Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow
The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or φm), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained...
- Autores:
-
Duque-Daza, Carlos
Ramírez-Pastran, Jesús
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13902
- Acceso en línea:
- https://hdl.handle.net/10614/13902
https://red.uao.edu.co/
- Palabra clave:
- Dinámica de fluidos
Análisis numérico
Fluid dynamics
Numerical analysis
Particle-laden channel flow
Turbulence modulation
Two-way coupling
Large-eddy simulations
Drag reduction
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2021
id |
REPOUAO2_5b318c76231683881c963ef313e8b028 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13902 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
title |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
spellingShingle |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow Dinámica de fluidos Análisis numérico Fluid dynamics Numerical analysis Particle-laden channel flow Turbulence modulation Two-way coupling Large-eddy simulations Drag reduction |
title_short |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
title_full |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
title_fullStr |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
title_full_unstemmed |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
title_sort |
Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flow |
dc.creator.fl_str_mv |
Duque-Daza, Carlos Ramírez-Pastran, Jesús Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Duque-Daza, Carlos Ramírez-Pastran, Jesús Laín Beatove, Santiago |
dc.subject.armarc.spa.fl_str_mv |
Dinámica de fluidos Análisis numérico |
topic |
Dinámica de fluidos Análisis numérico Fluid dynamics Numerical analysis Particle-laden channel flow Turbulence modulation Two-way coupling Large-eddy simulations Drag reduction |
dc.subject.armarc.eng.fl_str_mv |
Fluid dynamics Numerical analysis |
dc.subject.proposal.eng.fl_str_mv |
Particle-laden channel flow Turbulence modulation Two-way coupling Large-eddy simulations Drag reduction |
description |
The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or φm), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained by the presence of solid particles in incompressible turbulent flows, the present study reports the findings of varying φm in the the turbulent behaviour of the flow, including aspects such as: turbulent statistics, skin-friction coefficient, and the general dynamics of a particle-laden flow. For this purpose, a particle-laden turbulent channel flow transporting solid particles at three different friction Reynolds numbers, namely Reτ = 180, 365, and 950, with a fixed particle volume fraction of φv = 10−3 , was employed as conceptual flow model and simulated using large eddy simulations. The value adopted for φv allowed the use of a two-way coupling approach between the particles and the flow or carrier phase. Three different values of φm were explored in this work φm ≈ 1, 2.96, and 12.4. Assessment of the effect of φm was performed by examining changes of mean velocity profiles, velocity fluctuation profiles, and a number of other relevant turbulence statistics. Our results show that attenuation of turbulence activity of the carrier phase is attained, and that such attenuation increases with φm at fixed Reynolds numbers and φv. For the smallest Reynolds number case considered, flows carrying particles with higher φm exhibited lower energy requirements to sustain constant fluid mass flow rate conditions. By examining the flow velocity field, as well as instantaneous velocity components contours, it is shown that the attenuation acts even on the largest scales of the flow dynamics, and not only at the smaller levels. These findings reinforce the concept of a selective stabilising effect induced by the solid particles, particularly enhanced by high values of φm, which could eventually be exploited for improvement of energetic efficiency of piping or equivalent particles transport systems |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-21 |
dc.date.accessioned.none.fl_str_mv |
2022-05-20T19:11:08Z |
dc.date.available.none.fl_str_mv |
2022-05-20T19:11:08Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23115521 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13902 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
23115521 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13902 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
31 |
dc.relation.citationissue.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
6 |
dc.relation.cites.eng.fl_str_mv |
Duque Daza, C.A., Ramirez Pastran, J., Lain, S. (2021). Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow. Fluids Vol. 6 (11), pp. 1-31. https://drive.google.com/drive/folders/1SFmELTUwAzIUxuk_6mlqNLS9upfolxS1 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Fluids |
dc.relation.references.none.fl_str_mv |
1. Gad-el Hak, M. Flow control: The future. J. Aircr. 2001, 38, 402–418. [CrossRef] 2. García-Mayoral, R.; Jiménez, J. Drag reduction by riblets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 1412–1427. [CrossRef] 3. Quadrio, M. Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 1428–1442. [CrossRef] 4. Choi, K.S. Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 1989, 208, 417–458. [CrossRef] 5. Choi, H.; Moin, P.; Kim, J. Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 1993, 255, 503. [CrossRef] 6. Quadrio, M.; Ricco, P.; Viotti, C. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 2009, 627, 161–178. [CrossRef] 7. Duque-Daza, C.; Baig, M.; Lockerby, D.; Chernyshenko, S.; Davies, C. Modelling turbulent skin-friction control using linearized Navier–Stokes equations. J. Fluid Mech. 2012, 702, 403–414. [CrossRef] 8. Ricco, P.; Hicks, P.D. Streamwise-travelling viscous waves in channel flows. J. Eng. Math. 2018, 111, 23–49. [CrossRef] 9. Lumley, J.L. Drag reduction by additives. Annu. Rev. Fluid Mech. 1969, 1, 367–384. [CrossRef] 10. Ptasinski, P.; Boersma, B.; Nieuwstadt, F.; Hulsen, M.; Van den Brule, B.; Hunt, J. Turbulent channel flow near maximum drag reduction: Simulations, experiments and mechanisms. J. Fluid Mech. 2003, 490, 251–291. [CrossRef] 11. Gyr, A.; Bewersdorff, H.W. Drag Reduction of Turbulent Flows by Additives; Springer Science & Business Media: New York, NY, USA, 2013; Volume 32. 12. Dubief, Y.; White, C.M.; Terrapon, V.E.; Shaqfeh, E.S.; Moin, P.; Lele, S.K. On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 2004, 514, 271–280. [CrossRef] 13. Gillissen, J.; Boersma, B.; Mortensen, P.; Andersson, H. Fibre-induced drag reduction. J. Fluid Mech. 2008, 602, 209–218. [CrossRef] 14. Zhao, L.; Andersson, H.I.; Gillissen, J. Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 2010, 22, 081702. [CrossRef] 15. Costa, P.; Brandt, L.; Picano, F. Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 2021, 922. [CrossRef] 16. Taniere, A.; Arcen, B. Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersión models. Int. J. Multiph. Flow 2014, 60, 1–10. [CrossRef] 17. Zhao, L.; Marchioli, C.; Andersson, H. Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys. Fluids 2012, 24, 021705. [CrossRef] 18. Sommerfeld, M.; Lain, S. Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 2015, 93, 1–17. [CrossRef] 19. Laín, S.; Sommerfeld, M. A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Braz. J. Chem. Eng. 2007, 24, 535–546. [CrossRef] 20. Sommerfeld, M.; Lain, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140. [CrossRef] 21. Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C.M. Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 2013, 715, 134–162. [CrossRef] 22. Kuerten, J.G.; Van der Geld, C.; Geurts, B.J. Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 2011, 23, 123301. [CrossRef] 23. Kidanemariam, A.G.; Chan-Braun, C.; Doychev, T.; Uhlmann, M. Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 2013, 15, 025031. [CrossRef] 24. Rossetti, S.J.; Pfeffer, R. Drag reduction in dilute flowing gas-solid suspensions. AIChE J. 1972, 18, 31–39. [CrossRef] 25. Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L. Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 2001, 13, 2957–2967. [CrossRef] 26. Yamamoto, Y.; Potthoff, M.; Tanaka, T.; Kajishima, T.; Tsuji, Y. Large-eddy simulation of turbulent gas–particle flow in a vertical channel: Effect of considering inter-particle collisions. J. Fluid Mech. 2001, 442, 303–334. [CrossRef] 27. Kulick, J.D.; Fessler, J.R.; Eaton, J.K. Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 1994, 277, 109–134. [CrossRef] 28. Zhao, L.; Andersson, H.I.; Gillissen, J.J. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 2013, 715, 32–59. [CrossRef] 29. Lee, J.; Lee, C. Modification of particle-laden near-wall turbulence: Effect of Stokes number. Phys. Fluids 2015, 27, 023303. [CrossRef] 30. Vreman, A.W. Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 2007, 584, 235–279. [CrossRef] 31. Capecelatro, J.; Desjardins, O.; Fox, R.O. On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 2018, 845, 499–519. [CrossRef] 32. Battista, F.; Mollicone, J.P.; Gualtieri, P.; Messina, R.; Casciola, C.M. Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime. J. Fluid Mech. 2019, 878, 420–444. [CrossRef] 33. Wang, G.; Fong, K.O.; Coletti, F.; Capecelatro, J.; Richter, D.H. Inertial particle velocity and distribution in vertical turbulent channel flow: A numerical and experimental comparison. Int. J. Multiph. Flow 2019, 120, 103105. [CrossRef] 34. Fong, K.O.; Amili, O.; Coletti, F. Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 2019, 872, 367–406. [CrossRef] 35. Richter, D.H.; Sullivan, P.P. Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids 2013, 25, 053304. [CrossRef] 36. Zhou, T.; Zhao, L.; Huang, W.; Xu, C. Non-monotonic effect of mass loading on turbulence modulations in particle-laden cannel flow. Phys. Fluids 2020, 32, 043304. [CrossRef] 37. Costa, P.; Brandt, L.; Picano, F. Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 2019, 883. [CrossRef] 38. Kobayashi, H. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 2005, 17, 045104. [CrossRef] 39. Ramirez-Pastran, J.; Duque-Daza, C. On the prediction capabilities of two SGS models for large-eddy simulations of turbulent incompressible wall-bounded flows in OpenFOAM. Cogent Eng. 2019, 6, 1679067. [CrossRef] 40. Balachandar, S.; Eaton, J.K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [CrossRef] 41. Zhao, L.; Andersson, H.I. On particle spin in two-way coupled turbulent channel flow simulations. Phys. Fluids 2011, 23, 093302. [CrossRef] 42. Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Springer Science & Business Media: New York, NY, USA, 2006. 43. Lar Kermani, E.; Roohi, E.; Porté-Agel, F. Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM. J. Turbul. 2018, 19, 600–620. [CrossRef] 44. Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [CrossRef] 45. Liu, Q.; Lai, H. Flow developing properties of a compressible parallel jet. AIP Adv. 2021, 11, 025214. [CrossRef] 46. Okaze, T.; Kikumoto, H.; Ono, H.; Imano, M.; Ikegaya, N.; Hasama, T.; Nakao, K.; Kishida, T.; Tabata, Y.; Nakajima, K.; et al. Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics. Build. Environ. 2021, 202, 108021. [CrossRef] 47. Hunt, J.C.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases; Center for Turbulence Research: Stanford, CA, USA, 1988; pp. 193–208. 48. Germano, M. Turbulence: The filtering approach. J. Fluid Mech. 1992, 238, 325–336. [CrossRef] 49. Marchioli, C. Large-eddy simulation of turbulent dispersed flows: A review of modelling approaches. Acta Mech. 2017, 228, 741–771. [CrossRef] 50. Kuerten, J.G. Point-Particle DNS and LES of Particle-Laden Turbulent flow-a state-of-the-art review. Flow Turbul. Combust. 2016, 97, 689–713. [CrossRef] [PubMed] 51. Balachandar, S. A scaling analysis for point–particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 2009, 35, 801–810. [CrossRef] 52. Elghobashi, S. Elghobashi, S.: On Predicting Particle-Laden Turbulent Flows. Applied Scientific Research 52, 309-329. Appl. Sci. Res. 1994, 52, 309–329. [CrossRef] 53. Maxey, M.R.; Riley, J.J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 1983, 26, 883–889. [CrossRef] 54. Alletto, M.; Breuer, M. Prediction of turbulent particle-laden flow in horizontal smooth and rough pipes inducing secondary flow. Int. J. Multiph. Flow 2013, 55, 80–98. [CrossRef] 55. Laín, S.; Sommerfeld, M. Euler/Lagrange computations of pneumatic con veying in a horizontal channel with different Wall roughness. Powder Technol. 2008, 184, 76–88. [CrossRef] 56. Weller, H.; Greenshields, C.; de Rouvray, C. The OpenFOAM FOUNDATION. Available online: https://openfoam.org/ (accessed on 21 September 2021). 57. Hrvoje, J.; Jemcov, A.; Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics; Faculty of Mechanical Engineering and Naval Architecture: Zagreb, Croatia, 2007; Volume 1000, pp. 1–20. 58. Jasak, H. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean. Eng. 2009, 1, 89–94. [CrossRef] 59. Chen, G.; Xiong, Q.; Morris, P.J.; Paterson, E.G.; Sergeev, A.; Wang, Y.C. OpenFOAM for Computational Fluid Dynamics. N Am. Math. Soc. 2014, 61, 354. [CrossRef] 60. Iturrioz, A.; Guanche, R.; Lara, J.; Vidal, C.; Losada, I. Validation of OpenFOAM for Oscillating Water Column three-dimensional modeling. Ocean Eng. 2015, 107, 222–236. [CrossRef] 61. Robertson, E.; Choudhury, V.; Bhushan, S.; Walters, D.K. Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Comput. Fluids 2015, 123, 122–145. [CrossRef] 62. Dritselis, C.D.; Vlachos, N.S. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 2011, 23, 025103. [CrossRef] 63. Dritselis, C.D.; Vlachos, N.S. Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases. Int. J. Multiph. Flow 2011, 37, 706–721. [CrossRef] 64. Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ approx 5200. J. Fluid Mech. 2015, 774, 395–415. [CrossRef] 65. Yeh, F.; Lei, U. On the motion of small particles in a homogeneous isotropic turbulent flow. Phys. Fluids A Fluid Dyn. 1991, 3, 2571–2586. [CrossRef] 66. Mallouppas, G.; van Wachem, B. Large eddy simulations of turbulent particle-laden channel flow. Int. J. Multiph. Flow 2013, 54, 65–75. [CrossRef] 67. Marchioli, C.; Armenio, V.; Salvetti, M.V.; Soldati, A. Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Phys. Fluids 2006, 18, 025102. [CrossRef] 68. Minier, J.P. On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Prog. Energy Combust. Sci. 2015, 50, 1–62. [CrossRef] 69. Ireland, P.J.; Desjardins, O. Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 2017, 338, 405–430. [CrossRef] 70. Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C.M. Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 2015, 773, 520–561. [CrossRef] 71. Moore, W.C.; Balachandar, S.; Akiki, G. A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 2019, 385, 187–208. [CrossRef] 72. Horwitz, J.A.K.; Mani, A. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 2016, 318, 85–109. [CrossRef] 73. Marusic, I.; McKeon, B.; Monkewitz, P.; Nagib, H.; Smits, A.; Sreenivasan, K. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 2010, 22, 065103. [CrossRef] 74. Marchioli, C. Mechanisms for Transfer, Segregation and Deposition of Heavy Particles in Turbulent Boundary Layers. Ph.D. Thesis, University of Udine, Udine, Italy, 2003. 75. Marchioli, C.; Soldati, A.; Kuerten, J.; Arcen, B.; Tanière, A.; Goldensoph, G.; Squires, K.; Cargnelutti, M.; Portela, L. Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. Int. J. Multiph. Flow 2008, 34, 879–893. [CrossRef] 76. Gore, R.; Crowe, C. Modulation of turbulence by a dispersed phase. J. Fluids Eng. 1991, 113, 304–307. [CrossRef] 77. Eaton, J.K. Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 2009, 35, 792–800. [CrossRef] 78. Wu, Y.; Wang, H.; Liu, Z.; Li, J.; Zhang, L.; Zheng, C. Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading. Acta Mech. Sin. 2006, 22, 99–108. [CrossRef] 79. Dritselis, C.D.; Vlachos, N.S. Numerical study of educed coherent structures in the near-wall region of a particle-laden cannel flow. Phys. Fluids 2008, 20, 055103. [CrossRef] 80. Li, J.; Wang, H.; Liu, Z.; Chen, S.; Zheng, C. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 2012, 53, 1385–1403. [CrossRef] 81. White, C.M.; Mungal, M.G. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 2008, 40, 235–256. [CrossRef] 82. Sommerfeld, M. Modelling of particle-wall collisions in confined gas-particle flows. Int. J. Multiph. Flow 1992, 18, 905–926. [CrossRef] 83. Gai, G.; Hadjadj, A.; Kudriakov, S.; Thomine, O. Particles-induced turbulence: A critical review of physical concepts, numerical modelings and experimental investigations. Theor. Appl. Mech. Lett. 2020, 10, 241–248. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
31 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/0090bd8d-32b3-4965-8bff-157ac954b518/download https://red.uao.edu.co/bitstreams/8e05c236-e9fb-4656-b219-aabb0dbf1db0/download https://red.uao.edu.co/bitstreams/4e2d985b-26e0-4fa0-994e-3c1312caf4a8/download https://red.uao.edu.co/bitstreams/102d64d4-ee72-49b3-9e5d-68ceff5e211c/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 e8b376c2a813487e5114a6e7543445b8 fd07c3611b701884bba0f3eb20fb4d08 29c30bba1ae1c13cb504b15c1a11094e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1828230048648265728 |
spelling |
Duque-Daza, Carlos6df5376a1aebab9f682db25ff876b63bRamírez-Pastran, Jesús5754d70e37f3a8b0105119a9d644870aLaín Beatove, Santiagovirtual::2561-12022-05-20T19:11:08Z2022-05-20T19:11:08Z2021-10-2123115521https://hdl.handle.net/10614/13902Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or φm), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained by the presence of solid particles in incompressible turbulent flows, the present study reports the findings of varying φm in the the turbulent behaviour of the flow, including aspects such as: turbulent statistics, skin-friction coefficient, and the general dynamics of a particle-laden flow. For this purpose, a particle-laden turbulent channel flow transporting solid particles at three different friction Reynolds numbers, namely Reτ = 180, 365, and 950, with a fixed particle volume fraction of φv = 10−3 , was employed as conceptual flow model and simulated using large eddy simulations. The value adopted for φv allowed the use of a two-way coupling approach between the particles and the flow or carrier phase. Three different values of φm were explored in this work φm ≈ 1, 2.96, and 12.4. Assessment of the effect of φm was performed by examining changes of mean velocity profiles, velocity fluctuation profiles, and a number of other relevant turbulence statistics. Our results show that attenuation of turbulence activity of the carrier phase is attained, and that such attenuation increases with φm at fixed Reynolds numbers and φv. For the smallest Reynolds number case considered, flows carrying particles with higher φm exhibited lower energy requirements to sustain constant fluid mass flow rate conditions. By examining the flow velocity field, as well as instantaneous velocity components contours, it is shown that the attenuation acts even on the largest scales of the flow dynamics, and not only at the smaller levels. These findings reinforce the concept of a selective stabilising effect induced by the solid particles, particularly enhanced by high values of φm, which could eventually be exploited for improvement of energetic efficiency of piping or equivalent particles transport systems31 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Influence of particle mass fraction over the turbulent behaviour of an incompressible particle-laden flowArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosAnálisis numéricoFluid dynamicsNumerical analysisParticle-laden channel flowTurbulence modulationTwo-way couplingLarge-eddy simulationsDrag reduction311116Duque Daza, C.A., Ramirez Pastran, J., Lain, S. (2021). Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow. Fluids Vol. 6 (11), pp. 1-31. https://drive.google.com/drive/folders/1SFmELTUwAzIUxuk_6mlqNLS9upfolxS1Fluids1. Gad-el Hak, M. Flow control: The future. J. Aircr. 2001, 38, 402–418. [CrossRef]2. García-Mayoral, R.; Jiménez, J. Drag reduction by riblets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 1412–1427. [CrossRef]3. Quadrio, M. Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 1428–1442. [CrossRef]4. Choi, K.S. Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 1989, 208, 417–458. [CrossRef]5. Choi, H.; Moin, P.; Kim, J. Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 1993, 255, 503. [CrossRef]6. Quadrio, M.; Ricco, P.; Viotti, C. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 2009, 627, 161–178. [CrossRef]7. Duque-Daza, C.; Baig, M.; Lockerby, D.; Chernyshenko, S.; Davies, C. Modelling turbulent skin-friction control using linearized Navier–Stokes equations. J. Fluid Mech. 2012, 702, 403–414. [CrossRef]8. Ricco, P.; Hicks, P.D. Streamwise-travelling viscous waves in channel flows. J. Eng. Math. 2018, 111, 23–49. [CrossRef]9. Lumley, J.L. Drag reduction by additives. Annu. Rev. Fluid Mech. 1969, 1, 367–384. [CrossRef]10. Ptasinski, P.; Boersma, B.; Nieuwstadt, F.; Hulsen, M.; Van den Brule, B.; Hunt, J. Turbulent channel flow near maximum drag reduction: Simulations, experiments and mechanisms. J. Fluid Mech. 2003, 490, 251–291. [CrossRef]11. Gyr, A.; Bewersdorff, H.W. Drag Reduction of Turbulent Flows by Additives; Springer Science & Business Media: New York, NY, USA, 2013; Volume 32.12. Dubief, Y.; White, C.M.; Terrapon, V.E.; Shaqfeh, E.S.; Moin, P.; Lele, S.K. On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 2004, 514, 271–280. [CrossRef]13. Gillissen, J.; Boersma, B.; Mortensen, P.; Andersson, H. Fibre-induced drag reduction. J. Fluid Mech. 2008, 602, 209–218. [CrossRef]14. Zhao, L.; Andersson, H.I.; Gillissen, J. Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 2010, 22, 081702. [CrossRef]15. Costa, P.; Brandt, L.; Picano, F. Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 2021, 922. [CrossRef]16. Taniere, A.; Arcen, B. Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersión models. Int. J. Multiph. Flow 2014, 60, 1–10. [CrossRef]17. Zhao, L.; Marchioli, C.; Andersson, H. Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys. Fluids 2012, 24, 021705. [CrossRef]18. Sommerfeld, M.; Lain, S. Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 2015, 93, 1–17. [CrossRef]19. Laín, S.; Sommerfeld, M. A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Braz. J. Chem. Eng. 2007, 24, 535–546. [CrossRef]20. Sommerfeld, M.; Lain, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140. [CrossRef]21. Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C.M. Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 2013, 715, 134–162. [CrossRef]22. Kuerten, J.G.; Van der Geld, C.; Geurts, B.J. Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 2011, 23, 123301. [CrossRef]23. Kidanemariam, A.G.; Chan-Braun, C.; Doychev, T.; Uhlmann, M. Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 2013, 15, 025031. [CrossRef]24. Rossetti, S.J.; Pfeffer, R. Drag reduction in dilute flowing gas-solid suspensions. AIChE J. 1972, 18, 31–39. [CrossRef]25. Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L. Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 2001, 13, 2957–2967. [CrossRef]26. Yamamoto, Y.; Potthoff, M.; Tanaka, T.; Kajishima, T.; Tsuji, Y. Large-eddy simulation of turbulent gas–particle flow in a vertical channel: Effect of considering inter-particle collisions. J. Fluid Mech. 2001, 442, 303–334. [CrossRef]27. Kulick, J.D.; Fessler, J.R.; Eaton, J.K. Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 1994, 277, 109–134. [CrossRef]28. Zhao, L.; Andersson, H.I.; Gillissen, J.J. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 2013, 715, 32–59. [CrossRef]29. Lee, J.; Lee, C. Modification of particle-laden near-wall turbulence: Effect of Stokes number. Phys. Fluids 2015, 27, 023303. [CrossRef]30. Vreman, A.W. Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 2007, 584, 235–279. [CrossRef]31. Capecelatro, J.; Desjardins, O.; Fox, R.O. On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 2018, 845, 499–519. [CrossRef]32. Battista, F.; Mollicone, J.P.; Gualtieri, P.; Messina, R.; Casciola, C.M. Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime. J. Fluid Mech. 2019, 878, 420–444. [CrossRef]33. Wang, G.; Fong, K.O.; Coletti, F.; Capecelatro, J.; Richter, D.H. Inertial particle velocity and distribution in vertical turbulent channel flow: A numerical and experimental comparison. Int. J. Multiph. Flow 2019, 120, 103105. [CrossRef]34. Fong, K.O.; Amili, O.; Coletti, F. Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 2019, 872, 367–406. [CrossRef]35. Richter, D.H.; Sullivan, P.P. Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids 2013, 25, 053304. [CrossRef]36. Zhou, T.; Zhao, L.; Huang, W.; Xu, C. Non-monotonic effect of mass loading on turbulence modulations in particle-laden cannel flow. Phys. Fluids 2020, 32, 043304. [CrossRef]37. Costa, P.; Brandt, L.; Picano, F. Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 2019, 883. [CrossRef]38. Kobayashi, H. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 2005, 17, 045104. [CrossRef]39. Ramirez-Pastran, J.; Duque-Daza, C. On the prediction capabilities of two SGS models for large-eddy simulations of turbulent incompressible wall-bounded flows in OpenFOAM. Cogent Eng. 2019, 6, 1679067. [CrossRef]40. Balachandar, S.; Eaton, J.K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [CrossRef]41. Zhao, L.; Andersson, H.I. On particle spin in two-way coupled turbulent channel flow simulations. Phys. Fluids 2011, 23, 093302. [CrossRef]42. Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Springer Science & Business Media: New York, NY, USA, 2006.43. Lar Kermani, E.; Roohi, E.; Porté-Agel, F. Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM. J. Turbul. 2018, 19, 600–620. [CrossRef]44. Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [CrossRef]45. Liu, Q.; Lai, H. Flow developing properties of a compressible parallel jet. AIP Adv. 2021, 11, 025214. [CrossRef]46. Okaze, T.; Kikumoto, H.; Ono, H.; Imano, M.; Ikegaya, N.; Hasama, T.; Nakao, K.; Kishida, T.; Tabata, Y.; Nakajima, K.; et al. Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics. Build. Environ. 2021, 202, 108021. [CrossRef]47. Hunt, J.C.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases; Center for Turbulence Research: Stanford, CA, USA, 1988; pp. 193–208.48. Germano, M. Turbulence: The filtering approach. J. Fluid Mech. 1992, 238, 325–336. [CrossRef]49. Marchioli, C. Large-eddy simulation of turbulent dispersed flows: A review of modelling approaches. Acta Mech. 2017, 228, 741–771. [CrossRef]50. Kuerten, J.G. Point-Particle DNS and LES of Particle-Laden Turbulent flow-a state-of-the-art review. Flow Turbul. Combust. 2016, 97, 689–713. [CrossRef] [PubMed]51. Balachandar, S. A scaling analysis for point–particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 2009, 35, 801–810. [CrossRef]52. Elghobashi, S. Elghobashi, S.: On Predicting Particle-Laden Turbulent Flows. Applied Scientific Research 52, 309-329. Appl. Sci. Res. 1994, 52, 309–329. [CrossRef]53. Maxey, M.R.; Riley, J.J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 1983, 26, 883–889. [CrossRef]54. Alletto, M.; Breuer, M. Prediction of turbulent particle-laden flow in horizontal smooth and rough pipes inducing secondary flow. Int. J. Multiph. Flow 2013, 55, 80–98. [CrossRef]55. Laín, S.; Sommerfeld, M. Euler/Lagrange computations of pneumatic con veying in a horizontal channel with different Wall roughness. Powder Technol. 2008, 184, 76–88. [CrossRef]56. Weller, H.; Greenshields, C.; de Rouvray, C. The OpenFOAM FOUNDATION. Available online: https://openfoam.org/ (accessed on 21 September 2021).57. Hrvoje, J.; Jemcov, A.; Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics; Faculty of Mechanical Engineering and Naval Architecture: Zagreb, Croatia, 2007; Volume 1000, pp. 1–20.58. Jasak, H. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean. Eng. 2009, 1, 89–94. [CrossRef]59. Chen, G.; Xiong, Q.; Morris, P.J.; Paterson, E.G.; Sergeev, A.; Wang, Y.C. OpenFOAM for Computational Fluid Dynamics. N Am. Math. Soc. 2014, 61, 354. [CrossRef]60. Iturrioz, A.; Guanche, R.; Lara, J.; Vidal, C.; Losada, I. Validation of OpenFOAM for Oscillating Water Column three-dimensional modeling. Ocean Eng. 2015, 107, 222–236. [CrossRef]61. Robertson, E.; Choudhury, V.; Bhushan, S.; Walters, D.K. Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Comput. Fluids 2015, 123, 122–145. [CrossRef]62. Dritselis, C.D.; Vlachos, N.S. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 2011, 23, 025103. [CrossRef]63. Dritselis, C.D.; Vlachos, N.S. Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases. Int. J. Multiph. Flow 2011, 37, 706–721. [CrossRef]64. Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ approx 5200. J. Fluid Mech. 2015, 774, 395–415. [CrossRef]65. Yeh, F.; Lei, U. On the motion of small particles in a homogeneous isotropic turbulent flow. Phys. Fluids A Fluid Dyn. 1991, 3, 2571–2586. [CrossRef]66. Mallouppas, G.; van Wachem, B. Large eddy simulations of turbulent particle-laden channel flow. Int. J. Multiph. Flow 2013, 54, 65–75. [CrossRef]67. Marchioli, C.; Armenio, V.; Salvetti, M.V.; Soldati, A. Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Phys. Fluids 2006, 18, 025102. [CrossRef]68. Minier, J.P. On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Prog. Energy Combust. Sci. 2015, 50, 1–62. [CrossRef]69. Ireland, P.J.; Desjardins, O. Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 2017, 338, 405–430. [CrossRef]70. Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C.M. Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 2015, 773, 520–561. [CrossRef]71. Moore, W.C.; Balachandar, S.; Akiki, G. A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 2019, 385, 187–208. [CrossRef]72. Horwitz, J.A.K.; Mani, A. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 2016, 318, 85–109. [CrossRef]73. Marusic, I.; McKeon, B.; Monkewitz, P.; Nagib, H.; Smits, A.; Sreenivasan, K. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 2010, 22, 065103. [CrossRef]74. Marchioli, C. Mechanisms for Transfer, Segregation and Deposition of Heavy Particles in Turbulent Boundary Layers. Ph.D. Thesis, University of Udine, Udine, Italy, 2003.75. Marchioli, C.; Soldati, A.; Kuerten, J.; Arcen, B.; Tanière, A.; Goldensoph, G.; Squires, K.; Cargnelutti, M.; Portela, L. Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. Int. J. Multiph. Flow 2008, 34, 879–893. [CrossRef]76. Gore, R.; Crowe, C. Modulation of turbulence by a dispersed phase. J. Fluids Eng. 1991, 113, 304–307. [CrossRef]77. Eaton, J.K. Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 2009, 35, 792–800. [CrossRef]78. Wu, Y.; Wang, H.; Liu, Z.; Li, J.; Zhang, L.; Zheng, C. Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading. Acta Mech. Sin. 2006, 22, 99–108. [CrossRef]79. Dritselis, C.D.; Vlachos, N.S. Numerical study of educed coherent structures in the near-wall region of a particle-laden cannel flow. Phys. Fluids 2008, 20, 055103. [CrossRef]80. Li, J.; Wang, H.; Liu, Z.; Chen, S.; Zheng, C. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 2012, 53, 1385–1403. [CrossRef]81. White, C.M.; Mungal, M.G. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 2008, 40, 235–256. [CrossRef]82. Sommerfeld, M. Modelling of particle-wall collisions in confined gas-particle flows. Int. J. Multiph. Flow 1992, 18, 905–926. [CrossRef]83. Gai, G.; Hadjadj, A.; Kudriakov, S.; Thomine, O. Particles-induced turbulence: A critical review of physical concepts, numerical modelings and experimental investigations. Theor. Appl. Mech. Lett. 2020, 10, 241–248. [CrossRef]Comunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2561-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2561-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2561-10000-0002-0269-2608virtual::2561-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2561-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/0090bd8d-32b3-4965-8bff-157ac954b518/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdfInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1968457https://red.uao.edu.co/bitstreams/8e05c236-e9fb-4656-b219-aabb0dbf1db0/downloade8b376c2a813487e5114a6e7543445b8MD53TEXTInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdf.txtInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdf.txtExtracted texttext/plain104016https://red.uao.edu.co/bitstreams/4e2d985b-26e0-4fa0-994e-3c1312caf4a8/downloadfd07c3611b701884bba0f3eb20fb4d08MD54THUMBNAILInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdf.jpgInfluence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow.pdf.jpgGenerated Thumbnailimage/jpeg15893https://red.uao.edu.co/bitstreams/102d64d4-ee72-49b3-9e5d-68ceff5e211c/download29c30bba1ae1c13cb504b15c1a11094eMD5510614/13902oai:red.uao.edu.co:10614/139022024-03-06 16:42:42.468https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |