Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars
Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly...
- Autores:
-
Jaramillo Suárez, Héctor Enrique
Gruber, Gabriel
Nicolini, Luis Fernando
Ribeiro, Marx
Lerchl, Tanja
Wilke, Hans-Joachim
Senner, Veit
Kirschke, Jan S.
Nispel, Kati
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/16204
- Acceso en línea:
- https://hdl.handle.net/10614/16204
https://red.uao.edu.co/
- Palabra clave:
- Spine
Intervertebral disc
Fiber reinforcement
Finite element method
Sensitivity analysis
Calibration
Validation
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUAO2_39f719d230ebde966bcf457e7fab8602 |
|---|---|
| oai_identifier_str |
oai:red.uao.edu.co:10614/16204 |
| network_acronym_str |
REPOUAO2 |
| network_name_str |
RED: Repositorio Educativo Digital UAO |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| title |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| spellingShingle |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars Spine Intervertebral disc Fiber reinforcement Finite element method Sensitivity analysis Calibration Validation |
| title_short |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| title_full |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| title_fullStr |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| title_full_unstemmed |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| title_sort |
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars |
| dc.creator.fl_str_mv |
Jaramillo Suárez, Héctor Enrique Gruber, Gabriel Nicolini, Luis Fernando Ribeiro, Marx Lerchl, Tanja Wilke, Hans-Joachim Senner, Veit Kirschke, Jan S. Nispel, Kati |
| dc.contributor.author.none.fl_str_mv |
Jaramillo Suárez, Héctor Enrique Gruber, Gabriel Nicolini, Luis Fernando Ribeiro, Marx Lerchl, Tanja Wilke, Hans-Joachim Senner, Veit Kirschke, Jan S. Nispel, Kati |
| dc.subject.proposal.eng.fl_str_mv |
Spine Intervertebral disc Fiber reinforcement Finite element method Sensitivity analysis Calibration Validation |
| topic |
Spine Intervertebral disc Fiber reinforcement Finite element method Sensitivity analysis Calibration Validation |
| description |
Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-08T15:27:10Z |
| dc.date.available.none.fl_str_mv |
2025-07-08T15:27:10Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.citation.eng.fl_str_mv |
Jaramillo Suárez, H. E.; Gruber, G.; Nicolini, L. F.; Ribeiro, M.; Lerchl, T.; Wilke, H. J.; Senner, V.; Kirschke, J. S. y Nispel, K. (2024). Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars. Front. Bioeng. Biotechnol. Vol.12. 14 p. doi: 10.3389/fbioe.2024.1391957 |
| dc.identifier.issn.spa.fl_str_mv |
22964185 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/16204 |
| dc.identifier.doi.spa.fl_str_mv |
doi: 10.3389/fbioe.2024.1391957 |
| dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
| dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
| dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
| identifier_str_mv |
Jaramillo Suárez, H. E.; Gruber, G.; Nicolini, L. F.; Ribeiro, M.; Lerchl, T.; Wilke, H. J.; Senner, V.; Kirschke, J. S. y Nispel, K. (2024). Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars. Front. Bioeng. Biotechnol. Vol.12. 14 p. doi: 10.3389/fbioe.2024.1391957 22964185 doi: 10.3389/fbioe.2024.1391957 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
| url |
https://hdl.handle.net/10614/16204 https://red.uao.edu.co/ |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
12 |
| dc.relation.ispartofjournal.eng.fl_str_mv |
Frontiers in Bioengineering and Biotechnology |
| dc.relation.references.none.fl_str_mv |
Arora, J. S. (2017) Introduction to optimum design. 4 edn. Elsevier. doi:10.1016/ C2013-0-15344-5 Ayturk, U. M., and Puttlitz, C. M. (2011). Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput. methods biomechanics Biomed. Eng. 14, 695–705. doi:10.1080/10255842.2010.493517 Bashkuev, M., Reitmaier, S., and Schmidt, H. (2020). Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J. biomechanics 102, 109518. doi:10.1016/j.jbiomech.2019.109518 Beckmann, A., Mundt, M., Herren, C., Siewe, J., Kobbe, P., Sobottke, R., et al. (2016). Development and experimental validation of a patient–specific lumbar spine fe model to predict the effects of instrumentations. PAMM 16, 73–74. doi:10.1002/pamm. 201610025 Busscher, I., Ploegmakers, J. J. W., Verkerke, G. J., and Veldhuizen, A. G. (2010). Comparative anatomical dimensions of the complete human and porcine spine. Eur. spine J. 19, 1104–1114. doi:10.1007/s00586-010-1326-9 Cai, X.-Y., Sun, M.-S., Huang, Y.-P., Liu, Z.-X., Liu, C.-J., Du, C.-F., et al. (2020). Biomechanical effect of l<sub>4</sub>–l<sub>5</sub> intervertebral disc degeneration on the lower lumbar spine: a finite element study. Orthop. Surg. 12, 917–930. doi:10.1111/os.12703 Cassidy, J. J., Hiltner, A., and Baer, E. (1989). Hierarchical structure of the intervertebral disc. Connect. tissue Res. 23, 75–88. doi:10.3109/03008208909103905 Coombs, D., Bushelow, M., Laz, P., Rao, M., and Rullkoetter, P. (2013). “Stepwise validated finite element model of the human lumbar spine,” in ASME 2013 conference on Frontiers in medical devices: applications of computer modeling and simulation (American Society of Mechanical Engineers). doi:10.1115/FMD2013-16167 Damm, N., Rockenfeller, R., and Gruber, K. (2020). Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomechanics Model. Mechanobiol. 19, 893–910. doi:10.1007/s10237-019-01259-6 Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C. M., Adam, C. J., Chen, C. S., et al. (2014). Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. biomechanics 47, 1757–1766. doi:10.1016/j.jbiomech.2014.04.002 Du, Y., Tavana, S., Rahman, T., Baxan, N., Hansen, U. N., and Newell, N. (2021). Sensitivity of intervertebral disc finite element models to internal geometric and nongeometric parameters. Front. Bioeng. Biotechnol. 9, 660013. doi:10.3389/fbioe.2021. 660013 Ebara, S., Iatridis, J. C., Setton, L. A., Foster, R. J., Mow, V. C., and Weidenbaum, M. (1996). Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21, 452–461. doi:10.1097/00007632-199602150-00009 Eberlein, R., Holzapfel, G. A., and Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput. methods biomechanics Biomed. Eng. 4, 209–229. doi:10.1080/ 10255840108908005 Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A., and Galbusera, F. (2014). Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. (Bristol, Avon) 29, 363–372. doi:10.1016/j.clinbiomech.2014.01.006 Frost, B. A., Camarero-Espinosa, S., and Foster, E. J. (2019). Materials for the spine: anatomy, problems, and solutions. Mater. (Basel, Switz.) 12, 253. doi:10.3390/ ma12020253 Galbusera, F., Schmidt, H., Noailly, J., Malandrino, A., Lacroix, D.,Wilke, H.-J., et al. (2011). Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J. Mech. Behav. Biomed. Mater. 4, 1234–1241. doi:10. 1016/j.jmbbm.2011.04.008 Heuer, F., Schmidt, H., Claes, L., and Wilke, H.-J. (2007a). Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. biomechanics 40, 795–803. doi:10.1016/j.jbiomech.2006.03.016 Heuer, F., Schmidt, H., Klezl, Z., Claes, L., and Wilke, H.-J. (2007b). Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. biomechanics 40, 271–280. doi:10.1016/j.jbiomech.2006.01.007 Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48. doi:10.1023/A:1010835316564 Holzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., and Regitnig, P. (2005). Single lamellar mechanics of the human lumbar anulus fibrosus. Biomechanics Model. Mechanobiol. 3, 125–140. doi:10.1007/s10237-004-0053-8 Hoy, D., March, L., Brooks, P., Blyth, F., Woolf, A., Bain, C., et al. (2014). The global burden of low back pain: estimates from the global burden of disease 2010 study. Ann. rheumatic Dis. 73, 968–974. doi:10.1136/annrheumdis-2013-204428 Jaramillo, H. E., Gómez, L., and García, J. J. (2015). A finite element model of the l4- l5-s1 human spine segment including the heterogeneity and anisotropy of the discs. Acta Bioeng. biomechanics 17, 15–24. doi:10.5277/ABB-00046-2014-02 Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., and García, J. J. (2016). Characterization of the l4-l5-s1 motion segment using the stepwise reduction method. J. biomechanics 49, 1248–1254. doi:10.1016/j.jbiomech.2016.02.050 Karajan, N. (2012). Multiphasic intervertebral disc mechanics: theory and application. Archives Comput. Methods Eng. 19, 261–339. doi:10.1007/s11831-012- 9073-1 Karajan, N., and Ehlers, W. (2007). Discussion on appropriate material parameters for a porous media model of the ivd. PAMM 7, 4020003–4020004. doi:10.1002/pamm. 200700065 Kiapour, A., Goel, V. K., Krishna, M., and Koruprolu, S. (2009). “Posterior total joint replacement, a novel alternative to lumbar anterior disc arthroplasty: a computational and vitro study,” in ASME 2009 summer bioengineering conference, parts A and B (American Society of Mechanical Engineers), 397–398. doi:10.1115/SBC2009-205779 Lavecchia, C. E., Espino, D. M., Moerman, K. M., Tse, K. M., Robinson, D., Lee, P. V. S., et al. (2018). Lumbar model generator: a tool for the automated generation of a parametric scalable model of the lumbar spine. J. R. Soc. Interface 15, 20170829. doi:10. 1098/rsif.2017.0829 Lee, K. K., and Teo, E. C. (2005). Material sensitivity study on lumbarmotion segment (l2-l3) under sagittal plane loadings using probabilistic method. J. spinal Disord. Tech. 18, 163–170. doi:10.1097/01.bsd.0000147658.60961.51 Little, J. P., de Visser, H., Pearcy, M. J., and Adam, C. J. (2008). Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy? a modeling study. Comput. methods biomechanics Biomed. Eng. 11, 95–103. doi:10.1080/ 10255840701552143 Liu, C.-L., Zhong, Z.-C., Hsu, H.-W., Shih, S.-L., Wang, S.-T., Hung, C., et al. (2011). Effect of the cord pretension of the dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur. Spine J. 20, 1850–1858. doi:10.1007/s00586-011-1817-3 Malandrino, A., Noailly, J., and Lacroix, D. (2013). Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Comput. methods biomechanics Biomed. Eng. 16, 923–928. doi:10. 1080/10255842.2011.644539 Malandrino, A., Pozo, J. M., Castro-Mateos, I., Frangi, A. F., van Rijsbergen, M. M., Ito, K., et al. (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disk models. Front. Bioeng. Biotechnol. 3, 5. doi:10.3389/fbioe.2015.00005 Marchand, F., and Ahmed, A. M. (1990). Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15, 402–410. doi:10.1097/00007632-199005000- 00011 Meijer, G. J. M., Homminga, J., Veldhuizen, A. G., and Verkerke, G. J. (2011). Influence of interpersonal geometrical variation on spinal motion segment stiffness: implications for patient-specific modeling. Spine 36, E929–E935. doi:10.1097/BRS. 0b013e3181fd7f7f Mittelhammer, R. C. (2013) Mathematical statistics for economics and business. New York, NY: Springer New York. doi:10.1007/978-1-4614-5022-1 Moramarco, V., Del Pérez Palomar, A., Pappalettere, C., and Doblaré, M. (2010). An accurate validation of a computational model of a human lumbosacral segment. J. biomechanics 43, 334–342. doi:10.1016/j.jbiomech.2009.07.042 Naoum, S., Vasiliadis, A. V., Koutserimpas, C., Mylonakis, N., Kotsapas, M., and Katakalos, K. (2021). Finite element method for the evaluation of the human spine: a literature overview. J. Funct. biomaterials 12, 43. doi:10.3390/jfb12030043 Newell, N., Carpanen, D., Grigoriadis, G., Little, J. P., and Masouros, S. D. (2019). Material properties of human lumbar intervertebral discs across strain rates. spine J. official J. North Am. Spine Soc. 19, 2013–2024. doi:10.1016/j.spinee.2019.07.012 Nicolini, L. F., Beckmann, A., Laubach, M., Hildebrand, F., Kobbe, P., de Mello Roesler, C. R., et al. (2022a). An experimental-numerical method for the calibration of finite element models of the lumbar spine. Med. Eng. Phys. 107, 103854. doi:10.1016/j. medengphy.2022.103854 Nicolini, L. F., Greven, J., Kobbe, P., Hildebrand, F., Stoffel, M., Markert, B., et al. (2022b). The effects of tether pretension within vertebral body tethering on the biomechanics of the spine: a finite element analysis. Lat. Am. J. Solids Struct. 19. doi:10.1590/1679-78256932 Niemeyer, F.,Wilke, H.-J., and Schmidt, H. (2012). Geometry strongly influences the response of numerical models of the lumbar spine–a probabilistic finite element analysis. J. biomechanics 45, 1414–1423. doi:10.1016/j.jbiomech.2012.02.021 Noailly, J., Planell, J. A., and Lacroix, D. (2011). On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomechanics Model. Mechanobiol. 10, 203–219. doi:10.1007/s10237-010-0227-5 Noailly, J., Wilke, H.-J., Planell, J. A., and Lacroix, D. (2007). How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? consequences on the validation process. J. biomechanics 40, 2414–2425. doi:10.1016/j. jbiomech.2006.11.021 O’Connell, G. D., Guerin, H. L., and Elliott, D. M. (2009). Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. biomechanical Eng. 131, 111007. doi:10.1115/1.3212104 O’Connell, G. D., Sen, S., and Elliott, D. M. (2012). Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomechanics Model. Mechanobiol. 11, 493–503. doi:10.1007/s10237-011-0328-9 Park, W. M., Kim, K., and Kim, Y. H. (2013). Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput. Biol. Med. 43, 1234–1240. doi:10.1016/j.compbiomed. 2013.06.011 Rao, M. (2012) Explicit finite element modeling of the human lumbar spine. PhD. Thesis. University of Denver, https://digitalcommons.du.edu/etd/906. Rohlmann, A., Zander, T., Schmidt, H., Wilke, H.-J., and Bergmann, G. (2006). Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J. biomechanics 39, 2484–2490. doi:10. 1016/j.jbiomech.2005.07.026 A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al. (2007). Global sensitivity analysis. The primer (Wiley). doi:10.1002/9780470725184 Schlager, B., Niemeyer, F., Galbusera, F., Volkheimer, D., Jonas, R., and Wilke, H.-J. (2018). Uncertainty analysis of material properties and morphology parameters in numericalmodels regarding themotion of lumbar vertebral segments. Comput. methods biomechanics Biomed. Eng. 21, 673–683. doi:10.1080/10255842.2018.1508571 Schmidt, H., Galbusera, F., Rohlmann, A., Zander, T., and Wilke, H.-J. (2012). Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur. spine J. 21, 663–674. doi:10.1007/ s00586-010-1382-1 Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., and Wilke, H.-J. (2007). Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. (Bristol, Avon) 22, 377–384. doi:10. 1016/j.clinbiomech.2006.11.008 Schmidt, H., Heuer, F., Simon, U., Kettler, A., Rohlmann, A., Claes, L., et al. (2006). Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. (Bristol, Avon) 21, 337–344. doi:10. 1016/j.clinbiomech.2005.12.001 Shahraki, N. M., Fatemi, A., Goel, V. K., and Agarwal, A. (2015). On the use of biaxial properties in modeling annulus as a holzapfel-gasser-ogden material. Front. Bioeng. Biotechnol. 3, 69. doi:10.3389/fbioe.2015.00069 Shirazi-Adl, A. (1994). Biomechanics of the lumbar spine in sagittal/lateral moments. Spine 19, 2407–2414. doi:10.1097/00007632-199411000-00007 Shirazi-Adl, A., Ahmed, A. M., and Shrivastava, S. C. (1986).Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11, 914–927. doi:10.1097/00007632-198611000-00012 Tang, S., and Rebholz, B. J. (2011). Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? a finite element study. J. Orthop. Sci. official J. Jpn. Orthop. Assoc. 16, 221–228. doi:10.1007/s00776-011-0037-3 Vinyas, Adhikari, R., and Shyamasunder Bhat, N. (2022). Subject-specific finite element modelling of the intervertebral disc using t2 mapped mri. Mater. Today Proc. 62, 1575–1579. doi:10.1016/j.matpr.2022.03.104 von der Lippe, E., Krause, L., Prost, M., Wengler, A., Leddin, J., Müller, A., et al. (2021). Prävalenz von rücken-und nackenschmerzen in deutschland. ergebnisse der krankheitslast-studie burden 2020. J. Health Monit. doi:10.25646/7854 Wang, W., Zhou, C., Guo, R., Cha, T., and Li, G. (2021a). Influence of structural and material property uncertainties on biomechanics of intervertebral discs - implications for disc tissue engineering. J. Mech. Behav. Biomed. Mater. 122, 104661. doi:10.1016/j. jmbbm.2021.104661 Wang, W., Zhou, C., Guo, R., Cha, T., and Li, G. (2021b). Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput. methods biomechanics Biomed. Eng. 24, 1730–1741. doi:10.1080/10255842.2021. 1914023 Warren, J.M., Mazzoleni, A. P., and Hey, L. A. (2020). Development and validation of a computationally efficient finite element model of the human lumbar spine: application to disc degeneration. Int. J. spine Surg. 14, 502–510. doi:10.14444/7066 Weisse, B., Aiyangar, A. K., Affolter, C., Gander, R., Terrasi, G. P., and Ploeg, H. (2012). Determination of the translational and rotational stiffnesses of an l4-l5 functional spinal unit using a specimen-specific finite element model. J. Mech. Behav. Biomed. Mater. 13, 45–61. doi:10.1016/j.jmbbm.2012.04.002 Wu, Y., Wang, Y., Wu, J., Guan, J.,Mao, N., Lu, C., et al. (2016). Study of double-level degeneration of lower lumbar spines by finite element model. World Neurosurg. 86, 294–299. doi:10.1016/j.wneu.2015.09.038 Yang, B., and O’Connell, G. D. (2017). Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Biomechanics Model. Mechanobiol. 16, 2005–2015. doi:10.1007/s10237-017-0934-2 Zander, T., Dreischarf, M., Timm, A.-K., Baumann, W. W., and Schmidt, H. (2017). Impact of material and morphological parameters on the mechanical response of the lumbar spine - a finite element sensitivity study. J. biomechanics 53, 185–190. doi:10. 1016/j.jbiomech.2016.12.014 Zander, T., Rohlmann, A., and Bergmann, G. (2009). Influence of different artificial disc kinematics on spine biomechanics. Clin. Biomech. (Bristol, Avon) 24, 135–142. doi:10.1016/j.clinbiomech.2008.11.008 Zhong, Z.-C., Wei, S.-H., Wang, J.-P., Feng, C.-K., Chen, C.-S., and Yu, C.-h. (2006). Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med. Eng. Phys. 28, 90–98. doi:10.1016/j. medengphy.2005.03.007 Zhu, D., Gu, G., Wu, W., Gong, H., Zhu, W., Jiang, T., et al. (2008). Micro-structure and mechanical properties of annulus fibrous of the l4-5 and l5-s1 intervertebral discs. Clin. Biomech. (Bristol, Avon) 23 (Suppl. 1), S74–S82. doi:10.1016/j.clinbiomech.2008. 04.007 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Frontiers Media SA |
| dc.publisher.place.spa.fl_str_mv |
Suiza |
| institution |
Universidad Autónoma de Occidente |
| bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/efaca17f-b4e5-4484-b9fa-65dfc663622c/download https://red.uao.edu.co/bitstreams/496fc57c-6e2b-4f1d-be4d-aabc20bfdde5/download https://red.uao.edu.co/bitstreams/ff03548d-9706-4493-8688-9f8ebf3230e9/download https://red.uao.edu.co/bitstreams/0214b7b0-0bb1-456a-9eb2-94cb45b71182/download |
| bitstream.checksum.fl_str_mv |
2fa2247e929933102145ebc2f87c7e03 6987b791264a2b5525252450f99b10d1 76becc47067228ab1efc491ab42fafd1 5aac6011d48bd9eca929f55d06f141db |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
| repository.mail.fl_str_mv |
repositorio@uao.edu.co |
| _version_ |
1851053400629706752 |
| spelling |
Jaramillo Suárez, Héctor Enriquevirtual::6093-1Gruber, GabrielNicolini, Luis FernandoRibeiro, MarxLerchl, TanjaWilke, Hans-JoachimSenner, VeitKirschke, Jan S.Nispel, Kati2025-07-08T15:27:10Z2025-07-08T15:27:10Z2024Jaramillo Suárez, H. E.; Gruber, G.; Nicolini, L. F.; Ribeiro, M.; Lerchl, T.; Wilke, H. J.; Senner, V.; Kirschke, J. S. y Nispel, K. (2024). Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars. Front. Bioeng. Biotechnol. Vol.12. 14 p. doi: 10.3389/fbioe.2024.139195722964185https://hdl.handle.net/10614/16204doi: 10.3389/fbioe.2024.1391957Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiencyIntroducción: El modelado numérico del disco intervertebral (DIV) presenta un desafío debido a su estructura compleja y heterogénea, lo que requiere una cuidadosa selección de los modelos constitutivos y las propiedades de los materiales. Un aspecto crucial de dicho modelado es la representación de las fibras del anillo, que impactan significativamente la biomecánica del DIV. Este estudio presenta un análisis comparativo de diferentes métodos de refuerzo de fibras en el anillo fibroso de un modelo de elementos finitos (EF) del DIV humano. Métodos: Utilizamos una geometría IVD L4-L5 reconstruida para comparar tres enfoques de modelado de fibras: el modelo anisotrópico Holzapfel-Gasser-Ogden (HGO) (modelo de fibra HGO) y dos conjuntos de elementos de varilla estructural con definiciones de material lineal-elástico (modelo de varilla lineal) e hiperelástico (modelo de varilla no lineal), respectivamente. Antes de la calibración, realizamos un análisis de sensibilidad para identificar los parámetros más importantes del modelo a calibrar y mejorar la eficiencia de la calibración. La calibración se realizó utilizando un algoritmo genético y datos in vitro de rango de movimiento (RoM) de un estudio publicado con ocho especímenes probados bajo cuatro escenarios de carga. Para la validación, se utilizaron mediciones de presión intradiscal (IDP) del mismo estudio, junto con datos adicionales de RoM de una publicación independiente que incluía cinco especímenes sometidos a cuatro condiciones de carga diferentes. Resultados: El análisis de sensibilidad reveló que la mayoría de los parámetros, excepto el coeficiente de Poisson de las fibras del anillo y el CO2 del núcleo, afectaron significativamente los resultados de RoM e IDP. Tras la calibración, el modelo de fibra HGO mostró la mayor precisión (R² = 0,95), seguido de los modelos lineal (R² = 0,89) y no lineal de varillas de refuerzo (R² = 0,87 ). Durante la fase de validación, el modelo de fibra HGO mantuvo su alta precisión (RoM R² = 0,85; IDP R² = 0,87), mientras que los modelos lineal y no lineal de varillas de refuerzo presentaron puntuaciones de validación más bajas (RoM R² = 0,71 y 0,69; IDP R² = 0,86 y 0,8, respectivamente). Discusión: Los resultados del estudio demuestran un proceso de calibración exitoso que concordó adecuadamente con los datos experimentales. Según nuestros hallazgos, el modelo de fibra HGO parece ser una opción más adecuada para un modelado preciso de elementos finitos (FE) de IVD, considerando su mayor fidelidad en los resultados de simulación y eficiencia computacional.14 páginasapplication/pdfengFrontiers Media SASuizaDerechos reservados - Jaramillo HE; Gruber G, Nicolini LF, Ribeiro M, Lerchl T, Wilke H-J; Senner V, Kirschke JS and Nispel K, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebarsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8514112Frontiers in Bioengineering and BiotechnologyArora, J. S. (2017) Introduction to optimum design. 4 edn. Elsevier. doi:10.1016/ C2013-0-15344-5Ayturk, U. M., and Puttlitz, C. M. (2011). Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput. methods biomechanics Biomed. Eng. 14, 695–705. doi:10.1080/10255842.2010.493517Bashkuev, M., Reitmaier, S., and Schmidt, H. (2020). Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J. biomechanics 102, 109518. doi:10.1016/j.jbiomech.2019.109518Beckmann, A., Mundt, M., Herren, C., Siewe, J., Kobbe, P., Sobottke, R., et al. (2016). Development and experimental validation of a patient–specific lumbar spine fe model to predict the effects of instrumentations. PAMM 16, 73–74. doi:10.1002/pamm. 201610025Busscher, I., Ploegmakers, J. J. W., Verkerke, G. J., and Veldhuizen, A. G. (2010). Comparative anatomical dimensions of the complete human and porcine spine. Eur. spine J. 19, 1104–1114. doi:10.1007/s00586-010-1326-9Cai, X.-Y., Sun, M.-S., Huang, Y.-P., Liu, Z.-X., Liu, C.-J., Du, C.-F., et al. (2020). Biomechanical effect of l<sub>4</sub>–l<sub>5</sub> intervertebral disc degeneration on the lower lumbar spine: a finite element study. Orthop. Surg. 12, 917–930. doi:10.1111/os.12703Cassidy, J. J., Hiltner, A., and Baer, E. (1989). Hierarchical structure of the intervertebral disc. Connect. tissue Res. 23, 75–88. doi:10.3109/03008208909103905Coombs, D., Bushelow, M., Laz, P., Rao, M., and Rullkoetter, P. (2013). “Stepwise validated finite element model of the human lumbar spine,” in ASME 2013 conference on Frontiers in medical devices: applications of computer modeling and simulation (American Society of Mechanical Engineers). doi:10.1115/FMD2013-16167Damm, N., Rockenfeller, R., and Gruber, K. (2020). Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomechanics Model. Mechanobiol. 19, 893–910. doi:10.1007/s10237-019-01259-6Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C. M., Adam, C. J., Chen, C. S., et al. (2014). Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. biomechanics 47, 1757–1766. doi:10.1016/j.jbiomech.2014.04.002Du, Y., Tavana, S., Rahman, T., Baxan, N., Hansen, U. N., and Newell, N. (2021). Sensitivity of intervertebral disc finite element models to internal geometric and nongeometric parameters. Front. Bioeng. Biotechnol. 9, 660013. doi:10.3389/fbioe.2021. 660013Ebara, S., Iatridis, J. C., Setton, L. A., Foster, R. J., Mow, V. C., and Weidenbaum, M. (1996). Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21, 452–461. doi:10.1097/00007632-199602150-00009Eberlein, R., Holzapfel, G. A., and Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput. methods biomechanics Biomed. Eng. 4, 209–229. doi:10.1080/ 10255840108908005Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A., and Galbusera, F. (2014). Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. (Bristol, Avon) 29, 363–372. doi:10.1016/j.clinbiomech.2014.01.006Frost, B. A., Camarero-Espinosa, S., and Foster, E. J. (2019). Materials for the spine: anatomy, problems, and solutions. Mater. (Basel, Switz.) 12, 253. doi:10.3390/ ma12020253Galbusera, F., Schmidt, H., Noailly, J., Malandrino, A., Lacroix, D.,Wilke, H.-J., et al. (2011). Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J. Mech. Behav. Biomed. Mater. 4, 1234–1241. doi:10. 1016/j.jmbbm.2011.04.008Heuer, F., Schmidt, H., Claes, L., and Wilke, H.-J. (2007a). Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. biomechanics 40, 795–803. doi:10.1016/j.jbiomech.2006.03.016Heuer, F., Schmidt, H., Klezl, Z., Claes, L., and Wilke, H.-J. (2007b). Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. biomechanics 40, 271–280. doi:10.1016/j.jbiomech.2006.01.007Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48. doi:10.1023/A:1010835316564Holzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., and Regitnig, P. (2005). Single lamellar mechanics of the human lumbar anulus fibrosus. Biomechanics Model. Mechanobiol. 3, 125–140. doi:10.1007/s10237-004-0053-8Hoy, D., March, L., Brooks, P., Blyth, F., Woolf, A., Bain, C., et al. (2014). The global burden of low back pain: estimates from the global burden of disease 2010 study. Ann. rheumatic Dis. 73, 968–974. doi:10.1136/annrheumdis-2013-204428Jaramillo, H. E., Gómez, L., and García, J. J. (2015). A finite element model of the l4- l5-s1 human spine segment including the heterogeneity and anisotropy of the discs. Acta Bioeng. biomechanics 17, 15–24. doi:10.5277/ABB-00046-2014-02Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., and García, J. J. (2016). Characterization of the l4-l5-s1 motion segment using the stepwise reduction method. J. biomechanics 49, 1248–1254. doi:10.1016/j.jbiomech.2016.02.050Karajan, N. (2012). Multiphasic intervertebral disc mechanics: theory and application. Archives Comput. Methods Eng. 19, 261–339. doi:10.1007/s11831-012- 9073-1Karajan, N., and Ehlers, W. (2007). Discussion on appropriate material parameters for a porous media model of the ivd. PAMM 7, 4020003–4020004. doi:10.1002/pamm. 200700065Kiapour, A., Goel, V. K., Krishna, M., and Koruprolu, S. (2009). “Posterior total joint replacement, a novel alternative to lumbar anterior disc arthroplasty: a computational and vitro study,” in ASME 2009 summer bioengineering conference, parts A and B (American Society of Mechanical Engineers), 397–398. doi:10.1115/SBC2009-205779Lavecchia, C. E., Espino, D. M., Moerman, K. M., Tse, K. M., Robinson, D., Lee, P. V. S., et al. (2018). Lumbar model generator: a tool for the automated generation of a parametric scalable model of the lumbar spine. J. R. Soc. Interface 15, 20170829. doi:10. 1098/rsif.2017.0829Lee, K. K., and Teo, E. C. (2005). Material sensitivity study on lumbarmotion segment (l2-l3) under sagittal plane loadings using probabilistic method. J. spinal Disord. Tech. 18, 163–170. doi:10.1097/01.bsd.0000147658.60961.51Little, J. P., de Visser, H., Pearcy, M. J., and Adam, C. J. (2008). Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy? a modeling study. Comput. methods biomechanics Biomed. Eng. 11, 95–103. doi:10.1080/ 10255840701552143Liu, C.-L., Zhong, Z.-C., Hsu, H.-W., Shih, S.-L., Wang, S.-T., Hung, C., et al. (2011). Effect of the cord pretension of the dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur. Spine J. 20, 1850–1858. doi:10.1007/s00586-011-1817-3Malandrino, A., Noailly, J., and Lacroix, D. (2013). Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Comput. methods biomechanics Biomed. Eng. 16, 923–928. doi:10. 1080/10255842.2011.644539Malandrino, A., Pozo, J. M., Castro-Mateos, I., Frangi, A. F., van Rijsbergen, M. M., Ito, K., et al. (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disk models. Front. Bioeng. Biotechnol. 3, 5. doi:10.3389/fbioe.2015.00005Marchand, F., and Ahmed, A. M. (1990). Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15, 402–410. doi:10.1097/00007632-199005000- 00011Meijer, G. J. M., Homminga, J., Veldhuizen, A. G., and Verkerke, G. J. (2011). Influence of interpersonal geometrical variation on spinal motion segment stiffness: implications for patient-specific modeling. Spine 36, E929–E935. doi:10.1097/BRS. 0b013e3181fd7f7fMittelhammer, R. C. (2013) Mathematical statistics for economics and business. New York, NY: Springer New York. doi:10.1007/978-1-4614-5022-1Moramarco, V., Del Pérez Palomar, A., Pappalettere, C., and Doblaré, M. (2010). An accurate validation of a computational model of a human lumbosacral segment. J. biomechanics 43, 334–342. doi:10.1016/j.jbiomech.2009.07.042Naoum, S., Vasiliadis, A. V., Koutserimpas, C., Mylonakis, N., Kotsapas, M., and Katakalos, K. (2021). Finite element method for the evaluation of the human spine: a literature overview. J. Funct. biomaterials 12, 43. doi:10.3390/jfb12030043Newell, N., Carpanen, D., Grigoriadis, G., Little, J. P., and Masouros, S. D. (2019). Material properties of human lumbar intervertebral discs across strain rates. spine J. official J. North Am. Spine Soc. 19, 2013–2024. doi:10.1016/j.spinee.2019.07.012Nicolini, L. F., Beckmann, A., Laubach, M., Hildebrand, F., Kobbe, P., de Mello Roesler, C. R., et al. (2022a). An experimental-numerical method for the calibration of finite element models of the lumbar spine. Med. Eng. Phys. 107, 103854. doi:10.1016/j. medengphy.2022.103854Nicolini, L. F., Greven, J., Kobbe, P., Hildebrand, F., Stoffel, M., Markert, B., et al. (2022b). The effects of tether pretension within vertebral body tethering on the biomechanics of the spine: a finite element analysis. Lat. Am. J. Solids Struct. 19. doi:10.1590/1679-78256932Niemeyer, F.,Wilke, H.-J., and Schmidt, H. (2012). Geometry strongly influences the response of numerical models of the lumbar spine–a probabilistic finite element analysis. J. biomechanics 45, 1414–1423. doi:10.1016/j.jbiomech.2012.02.021Noailly, J., Planell, J. A., and Lacroix, D. (2011). On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomechanics Model. Mechanobiol. 10, 203–219. doi:10.1007/s10237-010-0227-5Noailly, J., Wilke, H.-J., Planell, J. A., and Lacroix, D. (2007). How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? consequences on the validation process. J. biomechanics 40, 2414–2425. doi:10.1016/j. jbiomech.2006.11.021O’Connell, G. D., Guerin, H. L., and Elliott, D. M. (2009). Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. biomechanical Eng. 131, 111007. doi:10.1115/1.3212104O’Connell, G. D., Sen, S., and Elliott, D. M. (2012). Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomechanics Model. Mechanobiol. 11, 493–503. doi:10.1007/s10237-011-0328-9Park, W. M., Kim, K., and Kim, Y. H. (2013). Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput. Biol. Med. 43, 1234–1240. doi:10.1016/j.compbiomed. 2013.06.011Rao, M. (2012) Explicit finite element modeling of the human lumbar spine. PhD. Thesis. University of Denver, https://digitalcommons.du.edu/etd/906.Rohlmann, A., Zander, T., Schmidt, H., Wilke, H.-J., and Bergmann, G. (2006). Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J. biomechanics 39, 2484–2490. doi:10. 1016/j.jbiomech.2005.07.026 A.Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al. (2007). Global sensitivity analysis. The primer (Wiley). doi:10.1002/9780470725184Schlager, B., Niemeyer, F., Galbusera, F., Volkheimer, D., Jonas, R., and Wilke, H.-J. (2018). Uncertainty analysis of material properties and morphology parameters in numericalmodels regarding themotion of lumbar vertebral segments. Comput. methods biomechanics Biomed. Eng. 21, 673–683. doi:10.1080/10255842.2018.1508571Schmidt, H., Galbusera, F., Rohlmann, A., Zander, T., and Wilke, H.-J. (2012). Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur. spine J. 21, 663–674. doi:10.1007/ s00586-010-1382-1Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., and Wilke, H.-J. (2007). Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. (Bristol, Avon) 22, 377–384. doi:10. 1016/j.clinbiomech.2006.11.008Schmidt, H., Heuer, F., Simon, U., Kettler, A., Rohlmann, A., Claes, L., et al. (2006). Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. (Bristol, Avon) 21, 337–344. doi:10. 1016/j.clinbiomech.2005.12.001Shahraki, N. M., Fatemi, A., Goel, V. K., and Agarwal, A. (2015). On the use of biaxial properties in modeling annulus as a holzapfel-gasser-ogden material. Front. Bioeng. Biotechnol. 3, 69. doi:10.3389/fbioe.2015.00069 Shirazi-Adl, A. (1994). Biomechanics of the lumbar spine in sagittal/lateral moments. Spine 19, 2407–2414. doi:10.1097/00007632-199411000-00007Shirazi-Adl, A., Ahmed, A. M., and Shrivastava, S. C. (1986).Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11, 914–927. doi:10.1097/00007632-198611000-00012Tang, S., and Rebholz, B. J. (2011). Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? a finite element study. J. Orthop. Sci. official J. Jpn. Orthop. Assoc. 16, 221–228. doi:10.1007/s00776-011-0037-3Vinyas, Adhikari, R., and Shyamasunder Bhat, N. (2022). Subject-specific finite element modelling of the intervertebral disc using t2 mapped mri. Mater. Today Proc. 62, 1575–1579. doi:10.1016/j.matpr.2022.03.104von der Lippe, E., Krause, L., Prost, M., Wengler, A., Leddin, J., Müller, A., et al. (2021). Prävalenz von rücken-und nackenschmerzen in deutschland. ergebnisse der krankheitslast-studie burden 2020. J. Health Monit. doi:10.25646/7854Wang, W., Zhou, C., Guo, R., Cha, T., and Li, G. (2021a). Influence of structural and material property uncertainties on biomechanics of intervertebral discs - implications for disc tissue engineering. J. Mech. Behav. Biomed. Mater. 122, 104661. doi:10.1016/j. jmbbm.2021.104661Wang, W., Zhou, C., Guo, R., Cha, T., and Li, G. (2021b). Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput. methods biomechanics Biomed. Eng. 24, 1730–1741. doi:10.1080/10255842.2021. 1914023Warren, J.M., Mazzoleni, A. P., and Hey, L. A. (2020). Development and validation of a computationally efficient finite element model of the human lumbar spine: application to disc degeneration. Int. J. spine Surg. 14, 502–510. doi:10.14444/7066Weisse, B., Aiyangar, A. K., Affolter, C., Gander, R., Terrasi, G. P., and Ploeg, H. (2012). Determination of the translational and rotational stiffnesses of an l4-l5 functional spinal unit using a specimen-specific finite element model. J. Mech. Behav. Biomed. Mater. 13, 45–61. doi:10.1016/j.jmbbm.2012.04.002Wu, Y., Wang, Y., Wu, J., Guan, J.,Mao, N., Lu, C., et al. (2016). Study of double-level degeneration of lower lumbar spines by finite element model. World Neurosurg. 86, 294–299. doi:10.1016/j.wneu.2015.09.038Yang, B., and O’Connell, G. D. (2017). Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Biomechanics Model. Mechanobiol. 16, 2005–2015. doi:10.1007/s10237-017-0934-2Zander, T., Dreischarf, M., Timm, A.-K., Baumann, W. W., and Schmidt, H. (2017). Impact of material and morphological parameters on the mechanical response of the lumbar spine - a finite element sensitivity study. J. biomechanics 53, 185–190. doi:10. 1016/j.jbiomech.2016.12.014Zander, T., Rohlmann, A., and Bergmann, G. (2009). Influence of different artificial disc kinematics on spine biomechanics. Clin. Biomech. (Bristol, Avon) 24, 135–142. doi:10.1016/j.clinbiomech.2008.11.008Zhong, Z.-C., Wei, S.-H., Wang, J.-P., Feng, C.-K., Chen, C.-S., and Yu, C.-h. (2006). Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med. Eng. Phys. 28, 90–98. doi:10.1016/j. medengphy.2005.03.007Zhu, D., Gu, G., Wu, W., Gong, H., Zhu, W., Jiang, T., et al. (2008). Micro-structure and mechanical properties of annulus fibrous of the l4-5 and l5-s1 intervertebral discs. Clin. Biomech. (Bristol, Avon) 23 (Suppl. 1), S74–S82. doi:10.1016/j.clinbiomech.2008. 04.007SpineIntervertebral discFiber reinforcementFinite element methodSensitivity analysisCalibrationValidationComunidad generalPublicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::6093-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::6093-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::6093-10000-0002-7324-9478virtual::6093-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::6093-1ORIGINALComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdfComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2481898https://red.uao.edu.co/bitstreams/efaca17f-b4e5-4484-b9fa-65dfc663622c/download2fa2247e929933102145ebc2f87c7e03MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/496fc57c-6e2b-4f1d-be4d-aabc20bfdde5/download6987b791264a2b5525252450f99b10d1MD52TEXTComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdf.txtComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdf.txtExtracted texttext/plain84910https://red.uao.edu.co/bitstreams/ff03548d-9706-4493-8688-9f8ebf3230e9/download76becc47067228ab1efc491ab42fafd1MD53THUMBNAILComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdf.jpgComparative_FEM_study_on_intervertebral_disc_modeling_Holzapfel-Gasser-Ogden_vs._structural rebars.pdf.jpgGenerated Thumbnailimage/jpeg12087https://red.uao.edu.co/bitstreams/0214b7b0-0bb1-456a-9eb2-94cb45b71182/download5aac6011d48bd9eca929f55d06f141dbMD5410614/16204oai:red.uao.edu.co:10614/162042025-07-10 03:03:21.363https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Jaramillo HE; Gruber G, Nicolini LF, Ribeiro M, Lerchl T, Wilke H-J; Senner V, Kirschke JS and Nispel K, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |
