Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes
This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensi...
- Autores:
-
Cardona Salgado, Daiver
Sepúlveda Salcedo, Lilian Sofía
Orozco-Gonzales, Jose L.
dos Santos Benedito, Antone
Pio Ferreira, Claudia
de Oliveira Florentino, Helenice
Vasilieva, Olga
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/16205
- Acceso en línea:
- https://hdl.handle.net/10614/16205
https://doi.org/10.1016/j.mbs.2024.109190
https://red.uao.edu.co/
- Palabra clave:
- Wolbachia
Aedes aegypti
Population dynamics
Imperfect maternal transmission
Incomplete CI
Infection loss
Stable coexistence
Pitch-fork bifurcation
Dinámica poblacional
Transmisión materna imperfecta
CI incompleto
Pérdida por infección
Coexistencia estable
Bifurcación en horquilla
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2024
| id |
REPOUAO2_654534643e553dc47b9a74752a528bed |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16205 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| dc.title.translated.spa.fl_str_mv |
Comparación de la persistencia a largo plazo de diferentes cepas de Wolbachia después de la liberación de mosquitos portadores de bacterias |
| title |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| spellingShingle |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes Wolbachia Aedes aegypti Population dynamics Imperfect maternal transmission Incomplete CI Infection loss Stable coexistence Pitch-fork bifurcation Dinámica poblacional Transmisión materna imperfecta CI incompleto Pérdida por infección Coexistencia estable Bifurcación en horquilla |
| title_short |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| title_full |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| title_fullStr |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| title_full_unstemmed |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| title_sort |
Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes |
| dc.creator.fl_str_mv |
Cardona Salgado, Daiver Sepúlveda Salcedo, Lilian Sofía Orozco-Gonzales, Jose L. dos Santos Benedito, Antone Pio Ferreira, Claudia de Oliveira Florentino, Helenice Vasilieva, Olga |
| dc.contributor.author.none.fl_str_mv |
Cardona Salgado, Daiver Sepúlveda Salcedo, Lilian Sofía Orozco-Gonzales, Jose L. dos Santos Benedito, Antone Pio Ferreira, Claudia de Oliveira Florentino, Helenice Vasilieva, Olga |
| dc.subject.proposal.eng.fl_str_mv |
Wolbachia Aedes aegypti Population dynamics Imperfect maternal transmission Incomplete CI Infection loss Stable coexistence Pitch-fork bifurcation |
| topic |
Wolbachia Aedes aegypti Population dynamics Imperfect maternal transmission Incomplete CI Infection loss Stable coexistence Pitch-fork bifurcation Dinámica poblacional Transmisión materna imperfecta CI incompleto Pérdida por infección Coexistencia estable Bifurcación en horquilla |
| dc.subject.proposal.spa.fl_str_mv |
Dinámica poblacional Transmisión materna imperfecta CI incompleto Pérdida por infección Coexistencia estable Bifurcación en horquilla |
| description |
This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model’s parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-08T16:13:14Z |
| dc.date.available.none.fl_str_mv |
2025-07-08T16:13:14Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.eng.fl_str_mv |
Cardona Salgado, D.; Sepúlveda Salcedo, L. S.; dos Santos Benedito, A.; Pio Ferreira, C.; de Oliveira Florentino, H. y Vasilieva, O. (2024). Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Mathematical Biosciences. Vol. 372. 16 p. https://doi.org/10.1016/j.mbs.2024.109190 |
| dc.identifier.issn.spa.fl_str_mv |
00255564 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16205 |
| dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.mbs.2024.109190 |
| dc.identifier.eissn.spa.fl_str_mv |
18793134 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Cardona Salgado, D.; Sepúlveda Salcedo, L. S.; dos Santos Benedito, A.; Pio Ferreira, C.; de Oliveira Florentino, H. y Vasilieva, O. (2024). Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Mathematical Biosciences. Vol. 372. 16 p. https://doi.org/10.1016/j.mbs.2024.109190 00255564 18793134 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16205 https://doi.org/10.1016/j.mbs.2024.109190 https://red.uao.edu.co/ |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
16 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
372 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Mathematical Biosciences |
| dc.relation.references.none.fl_str_mv |
[1] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens 6 (4) (2010) e1000833. [2] L. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, L. Moreira, Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe 19 (6) (2016) 771–774. [3] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, S. O’Neill, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell 139 (7) (2009) 1268–1278. [4] T. Ant, C. Herd, V. Geoghegan, A. Hoffmann, S. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, PLoS Pathogens 14 (1) (2018) e1006815. [5] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: insights from modelling, Trends Parasitol. 34 (2) (2018) 102–113. [6] J. Fraser, J. De Bruyne, I. Iturbe-Ormaetxe, J. Stepnell, R. Burns, H. Flores, S. O’Neill, Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes, PLoS Pathogens 13 (12) (2017) e1006751. [7] S. Ogunlade, M. Meehan, A. Adekunle, D. Rojas, O. Adegboye, E. McBryde, A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies, Vaccines 9 (1) (2021) 32. [8] T. Ruang-Areerate, P. Kittayapong, Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors, Proc. Natl. Acad. Sci. 103 (33) (2006) 12534–12539. [9] M. Flor, P. Hammerstein, A. Telschow, Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations, J. Evol. Biol. 20 (2) (2007) 696–706. [10] E. Caragata, H. Dutra, P. Sucupira, A. Ferreira, L. Moreira, Wolbachia as translational science: controlling mosquito-borne pathogens, Trends Parasitol. 37 (12) (2021) 1050–1067. [11] P. Ross, S. Ritchie, J. Axford, A. Hoffmann, Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions, PLoS Negl. Trop. Dis. 13 (4) (2019) e0007357. [12] P. Ross, I. Wiwatanaratanabutr, J. Axford, V. White, N. Endersby-Harshman, A. Hoffmann, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Pathogens 13 (1) (2017) e1006006. [13] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Yu. Wang, S. O’Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science 323 (5910) (2009) 141–144. [14] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (7361) (2011) 450–453. [15] J. Ulrich, J. Beier, G. Devine, L. Hugo, Heat sensitivity of wMel Wolbachia during Aedes aegypti development, PLoS Negl. Trop. Dis. 10 (7) (2016) e0004873. [16] L. Almeida, J. Bellver Arnau, Y. Privat, Optimal control strategies for bistable ODE equations: Application to mosquito population replacement, Appl. Math. Optim. 87 (1) (2023) 10. [17] H. Zhang, R. Lui, Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study, Infect. Dis. Model. 5 (2020) 142–160. [18] A. dos Santos Benedito, C.P. Ferreira, M. Adimy, Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations, Math. Model. Nat. Phenom. 15 (2020) 76. [19] A. dos Santos Benedito, C.P. Ferreira, H. de Oliveira Florentino, Establishing the coexistence of Wolbachia-carrying and wild Aedes aegypti. Populations by feedback linearization, Appl. Math. 17 (3) (2023) 521–533. [20] J. Farkas, S. Gourley, R. Liu, A.-A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, J. Math. Biol. 75 (2017) 621–647. [21] C.P. Ferreira, Aedes aegypti and Wolbachia interaction: population persistence in an environment changing, Theor. Ecol. 13 (2) (2020) 137–148. [22] D. Li, H. Wan, The threshold infection level for Wolbachia invasion in a two-sex mosquito population model, Bull. Math. Biol. 81 (7) (2019) 2596–2624. [23] Y. Li, X. Liu, Modeling and control of mosquito-borne diseases with Wolbachia and insecticides, Theor. Popul. Biol. 132 (2020) 82–91. [24] L. Xue, C. Manore, P. Thongsripong, J. Hyman, Two-sex mosquito model for the persistence of Wolbachia, J. Biol. Dyn. 11 (sup1) (2017) 216–237. [25] A. Adekunle, M.T. Meehan, E.S. McBryde, Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection, Infect. Dis. Model. 4 (2019) 265–285. [26] S. Ogunlade, A. Adekunle, M. Meehan, D. Rojas, E. McBryde, Modeling the potential of wAu-Wolbachia strain invasion in mosquitoes to control Aedes-borne arboviral infections, Sci. Rep. 10 (1) (2020) 1–16. [27] L. Lopes, C.P. Ferreira, S.M. Oliva, Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one, Appl. Math. Model. 123 (2023) 392–405. [28] J. Arrivillaga, R. Barrera, Food as a limiting factor for Aedes aegypti in water-storage containers, J. Vector Ecol. 29 (2004) 11–20. [29] L. Styer, S. Minnick, A. Sun, T. Scott, Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood, Vector-Borne Zoonotic Dis. 7 (1) (2007) 86–98. [30] P. Ross, X. Gu, K. Robinson, Q. Yang, E. Cottingham, Y. Zhang, H. Yeap, X. Xu, N. Endersby-Harshman, A. Hoffmann, A wAlbB Wolbachia transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds, Appl. Environ. Microbiol. 87 (20) (2021) e01264–21. [31] P. Ross, K. Robinson, Q. Yang, A. Callahan, T. Schmidt, J. Axford, M. Coquilleau, K. Staunton, M. Townsend, S. Ritchie, M.-J. Lau, X. Gu, A. Hoffman, A decade of stability for wMel Wolbachia in natural Aedes aegypti populations, PLoS Pathogens 18 (2) (2022) e1010256. [32] M. Segoli, A. Hoffmann, J. Lloyd, G. Omodei, S. Ritchie, The effect of virusblocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti, PLoS Negl. Trop. Dis. 8 (12) (2014) e3294. [33] A. Turley, M. Zalucki, S. O’Neill, E. McGraw, Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti, Parasites Vectors 6 (1) (2013) 1–10. [34] O. Escobar-Lasso, O. Vasilieva, A simplified monotone model of Wolbachia invasion encompassing Aedes aegypti mosquitoes, Stud. Appl. Math. 146 (3) (2021) 565–585. [35] D. Vicencio, O. Vasilieva, P. Gajardo, Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations, Math. Biosci. Eng. 20 (1) (2023) 1148–1175. [36] J. Axford, P. Ross, H. Yeap, A. Callahan, A. Hoffmann, Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion, Am. J. Trop. Med. Hyg. 94 (3) (2016) 507–516. [37] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol. 76 (7) (2018) 1907–1950. [38] N. Chitnis, J. Hyman, J. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008) 1272–1296. [39] S. Marino, I. Hogue, C. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol. 254 (1) (2008) 178–196. [40] P.-A. Bliman, Y. Dumont, O. Escobar-Lasso, H. Martinez-Romero, O. Vasilieva, Sex-structured model of Wolbachia invasion and design of sex-biased release strategies in Aedes spp. mosquitoes populations, Appl. Math. Model. 119 (2023) 391–412. [41] A. Hoffmann, P.A Ross, G. Rašić, Wolbachia strains for disease control: ecological and evolutionary considerations, Evol. Appl. 8 (8) (2015) 751–768. [42] M. Mancini, T. Ant, C. Herd, D. Gingell, S. Murdochy, E. Mararo, S. Sinkins, High-temperature cycles result in maternal transmission and dengue infection differences between Wolbachia strains in Aedes aegypti, Mbio 12 (6) (2021) e00250–21. [43] X. Liang, C. Tan, Qiang. Sun, Zhang, P. Wong, M. Li, K. Mak, A. Martín- Park, Y. Contreras-Perera, H. Puerta-Guardo, P. Manrique-Saide, L. Ng, Z. Xi, Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking, PNAS Nexus 1 (4) (2022) pgac203. [44] T. Nguyen, H. Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, B. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. O’Neill, A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites Vectors 8 (2015) 1–14. [45] K. Gunasekaran, C. Sadanandane, D. Panneer, A. Kumar, M. Rahi, S. Dinesh, B. Vijayakumar, M. Krishnaraja, S. Subbarao, P. Jambulingam, Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development, Parasites Vectors 15 (1) (2022) 1–10. [46] M.-J. Lau, P. Ross, A. Hoffmann, Infertility and fecundity loss of Wolbachiainfected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics, PLoS Negl. Trop. Dis. 15 (2) (2021) e0009179. |
| dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2024 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
Derechos reservados - Elsevier, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
16 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Países bajos |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/a1bf7c81-cc82-40e5-bd9f-a39189748b3e/download https://red.uao.edu.co/bitstreams/5b213a5c-5644-4b50-b3d5-0c95a52319a9/download https://red.uao.edu.co/bitstreams/825545cc-3eb2-4e8f-9e60-c0b69aa8ec41/download https://red.uao.edu.co/bitstreams/40648979-b2ad-4a80-acbc-12635bfae300/download |
| bitstream.checksum.fl_str_mv |
66ee90b73aaa18efb8f3fad60b3b2aa2 6987b791264a2b5525252450f99b10d1 bcbfa36affeb92bd9a9254181dabe913 0a4cd5e99969582928fedd17463d4c54 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053196144803840 |
| spelling |
Cardona Salgado, Daivervirtual::6094-1Sepúlveda Salcedo, Lilian Sofíavirtual::6095-1Orozco-Gonzales, Jose L.dos Santos Benedito, AntonePio Ferreira, Claudiade Oliveira Florentino, HeleniceVasilieva, Olga2025-07-08T16:13:14Z2025-07-08T16:13:14Z2024Cardona Salgado, D.; Sepúlveda Salcedo, L. S.; dos Santos Benedito, A.; Pio Ferreira, C.; de Oliveira Florentino, H. y Vasilieva, O. (2024). Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Mathematical Biosciences. Vol. 372. 16 p. https://doi.org/10.1016/j.mbs.2024.10919000255564https://hdl.handle.net/10614/16205https://doi.org/10.1016/j.mbs.2024.10919018793134Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model’s parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures16 páginasapplication/pdfengElsevierPaíses bajosDerechos reservados - Elsevier, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoesComparación de la persistencia a largo plazo de diferentes cepas de Wolbachia después de la liberación de mosquitos portadores de bacteriasArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85161372Mathematical Biosciences[1] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens 6 (4) (2010) e1000833.[2] L. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, L. Moreira, Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe 19 (6) (2016) 771–774.[3] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, S. O’Neill, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell 139 (7) (2009) 1268–1278.[4] T. Ant, C. Herd, V. Geoghegan, A. Hoffmann, S. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, PLoS Pathogens 14 (1) (2018) e1006815.[5] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: insights from modelling, Trends Parasitol. 34 (2) (2018) 102–113.[6] J. Fraser, J. De Bruyne, I. Iturbe-Ormaetxe, J. Stepnell, R. Burns, H. Flores, S. O’Neill, Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes, PLoS Pathogens 13 (12) (2017) e1006751.[7] S. Ogunlade, M. Meehan, A. Adekunle, D. Rojas, O. Adegboye, E. McBryde, A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies, Vaccines 9 (1) (2021) 32.[8] T. Ruang-Areerate, P. Kittayapong, Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors, Proc. Natl. Acad. Sci. 103 (33) (2006) 12534–12539.[9] M. Flor, P. Hammerstein, A. Telschow, Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations, J. Evol. Biol. 20 (2) (2007) 696–706.[10] E. Caragata, H. Dutra, P. Sucupira, A. Ferreira, L. Moreira, Wolbachia as translational science: controlling mosquito-borne pathogens, Trends Parasitol. 37 (12) (2021) 1050–1067.[11] P. Ross, S. Ritchie, J. Axford, A. Hoffmann, Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions, PLoS Negl. Trop. Dis. 13 (4) (2019) e0007357.[12] P. Ross, I. Wiwatanaratanabutr, J. Axford, V. White, N. Endersby-Harshman, A. Hoffmann, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Pathogens 13 (1) (2017) e1006006.[13] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Yu. Wang, S. O’Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science 323 (5910) (2009) 141–144.[14] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (7361) (2011) 450–453.[15] J. Ulrich, J. Beier, G. Devine, L. Hugo, Heat sensitivity of wMel Wolbachia during Aedes aegypti development, PLoS Negl. Trop. Dis. 10 (7) (2016) e0004873.[16] L. Almeida, J. Bellver Arnau, Y. Privat, Optimal control strategies for bistable ODE equations: Application to mosquito population replacement, Appl. Math. Optim. 87 (1) (2023) 10.[17] H. Zhang, R. Lui, Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study, Infect. Dis. Model. 5 (2020) 142–160.[18] A. dos Santos Benedito, C.P. Ferreira, M. Adimy, Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations, Math. Model. Nat. Phenom. 15 (2020) 76.[19] A. dos Santos Benedito, C.P. Ferreira, H. de Oliveira Florentino, Establishing the coexistence of Wolbachia-carrying and wild Aedes aegypti. Populations by feedback linearization, Appl. Math. 17 (3) (2023) 521–533.[20] J. Farkas, S. Gourley, R. Liu, A.-A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, J. Math. Biol. 75 (2017) 621–647.[21] C.P. Ferreira, Aedes aegypti and Wolbachia interaction: population persistence in an environment changing, Theor. Ecol. 13 (2) (2020) 137–148.[22] D. Li, H. Wan, The threshold infection level for Wolbachia invasion in a two-sex mosquito population model, Bull. Math. Biol. 81 (7) (2019) 2596–2624.[23] Y. Li, X. Liu, Modeling and control of mosquito-borne diseases with Wolbachia and insecticides, Theor. Popul. Biol. 132 (2020) 82–91.[24] L. Xue, C. Manore, P. Thongsripong, J. Hyman, Two-sex mosquito model for the persistence of Wolbachia, J. Biol. Dyn. 11 (sup1) (2017) 216–237.[25] A. Adekunle, M.T. Meehan, E.S. McBryde, Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection, Infect. Dis. Model. 4 (2019) 265–285.[26] S. Ogunlade, A. Adekunle, M. Meehan, D. Rojas, E. McBryde, Modeling the potential of wAu-Wolbachia strain invasion in mosquitoes to control Aedes-borne arboviral infections, Sci. Rep. 10 (1) (2020) 1–16.[27] L. Lopes, C.P. Ferreira, S.M. Oliva, Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one, Appl. Math. Model. 123 (2023) 392–405.[28] J. Arrivillaga, R. Barrera, Food as a limiting factor for Aedes aegypti in water-storage containers, J. Vector Ecol. 29 (2004) 11–20.[29] L. Styer, S. Minnick, A. Sun, T. Scott, Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood, Vector-Borne Zoonotic Dis. 7 (1) (2007) 86–98.[30] P. Ross, X. Gu, K. Robinson, Q. Yang, E. Cottingham, Y. Zhang, H. Yeap, X. Xu, N. Endersby-Harshman, A. Hoffmann, A wAlbB Wolbachia transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds, Appl. Environ. Microbiol. 87 (20) (2021) e01264–21.[31] P. Ross, K. Robinson, Q. Yang, A. Callahan, T. Schmidt, J. Axford, M. Coquilleau, K. Staunton, M. Townsend, S. Ritchie, M.-J. Lau, X. Gu, A. Hoffman, A decade of stability for wMel Wolbachia in natural Aedes aegypti populations, PLoS Pathogens 18 (2) (2022) e1010256.[32] M. Segoli, A. Hoffmann, J. Lloyd, G. Omodei, S. Ritchie, The effect of virusblocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti, PLoS Negl. Trop. Dis. 8 (12) (2014) e3294.[33] A. Turley, M. Zalucki, S. O’Neill, E. McGraw, Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti, Parasites Vectors 6 (1) (2013) 1–10.[34] O. Escobar-Lasso, O. Vasilieva, A simplified monotone model of Wolbachia invasion encompassing Aedes aegypti mosquitoes, Stud. Appl. Math. 146 (3) (2021) 565–585.[35] D. Vicencio, O. Vasilieva, P. Gajardo, Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations, Math. Biosci. Eng. 20 (1) (2023) 1148–1175.[36] J. Axford, P. Ross, H. Yeap, A. Callahan, A. Hoffmann, Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion, Am. J. Trop. Med. Hyg. 94 (3) (2016) 507–516.[37] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol. 76 (7) (2018) 1907–1950.[38] N. Chitnis, J. Hyman, J. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008) 1272–1296.[39] S. Marino, I. Hogue, C. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol. 254 (1) (2008) 178–196.[40] P.-A. Bliman, Y. Dumont, O. Escobar-Lasso, H. Martinez-Romero, O. Vasilieva, Sex-structured model of Wolbachia invasion and design of sex-biased release strategies in Aedes spp. mosquitoes populations, Appl. Math. Model. 119 (2023) 391–412.[41] A. Hoffmann, P.A Ross, G. Rašić, Wolbachia strains for disease control: ecological and evolutionary considerations, Evol. Appl. 8 (8) (2015) 751–768.[42] M. Mancini, T. Ant, C. Herd, D. Gingell, S. Murdochy, E. Mararo, S. Sinkins, High-temperature cycles result in maternal transmission and dengue infection differences between Wolbachia strains in Aedes aegypti, Mbio 12 (6) (2021) e00250–21.[43] X. Liang, C. Tan, Qiang. Sun, Zhang, P. Wong, M. Li, K. Mak, A. Martín- Park, Y. Contreras-Perera, H. Puerta-Guardo, P. Manrique-Saide, L. Ng, Z. Xi, Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking, PNAS Nexus 1 (4) (2022) pgac203.[44] T. Nguyen, H. Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, B. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. O’Neill, A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites Vectors 8 (2015) 1–14.[45] K. Gunasekaran, C. Sadanandane, D. Panneer, A. Kumar, M. Rahi, S. Dinesh, B. Vijayakumar, M. Krishnaraja, S. Subbarao, P. Jambulingam, Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development, Parasites Vectors 15 (1) (2022) 1–10.[46] M.-J. Lau, P. Ross, A. Hoffmann, Infertility and fecundity loss of Wolbachiainfected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics, PLoS Negl. Trop. Dis. 15 (2) (2021) e0009179.WolbachiaAedes aegyptiPopulation dynamicsImperfect maternal transmissionIncomplete CIInfection lossStable coexistencePitch-fork bifurcationDinámica poblacionalTransmisión materna imperfectaCI incompletoPérdida por infecciónCoexistencia estableBifurcación en horquillaComunidad generalPublication72f68479-5914-43da-8996-02353d27d5dcvirtual::6094-1aeb47892-e365-4668-9322-a97426768e27virtual::6095-172f68479-5914-43da-8996-02353d27d5dcvirtual::6094-1aeb47892-e365-4668-9322-a97426768e27virtual::6095-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::6094-1https://scholar.google.com.co/citations?user=u2HFR6AAAAAJ&hl=esvirtual::6095-10000-0003-4828-9360virtual::6094-10000-0002-7052-1851virtual::6095-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::6094-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000277746virtual::6095-1ORIGINALComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdfComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf1233869https://red.uao.edu.co/bitstreams/a1bf7c81-cc82-40e5-bd9f-a39189748b3e/download66ee90b73aaa18efb8f3fad60b3b2aa2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/5b213a5c-5644-4b50-b3d5-0c95a52319a9/download6987b791264a2b5525252450f99b10d1MD52TEXTComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdf.txtComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdf.txtExtracted texttext/plain109461https://red.uao.edu.co/bitstreams/825545cc-3eb2-4e8f-9e60-c0b69aa8ec41/downloadbcbfa36affeb92bd9a9254181dabe913MD53THUMBNAILComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdf.jpgComparing_the_long-term_persistence_of_different_Wolbachia_strains_after_the_release_of_bacteria-carrying_mosquitoes.pdf.jpgGenerated Thumbnailimage/jpeg15584https://red.uao.edu.co/bitstreams/40648979-b2ad-4a80-acbc-12635bfae300/download0a4cd5e99969582928fedd17463d4c54MD5410614/16205oai:red.uao.edu.co:10614/162052025-07-10 03:01:54.624https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
