management: ISA-88 Use Case,” Inf., vol. 13, no. 5, 2022, doi: 10.3390/info13050226.[93] L. Novais, J. M. Maqueira, y Á. Ortiz-Bas, “A systematic literature review of cloud computing use in supply chain integration,” Comput. Ind. Eng., vol. 129, pp. 296–314, 2019, doi: https://doi.org/10.1016/j.cie.2019.01.056. 209[94] J. Zhang, C. Deng, P. Zheng, X. Xu, y Z. Ma, “Development of an edge computing-based cyber-physical machine tool,” Robot. Comput. Integr. Manuf., vol. 67, p. 102042, 2021, doi: https://doi.org/10.1016/j.rcim.2020.102042.[95] Z. Huang, J. Kim, A. Sadri, S. Dowey, y M. S. Dargusch, “Industry 4.0: Development of a multi-agent system for dynamic value stream mapping in SMEs,” J. Manuf. Syst., vol. 52, pp. 1–12, 2019, doi: https://doi.org/10.1016/j.jmsy.2019.05.001.[96] F. Pethig, O. Niggemann, y A. Walter, “Towards Industrie 4.0 compliant configuration of condition monitoring services,” in Proceedings - 2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017, 2017, pp. 271–276, doi: 10.1109/INDIN.2017.8104783.[97] M. Fahmideh y G. Beydoun, “Big data analytics architecture design—An application in manufacturing systems,” Comput. Ind. Eng., vol. 128, no. xxxx, pp. 948–963, 2019, doi: 10.1016/j.cie.2018.08.004.[98] B. R. Ferrer, W. M. Mohammed, E. Chen, y J. L. M. Lastra, “Connecting web-based IoT devices to a cloud-based manufacturing platform,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 8628–8633, doi: 10.1109/IECON.2017.8217516.[99] I. Althomali, G. M. Kapfhammer, y P. McMinn, “Automated visual classification of DOM-based presentation failure reports for responsive web pages,” Softw. Test. Verif. Reliab., vol. 31, no. 4, pp. 1–50, 2021, doi: 10.1002/stvr.1756.[100] M. Web Docs, “Tecnología para desarrolladores web,” MDN Web Docs, 2021. https://developer.mozilla.org/es/docs/Web.Doctorado en IngenieríaAnalítica de datosConsumo energéticoInteligencia artificialModelo de informaciónPymeOPC UATransformación digitalData analyticsEnergy consumptionArtificial intelligenceInformation modelSMEsOPC UADigital transformationComunidad generalPublicationhttps://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::6257-10000-0002-9731-8458virtual::6257-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::6257-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::6257-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::6257-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/d21b5aa8-54fe-4493-a026-d858b14403bb/download6987b791264a2b5525252450f99b10d1MD51ORIGINALT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdfT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdfArchivo texto completo del trabajo de grado, PDFapplication/pdf9194480https://red.uao.edu.co/bitstreams/94d9dc59-ad21-4d9c-a418-7570a887d5b5/download700ee956633f1905a722ee9020a537afMD52FO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdfFO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdfapplication/pdf150900https://red.uao.edu.co/bitstreams/ba82297b-1b1f-497b-b964-4bec5d32b5e4/downloada6f015ef4fc11c99b2cd971141c4d713MD53TA11470_Autorización trabajo de grado.pdfTA11470_Autorización trabajo de grado.pdfAutorización para publicación del trabajo de gradoapplication/pdf209565https://red.uao.edu.co/bitstreams/bca9b059-42ca-45d1-89f3-328db605f947/download35332ed8046a1eebd0e626d80bf733b4MD54TEXTT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdf.txtT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdf.txtExtracted texttext/plain101870https://red.uao.edu.co/bitstreams/a74e9c69-0ee1-40ff-88a6-1b5e5d4cf4d6/downloada2cfe012c2c45a8040c6eab0a9bacf76MD55FO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdf.txtFO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdf.txtExtracted texttext/plain7081https://red.uao.edu.co/bitstreams/c388c4a5-cbf6-4c3a-8478-0ec9ad154400/downloadf23eb32a20a417b1f4c2ccf28a141b95MD57TA11470_Autorización trabajo de grado.pdf.txtTA11470_Autorización trabajo de grado.pdf.txtExtracted texttext/plain4353https://red.uao.edu.co/bitstreams/cebd1ecd-a30b-47cc-8180-d32aa9b64fe5/download5bcf8efbeedf46970e79b960660e6773MD59THUMBNAILT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdf.jpgT11470_Plataforma inteligente de análisis de datos para estimar el consumo energético proyectado en los sistemas de fabricación de las pymes en el contexto.pdf.jpgGenerated Thumbnailimage/jpeg6822https://red.uao.edu.co/bitstreams/3905fcf5-ce7a-438e-be70-5467b6f74a28/download24b4f3601dea24d95c0668bc5a14d555MD56FO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdf.jpgFO-IN-16 Acta_Sustentación_Final_Tesis_Doctoral_William Gutiérrez Marroquín_3May2022 v2 vMarco.pdf.jpgGenerated Thumbnailimage/jpeg12353https://red.uao.edu.co/bitstreams/27559763-e60b-40a1-85af-deb5dd9187a7/downloadae48508ff16251e936f415e90ff8e55fMD58TA11470_Autorización trabajo de grado.pdf.jpgTA11470_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg12704https://red.uao.edu.co/bitstreams/691b0fb9-dba1-4c06-8a56-53535971d476/downloadb99f77504e83855de4e9acc3cc88371cMD51010614/16269oai:red.uao.edu.co:10614/162692025-08-20 03:02:02.293https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
