Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP
Because of the high demand for carbon fiber reinforced polymer (CFRP) materials across all industries, the reuse and/or recycling of these materials (rCFRP) is necessary in order to meet the principles of the circular economy, including recycling and reuse. The objective of this study is to estimate...
- Autores:
-
Aparicio Rojas, Gladis Miriam
Abenojar, Juana
Butenegro, José Antonio
Bahrami, Mohsen
Martínez, Miguel Angel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/16208
- Acceso en línea:
- https://hdl.handle.net/10614/16208
https://doi.org/10.3390/ma17092054
https://red.uao.edu.co/
- Palabra clave:
- Vida útil
Resina termoplástica
Poliamida 11
Poliamida 12
Reutilización de compuestos de fibra de carbono
Lifetime
Descomposición
Decomposition
Thermoplastic resin
Polyamide 11
Polyamide 12
Reuse of carbon fiber composites
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2024
| id |
REPOUAO2_3a72f1ecd71eb04f440d50c91db2e4bb |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16208 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| dc.title.translated.spa.fl_str_mv |
Cinética de descomposición y estimación de la vida útil de materiales compuestos termoplásticos reforzados con rCFRP |
| title |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| spellingShingle |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP Vida útil Resina termoplástica Poliamida 11 Poliamida 12 Reutilización de compuestos de fibra de carbono Lifetime Descomposición Decomposition Thermoplastic resin Polyamide 11 Polyamide 12 Reuse of carbon fiber composites |
| title_short |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| title_full |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| title_fullStr |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| title_full_unstemmed |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| title_sort |
Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP |
| dc.creator.fl_str_mv |
Aparicio Rojas, Gladis Miriam Abenojar, Juana Butenegro, José Antonio Bahrami, Mohsen Martínez, Miguel Angel |
| dc.contributor.author.none.fl_str_mv |
Aparicio Rojas, Gladis Miriam Abenojar, Juana Butenegro, José Antonio Bahrami, Mohsen Martínez, Miguel Angel |
| dc.subject.proposal.spa.fl_str_mv |
Vida útil Resina termoplástica Poliamida 11 Poliamida 12 Reutilización de compuestos de fibra de carbono Lifetime |
| topic |
Vida útil Resina termoplástica Poliamida 11 Poliamida 12 Reutilización de compuestos de fibra de carbono Lifetime Descomposición Decomposition Thermoplastic resin Polyamide 11 Polyamide 12 Reuse of carbon fiber composites |
| dc.subject.proposal.eng.fl_str_mv |
Descomposición Decomposition Thermoplastic resin Polyamide 11 Polyamide 12 Reuse of carbon fiber composites |
| description |
Because of the high demand for carbon fiber reinforced polymer (CFRP) materials across all industries, the reuse and/or recycling of these materials (rCFRP) is necessary in order to meet the principles of the circular economy, including recycling and reuse. The objective of this study is to estimate the lifespan of thermoplastic matrix composite materials reinforced with waste materials (CFRP), which undergo only a mechanical cutting process. This estimation is carried out through the thermal decomposition of polymers, including polymer matrix composite materials, which is a complex process due to the numerous reactions involved. Some authors calculate these kinetic parameters using thermogravimetric analysis (TGA) as it is a quick method, and it allows the identification of gases released during decomposition, provided that the equipment is prepared for it. This study includes a comparison between polyamides 11 and 12, as well as between polyamide composite materials with carbon fiber (CF) and polyamides reinforced with CF/epoxy composite material. The latter is treated with plasma to improve adhesion with polyamides. The behavior of weight as a function of temperature was studied at speeds of 3, 6, 10, 13, 17, and 20 °C/min, finding stability of the polyamides up to a temperature of 400 °C, which was consistent with the analysis by mass spectroscopy, where gas evolution is evident after 400 °C. The estimation of the lifespan was carried out using two different methods including the Toop equation and the free kinetics model (MFK). The energy of the decomposition process was determined using the MFK model, which establishes the energy as a function of the degree of conversion. It is estimated that at 5% decomposition, mechanical properties are lost |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-09T14:03:52Z |
| dc.date.available.none.fl_str_mv |
2025-07-09T14:03:52Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.eng.fl_str_mv |
Aparicio Rojas, G. M.; Abenojar, J.; Butenegro, J. A.; Bahrami, M.; Martínez, M. A. (2024). Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP. Materials 17(9). https://doi.org/10.3390/ma17092054 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16208 |
| dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/ma17092054 |
| dc.identifier.eissn.spa.fl_str_mv |
19961944 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Aparicio Rojas, G. M.; Abenojar, J.; Butenegro, J. A.; Bahrami, M.; Martínez, M. A. (2024). Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP. Materials 17(9). https://doi.org/10.3390/ma17092054 19961944 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16208 https://doi.org/10.3390/ma17092054 https://red.uao.edu.co/ |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationissue.spa.fl_str_mv |
9 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
17 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
Materials |
| dc.relation.references.none.fl_str_mv |
1. Adams, R.D. 50 Years in Carbon Fibre, 60 Years in Composites. In The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–28. 2. Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part B Eng. 2023, 250, 110463. [CrossRef] 3. Fu, Y.; Zhang, Y.; Chen, H.; Han, L.; Yin, X.; Fu, Q.; Sun, J. Ultra-high temperature performance of carbon fiber composite reinforced by HfC nanowires: A promising lightweight composites for aerospace engineering. Compos. Part B Eng. 2023, 250, 110453. [CrossRef] 4. Lavayen-Farfan, D.; Butenegro-Garcia, J.A.; Boada, M.J.L.; Martinez-Casanova, M.A.; Rodriguez-Hernandez, J.A. Theoretical and experimental study of the bending collapse of partially reinforced CFRP–Steel square tubes. Thin-Walled Struct. 2022, 177, 109457. [CrossRef] 5. Galvez, P.; Quesada, A.; Martinez, M.A.; Abenojar, J.; Boada, M.J.L.; Diaz, V. Study of the behaviour of adhesive joints of steel with CFRP for its application in bus structures. Compos. Part B Eng. 2017, 129, 41–46. [CrossRef] 6. Wang, Y.; Li, A.; Zhang, S.; Guo, B.; Niu, D. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301. [CrossRef] 7. Yazdanbakhsh, A.; Bank, L.C. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers 2014, 6, 1810–1826. [CrossRef] 8. Hiremath, N.; Young, S.; Ghossein, H.; Penumadu, D.; Vaidya, U.; Theodore, M. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Compos. Part B Eng. 2020, 198, 108156. [CrossRef] 9. Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020, 8, 26. [CrossRef] 10. Loos, A.C.; Springer, G.S. Curing of epoxy matrix composites. J. Compos. Mater. 1983, 17, 135–169. [CrossRef] 11. Vargas, M.A.; Sachsenheimer, K.; Guthausen, G. In-situ investigations of the curing of a polyester resin. Polym. Test. 2012, 31, 127–135. [CrossRef] 12. Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [CrossRef] 13. Chen, C.-H.; Chiang, C.-L.; Wang, J.-X.; Shen, M.-Y. A circular economy study on the characterization and thermal properties of thermoplastic composite created using regenerated carbon fiber recycled from waste thermoset CFRP bicycle part as reinforcement. Compos. Sci. Technol. 2022, 230, 109761. [CrossRef] 14. Almushaikeh, A.M.; Alaswad, S.O.; Alsuhybani, M.S.; AlOtaibi, B.M.; Alarifi, I.M.; Alqahtani, N.B.; Aldosari, S.M.; Alsaleh, S.S.; Haidyrah, A.S.; Alolyan, A.A.; et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review. Polym. Test. 2023, 108029. [CrossRef] 15. Alshammari, B.A.; Alsuhybani, M.S.; Almushaikeh, A.M.; Alotaibi, B.M.; Alenad, A.M.; Alqahtani, N.B.; Alharbi, A.G. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers 2021, 13, 2474. [CrossRef] [PubMed] 16. Bahrami, M.; Abenojar, J.; Martínez, M.A. Comparative characterization of hot-pressed polyamide 11 and 12, Mechanical, thermal and durability properties. Polymers 2021, 13, 3553. [CrossRef] 17. Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials 2021, 14, 6401. [CrossRef] [PubMed] 18. Cooney, J.; Day, M.; Wiles, D. Thermal degradation of poly (ethylene terephthalate): A kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1983, 28, 2887–2902. [CrossRef] 19. Farivar, F.; Yap, P.L.; Karunagaran, R.U.; Losic, D. Thermogravimetric analysis (TGA) of graphene materials: Effect of particle size of graphene, graphene oxide and graphite on thermal parameters. J. Carbon Res. 2021, 7, 41. [CrossRef] 20. Amin, M.S.; Molin, T.E.; Tampubolon, C.; Kranbuehl, D.E.; Schniepp, H.C. Boron nitride nanotube impurity detection and purity verification. Chem. Mater. 2020, 32, 9090–9097. [CrossRef] 21. Dwivedi, K.K.; Karmakar, M.; Chatterjee, P. Thermal degradation, characterization and kinetic modeling of different particle size coal through TGA. Therm. Sci. Eng. Prog. 2020, 18, 100523. [CrossRef] 22. Mafamadi, M.; Sadare, O.; Bada, S.; Ayeni, A.; Daramola, M. (Eds.) Mathematical Modelling and Kinetics of Thermal Decomposition of Corn Stover Using Thermogravimetry (TGA-DTG) Technique; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022. 23. Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [CrossRef] 24. Yang, J.; Miranda, R.; Roy, C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym. Degrad. Stab. 2001, 73, 455–461. [CrossRef] 25. Flynn, J. A critique of lifetime prediction of polymers by thermal analysis. J. Therm. Anal. Calorim. 1995, 44, 499–512. [CrossRef] 26. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [CrossRef] 27. Yu, B.; Till, V.; Thomas, K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Compos. Sci. Technol. 2007, 67, 3098–3109. [CrossRef] 28. Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [CrossRef] 29. Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [CrossRef] 30. Coats, A.W.; Redfern, J. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [CrossRef] 31. Zhang, X.; Huang, R. Thermal decomposition kinetics of basalt fiber-reinforced wood polymer composites. Polymers 2020, 12, 2283. [CrossRef] 32. Enciso, B.; Abenojar, J.; Aparicio, G.; Martínez, M. Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. J. Ind. Text. 2021, 51, 594–610. [CrossRef] 33. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet. 1996, 28, 95–101. [CrossRef] 34. Vyazovkin, S.;Wight, C. Kinetics in solids. Annu. Rev. Phys. Chem. 1997, 48, 125–149. [CrossRef] [PubMed] 35. Sewry, J.D.; Brown, M.E. “Model-free” kinetic analysis? Thermochim. Acta 2002, 390, 217–225. [CrossRef] 36. Sihn, S.; Ehlert, G.J.; Roy, A.K.; Vernon, J.P. Identifying unified kinetic model parameters for thermal decomposition of polymer matrix composites. J. Compos. Mater. 2019, 53, 2875–2890. [CrossRef] 37. Batista, N.L.; Costa, M.L.; Iha, K.; Botelho, E.C. Thermal degradation and lifetime estimation of poly (ether imide)/carbon fiber composites. J. Thermoplast. Compos. Mater. 2015, 28, 265–274. [CrossRef] 38. Liao, Y.; Li, R.; Shen, C.; Gong, B.; Yin, F.;Wang, L. A Service Life Prediction Method of Stranded Carbon Fiber Composite Core Conductor for Overhead Transmission Lines. Polymers 2022, 14, 4431. [CrossRef] [PubMed] 39. Product Data Sheet: Pultruded Carbon Fibre Plates for Structural Strengthenin as Part pf the SIKA® CARBODUR® System; SIKA®: Baar, Switzerland, 2018. 40. Owens, D.K.;Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [CrossRef] 41. Heng, J.Y.; Pearse, D.F.; Thielmann, F.; Lampke, T.; Bismarck, A. Methods to determine surface energies of natural fibres: A review. Compos. Interfaces 2007, 14, 581–604. [CrossRef] 42. Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [CrossRef] 43. Toop, D.J. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans. Electr. Insul. 1971, 2–14. [CrossRef] 44. Florez, T.A.; Aparicio, G.M. Thermal characterization and lifetime estimation of the humus lombricospt. Am. J. Anal. Chem. 2014, 5, 45–49. [CrossRef] |
| dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2024 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
Derechos reservados - MDPI, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.eng.fl_str_mv |
MDPI |
| dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/ba39d8d0-6528-4cbb-a2c3-b4d6849ee081/download https://red.uao.edu.co/bitstreams/3a486da7-04bc-4f12-b568-e2577896632d/download https://red.uao.edu.co/bitstreams/7af3a242-8af2-4542-ac99-7b1f38dabcf2/download https://red.uao.edu.co/bitstreams/59f7d9b7-f24d-4187-b747-7a459f8478f6/download |
| bitstream.checksum.fl_str_mv |
415e9ee82affc5712a9eb3e383b5d2ca 6987b791264a2b5525252450f99b10d1 83e4f05ec1ad732ccf2977c2e47e32aa ee210b98191daab8eabe247ee5e74492 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053140238925824 |
| spelling |
Aparicio Rojas, Gladis Miriamvirtual::6100-1Abenojar, JuanaButenegro, José AntonioBahrami, MohsenMartínez, Miguel Angel2025-07-09T14:03:52Z2025-07-09T14:03:52Z2024Aparicio Rojas, G. M.; Abenojar, J.; Butenegro, J. A.; Bahrami, M.; Martínez, M. A. (2024). Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRP. Materials 17(9). https://doi.org/10.3390/ma17092054https://hdl.handle.net/10614/16208https://doi.org/10.3390/ma1709205419961944Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Because of the high demand for carbon fiber reinforced polymer (CFRP) materials across all industries, the reuse and/or recycling of these materials (rCFRP) is necessary in order to meet the principles of the circular economy, including recycling and reuse. The objective of this study is to estimate the lifespan of thermoplastic matrix composite materials reinforced with waste materials (CFRP), which undergo only a mechanical cutting process. This estimation is carried out through the thermal decomposition of polymers, including polymer matrix composite materials, which is a complex process due to the numerous reactions involved. Some authors calculate these kinetic parameters using thermogravimetric analysis (TGA) as it is a quick method, and it allows the identification of gases released during decomposition, provided that the equipment is prepared for it. This study includes a comparison between polyamides 11 and 12, as well as between polyamide composite materials with carbon fiber (CF) and polyamides reinforced with CF/epoxy composite material. The latter is treated with plasma to improve adhesion with polyamides. The behavior of weight as a function of temperature was studied at speeds of 3, 6, 10, 13, 17, and 20 °C/min, finding stability of the polyamides up to a temperature of 400 °C, which was consistent with the analysis by mass spectroscopy, where gas evolution is evident after 400 °C. The estimation of the lifespan was carried out using two different methods including the Toop equation and the free kinetics model (MFK). The energy of the decomposition process was determined using the MFK model, which establishes the energy as a function of the degree of conversion. It is estimated that at 5% decomposition, mechanical properties are lostDebido a la alta demanda de materiales de polímero reforzado con fibra de carbono (CFRP) en todas las industrias, la reutilización y/o reciclaje de estos materiales (rCFRP) es necesario para cumplir con los principios de la economía circular, incluyendo el reciclaje y la reutilización. El objetivo de este estudio es estimar la vida útil de los materiales compuestos de matriz termoplástica reforzados con materiales de desecho (CFRP), que se someten únicamente a un proceso de corte mecánico. Esta estimación se lleva a cabo a través de la descomposición térmica de polímeros, incluyendo materiales compuestos de matriz polimérica, que es un proceso complejo debido a las numerosas reacciones involucradas. Algunos autores calculan estos parámetros cinéticos mediante análisis termogravimétrico (TGA) ya que es un método rápido, y permite la identificación de gases liberados durante la descomposición, siempre que el equipo esté preparado para ello. Este estudio incluye una comparación entre poliamidas 11 y 12, así como entre materiales compuestos de poliamida con fibra de carbono (CF) y poliamidas reforzadas con material compuesto CF/epoxi. Este último se trata con plasma para mejorar la adhesión con poliamidas. Se estudió el comportamiento del peso en función de la temperatura a velocidades de 3, 6, 10, 13, 17 y 20 °C/min, encontrando estabilidad de las poliamidas hasta una temperatura de 400 °C, lo cual fue consistente con el análisis por espectroscopia de masas, donde el desprendimiento de gas es evidente después de 400 °C. La estimación de la vida útil se realizó utilizando dos métodos diferentes, incluyendo la ecuación de Toop y el modelo cinético libre (MFK). La energía del proceso de descomposición se determinó utilizando el modelo MFK, que establece la energía como una función del grado de conversión. Se estima que al 5% de descomposición, se pierden las propiedades mecánicas14 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Decomposition kinetics and lifetime estimation of thermoplastic composite materials reinforced with rCFRPCinética de descomposición y estimación de la vida útil de materiales compuestos termoplásticos reforzados con rCFRPArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85149117Materials1. Adams, R.D. 50 Years in Carbon Fibre, 60 Years in Composites. In The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–28.2. Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part B Eng. 2023, 250, 110463. [CrossRef]3. Fu, Y.; Zhang, Y.; Chen, H.; Han, L.; Yin, X.; Fu, Q.; Sun, J. Ultra-high temperature performance of carbon fiber composite reinforced by HfC nanowires: A promising lightweight composites for aerospace engineering. Compos. Part B Eng. 2023, 250, 110453. [CrossRef]4. Lavayen-Farfan, D.; Butenegro-Garcia, J.A.; Boada, M.J.L.; Martinez-Casanova, M.A.; Rodriguez-Hernandez, J.A. Theoretical and experimental study of the bending collapse of partially reinforced CFRP–Steel square tubes. Thin-Walled Struct. 2022, 177, 109457. [CrossRef]5. Galvez, P.; Quesada, A.; Martinez, M.A.; Abenojar, J.; Boada, M.J.L.; Diaz, V. Study of the behaviour of adhesive joints of steel with CFRP for its application in bus structures. Compos. Part B Eng. 2017, 129, 41–46. [CrossRef]6. Wang, Y.; Li, A.; Zhang, S.; Guo, B.; Niu, D. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301. [CrossRef]7. Yazdanbakhsh, A.; Bank, L.C. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers 2014, 6, 1810–1826. [CrossRef]8. Hiremath, N.; Young, S.; Ghossein, H.; Penumadu, D.; Vaidya, U.; Theodore, M. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Compos. Part B Eng. 2020, 198, 108156. [CrossRef]9. Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020, 8, 26. [CrossRef]10. Loos, A.C.; Springer, G.S. Curing of epoxy matrix composites. J. Compos. Mater. 1983, 17, 135–169. [CrossRef]11. Vargas, M.A.; Sachsenheimer, K.; Guthausen, G. In-situ investigations of the curing of a polyester resin. Polym. Test. 2012, 31, 127–135. [CrossRef]12. Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [CrossRef]13. Chen, C.-H.; Chiang, C.-L.; Wang, J.-X.; Shen, M.-Y. A circular economy study on the characterization and thermal properties of thermoplastic composite created using regenerated carbon fiber recycled from waste thermoset CFRP bicycle part as reinforcement. Compos. Sci. Technol. 2022, 230, 109761. [CrossRef]14. Almushaikeh, A.M.; Alaswad, S.O.; Alsuhybani, M.S.; AlOtaibi, B.M.; Alarifi, I.M.; Alqahtani, N.B.; Aldosari, S.M.; Alsaleh, S.S.; Haidyrah, A.S.; Alolyan, A.A.; et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review. Polym. Test. 2023, 108029. [CrossRef]15. Alshammari, B.A.; Alsuhybani, M.S.; Almushaikeh, A.M.; Alotaibi, B.M.; Alenad, A.M.; Alqahtani, N.B.; Alharbi, A.G. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers 2021, 13, 2474. [CrossRef] [PubMed]16. Bahrami, M.; Abenojar, J.; Martínez, M.A. Comparative characterization of hot-pressed polyamide 11 and 12, Mechanical, thermal and durability properties. Polymers 2021, 13, 3553. [CrossRef]17. Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials 2021, 14, 6401. [CrossRef] [PubMed]18. Cooney, J.; Day, M.; Wiles, D. Thermal degradation of poly (ethylene terephthalate): A kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1983, 28, 2887–2902. [CrossRef]19. Farivar, F.; Yap, P.L.; Karunagaran, R.U.; Losic, D. Thermogravimetric analysis (TGA) of graphene materials: Effect of particle size of graphene, graphene oxide and graphite on thermal parameters. J. Carbon Res. 2021, 7, 41. [CrossRef]20. Amin, M.S.; Molin, T.E.; Tampubolon, C.; Kranbuehl, D.E.; Schniepp, H.C. Boron nitride nanotube impurity detection and purity verification. Chem. Mater. 2020, 32, 9090–9097. [CrossRef]21. Dwivedi, K.K.; Karmakar, M.; Chatterjee, P. Thermal degradation, characterization and kinetic modeling of different particle size coal through TGA. Therm. Sci. Eng. Prog. 2020, 18, 100523. [CrossRef]22. Mafamadi, M.; Sadare, O.; Bada, S.; Ayeni, A.; Daramola, M. (Eds.) Mathematical Modelling and Kinetics of Thermal Decomposition of Corn Stover Using Thermogravimetry (TGA-DTG) Technique; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022.23. Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [CrossRef]24. Yang, J.; Miranda, R.; Roy, C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym. Degrad. Stab. 2001, 73, 455–461. [CrossRef]25. Flynn, J. A critique of lifetime prediction of polymers by thermal analysis. J. Therm. Anal. Calorim. 1995, 44, 499–512. [CrossRef]26. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [CrossRef]27. Yu, B.; Till, V.; Thomas, K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Compos. Sci. Technol. 2007, 67, 3098–3109. [CrossRef]28. Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [CrossRef]29. Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [CrossRef]30. Coats, A.W.; Redfern, J. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [CrossRef]31. Zhang, X.; Huang, R. Thermal decomposition kinetics of basalt fiber-reinforced wood polymer composites. Polymers 2020, 12, 2283. [CrossRef]32. Enciso, B.; Abenojar, J.; Aparicio, G.; Martínez, M. Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. J. Ind. Text. 2021, 51, 594–610. [CrossRef]33. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet. 1996, 28, 95–101. [CrossRef]34. Vyazovkin, S.;Wight, C. Kinetics in solids. Annu. Rev. Phys. Chem. 1997, 48, 125–149. [CrossRef] [PubMed]35. Sewry, J.D.; Brown, M.E. “Model-free” kinetic analysis? Thermochim. Acta 2002, 390, 217–225. [CrossRef]36. Sihn, S.; Ehlert, G.J.; Roy, A.K.; Vernon, J.P. Identifying unified kinetic model parameters for thermal decomposition of polymer matrix composites. J. Compos. Mater. 2019, 53, 2875–2890. [CrossRef]37. Batista, N.L.; Costa, M.L.; Iha, K.; Botelho, E.C. Thermal degradation and lifetime estimation of poly (ether imide)/carbon fiber composites. J. Thermoplast. Compos. Mater. 2015, 28, 265–274. [CrossRef]38. Liao, Y.; Li, R.; Shen, C.; Gong, B.; Yin, F.;Wang, L. A Service Life Prediction Method of Stranded Carbon Fiber Composite Core Conductor for Overhead Transmission Lines. Polymers 2022, 14, 4431. [CrossRef] [PubMed]39. Product Data Sheet: Pultruded Carbon Fibre Plates for Structural Strengthenin as Part pf the SIKA® CARBODUR® System; SIKA®: Baar, Switzerland, 2018.40. Owens, D.K.;Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [CrossRef]41. Heng, J.Y.; Pearse, D.F.; Thielmann, F.; Lampke, T.; Bismarck, A. Methods to determine surface energies of natural fibres: A review. Compos. Interfaces 2007, 14, 581–604. [CrossRef]42. Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [CrossRef]43. Toop, D.J. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans. Electr. Insul. 1971, 2–14. [CrossRef]44. Florez, T.A.; Aparicio, G.M. Thermal characterization and lifetime estimation of the humus lombricospt. Am. J. Anal. Chem. 2014, 5, 45–49. [CrossRef]Vida útilResina termoplásticaPoliamida 11Poliamida 12Reutilización de compuestos de fibra de carbonoLifetimeDescomposiciónDecompositionThermoplastic resinPolyamide 11Polyamide 12Reuse of carbon fiber compositesPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::6100-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::6100-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::6100-10000-0002-7158-1223virtual::6100-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::6100-1ORIGINALDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdfDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2853571https://red.uao.edu.co/bitstreams/ba39d8d0-6528-4cbb-a2c3-b4d6849ee081/download415e9ee82affc5712a9eb3e383b5d2caMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/3a486da7-04bc-4f12-b568-e2577896632d/download6987b791264a2b5525252450f99b10d1MD52TEXTDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdf.txtDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdf.txtExtracted texttext/plain63268https://red.uao.edu.co/bitstreams/7af3a242-8af2-4542-ac99-7b1f38dabcf2/download83e4f05ec1ad732ccf2977c2e47e32aaMD53THUMBNAILDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdf.jpgDecomposition_kinetics_and_lifetime_estimation_of_thermoplastic_composite_materials_reinforced_with_rCFRP.pdf.jpgGenerated Thumbnailimage/jpeg15439https://red.uao.edu.co/bitstreams/59f7d9b7-f24d-4187-b747-7a459f8478f6/downloadee210b98191daab8eabe247ee5e74492MD5410614/16208oai:red.uao.edu.co:10614/162082025-07-10 03:01:29.185https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
