Low-cost desktop learning factory to support the teaching of artificial intelligence

The following document details low-cost hardware and open-source available software tools that can be combined to support active teaching methodologies like Problem-Based Learning (PBL) and incorporate work-oriented technological skills in students. This proposal presents a prototype of Open Educati...

Full description

Autores:
Eduardo Orozco Otero
Paulo Cesar Cárdenas
López Sotelo, Jesús Alfonso
Cinthia Kathalina Rodríguez
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16221
Acceso en línea:
https://hdl.handle.net/10614/16221
https://doi.org/10.1016/j.ohx.2024.e00528
https://red.uao.edu.co/
Palabra clave:
Machine learning
Artificial intelligence
Education k-12
Teaching strategy
Aprendizaje automático
Inteligencia artificial
Educación K-12
Estrategia de enseñanza
Rights
openAccess
License
Derechos reservados - Elsevier, 2024
id REPOUAO2_2a165bc2b605e3dfd42c5ee81b8ca5e1
oai_identifier_str oai:red.uao.edu.co:10614/16221
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Low-cost desktop learning factory to support the teaching of artificial intelligence
dc.title.translated.spa.fl_str_mv Fábrica de aprendizaje de escritorio de bajo costo para apoyar la enseñanza de la inteligencia artificial
title Low-cost desktop learning factory to support the teaching of artificial intelligence
spellingShingle Low-cost desktop learning factory to support the teaching of artificial intelligence
Machine learning
Artificial intelligence
Education k-12
Teaching strategy
Aprendizaje automático
Inteligencia artificial
Educación K-12
Estrategia de enseñanza
title_short Low-cost desktop learning factory to support the teaching of artificial intelligence
title_full Low-cost desktop learning factory to support the teaching of artificial intelligence
title_fullStr Low-cost desktop learning factory to support the teaching of artificial intelligence
title_full_unstemmed Low-cost desktop learning factory to support the teaching of artificial intelligence
title_sort Low-cost desktop learning factory to support the teaching of artificial intelligence
dc.creator.fl_str_mv Eduardo Orozco Otero
Paulo Cesar Cárdenas
López Sotelo, Jesús Alfonso
Cinthia Kathalina Rodríguez
dc.contributor.author.none.fl_str_mv Eduardo Orozco Otero
Paulo Cesar Cárdenas
López Sotelo, Jesús Alfonso
Cinthia Kathalina Rodríguez
dc.subject.proposal.eng.fl_str_mv Machine learning
Artificial intelligence
Education k-12
Teaching strategy
topic Machine learning
Artificial intelligence
Education k-12
Teaching strategy
Aprendizaje automático
Inteligencia artificial
Educación K-12
Estrategia de enseñanza
dc.subject.proposal.spa.fl_str_mv Aprendizaje automático
Inteligencia artificial
Educación K-12
Estrategia de enseñanza
description The following document details low-cost hardware and open-source available software tools that can be combined to support active teaching methodologies like Problem-Based Learning (PBL) and incorporate work-oriented technological skills in students. This proposal presents a prototype of Open Educational Resources (OER) that integrates software and hardware tools for the specific purpose of facilitating instruction in Artificial Intelligence. The hardware consists of affordable electronic devices, including an Arduino board, servo motors, sensors, a relay and a motor, all integrated into a scaled conveyor belt. On the other hand, open software was used to implement an image classification program with different features (shape, color, size, among others). The exact construction steps, circuits, and code are presented in detail and should encourage other scientists to replicate the experimental setup, especially if they are looking for experimental teaching of artificial intelligence, since the system allows object classification using the machine learning paradigm to facilitate the teaching of artificial intelligence concepts with computer vision concepts
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-25T18:36:59Z
dc.date.available.none.fl_str_mv 2025-07-25T18:36:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Orozco Otero, E.; Cárdenas, P. C.; López Sotelo, J. A. y Rodríguez, C. K. (2024). Low-cost desktop learning factory to support the teaching of artificial intelligence. HardwareX. Vol 18. https://doi.org/10.1016/j.ohx.2024.e00528
dc.identifier.issn.spa.fl_str_mv 24680672
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16221
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.ohx.2024.e00528
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Orozco Otero, E.; Cárdenas, P. C.; López Sotelo, J. A. y Rodríguez, C. K. (2024). Low-cost desktop learning factory to support the teaching of artificial intelligence. HardwareX. Vol 18. https://doi.org/10.1016/j.ohx.2024.e00528
24680672
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16221
https://doi.org/10.1016/j.ohx.2024.e00528
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.eng.fl_str_mv HardwareX
dc.relation.references.none.fl_str_mv [1] S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N. Okoroafor, H. Jordt, M.P. Wenderoth, Active learning increases student performance in science, engineering, and mathematics, Proc. Natl. Acad. Sci. 111 (23) (2014) 8410–8415.
[2] E. Al-Masri, S. Kabu, P. Dixith, Emerging hardware prototyping technologies as tools for learning, IEEE Access 8 (2020) 80207–80217.
[3] E. Lopez-Caudana, M.S. Ramirez-Montoya, S. Martínez-Pérez, G. Rodríguez-Abitia, Using robotics to enhance active learning in mathematics: A multi-scenario study, Mathematics 8 (12) (2020) 2163.
[4] J. Jesionkowska, F. Wild, Y. Deval, Active learning augmented reality for STEAM education—A case study, Educ. Sci. 10 (8) (2020) 198.
[5] A.A. Nicol, S.M. Owens, S.S. Le Coze, A. MacIntyre, C. Eastwood, Comparison of high-technology active learning and low-technology active learning classrooms, Act. Learn. Higher Educ. 19 (3) (2018) 253–265.
[6] E.J. Theobald, M.J. Hill, E. Tran, S. Agrawal, E.N. Arroyo, S. Behling, N. Chambwe, D.L. Cintrón, J.D. Cooper, G. Dunster, et al., Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math, Proc. Natl. Acad. Sci. 117 (12) (2020) 6476–6483.
[7] D. Varna, V. Abromavičius, A system for a real-time electronic component detection and classification on a conveyor belt, Appl. Sci. 12 (11) (2022) 5608.
[8] Y. Zhang, L. Li, M. Ripperger, J. Nicho, M. Veeraraghavan, A. Fumagalli, Gilbreth: A conveyor-belt based pick-and-sort industrial robotics application, in: 2018 Second IEEE International Conference on Robotic Computing, IRC, IEEE, 2018, pp. 17–24.
[9] G. Karalekas, S. Vologiannidis, J. Kalomiros, Europa: A case study for teaching sensors, data acquisition and robotics via a ROS-based educational robot, Sensors 20 (9) (2020) 2469.
[10] J. Vega, J.M. Cañas, PiBot: An open low-cost robotic platform with camera for STEM education, Electronics 7 (12) (2018) 430.
[11] T. Brosnan, D.-W. Sun, Inspection and grading of agricultural and food products by computer vision systems—a review, Comput. Electron. Agric. 36 (2–3) (2002) 193–213.
[12] G. Yang, J. Jin, Q. Lei, Y. Wang, J. Zhou, Z. Sun, X. Li, W. Wang, Garbage classification system with yolov5 based on image recognition, in: 2021 IEEE 6th International Conference on Signal and Image Processing, ICSIP, IEEE, 2021, pp. 11–18.
[13] LEGO Education, MINDSTORMS® EV3 core set computer integrated manufacturing, 2023, https://education.lego.com/en-us/lessons/ev3-cim. (Accessed April 25, 2023).
[14] Simulation of transport and machining of workpieces. Fischertechnik. Training models, 2023, https://www.fischertechnik.de/en/products/industry-anduniversities/ training-models/96785-simpunching-machine-with-conveyor-belt-24v. (Accessed April 25, 2023).
[15] Hiwonder, JetMax: The AI vision robotic arm for endless creativity, 2022, https://www.kickstarter.com/projects/jetmax/jetmax-the-ai-vision-robotic-armfor- endless-creativity. (Accessed April 25, 2023).
dc.rights.eng.fl_str_mv Derechos reservados - Elsevier, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Reino Unido
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/d5d66f66-0ff1-4332-b2d5-8beac6502cd6/download
https://red.uao.edu.co/bitstreams/527a9b1f-a249-48c5-a9f8-a951395eab5c/download
https://red.uao.edu.co/bitstreams/7a5a7296-c210-405c-8775-60ac9a0f6864/download
https://red.uao.edu.co/bitstreams/fec35247-74e7-4325-9bf8-c08139749d07/download
bitstream.checksum.fl_str_mv bd2f332b170cf4a2b2fb33a59e78c328
6987b791264a2b5525252450f99b10d1
ad586520d8b379e5e15603f85b5d4213
1243b3bdf57a3fc06b7a3d9d0f5399b8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053148132605952
spelling Eduardo Orozco OteroPaulo Cesar CárdenasLópez Sotelo, Jesús Alfonsovirtual::6212-1Cinthia Kathalina Rodríguez2025-07-25T18:36:59Z2025-07-25T18:36:59Z2024Orozco Otero, E.; Cárdenas, P. C.; López Sotelo, J. A. y Rodríguez, C. K. (2024). Low-cost desktop learning factory to support the teaching of artificial intelligence. HardwareX. Vol 18. https://doi.org/10.1016/j.ohx.2024.e0052824680672https://hdl.handle.net/10614/16221https://doi.org/10.1016/j.ohx.2024.e00528Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The following document details low-cost hardware and open-source available software tools that can be combined to support active teaching methodologies like Problem-Based Learning (PBL) and incorporate work-oriented technological skills in students. This proposal presents a prototype of Open Educational Resources (OER) that integrates software and hardware tools for the specific purpose of facilitating instruction in Artificial Intelligence. The hardware consists of affordable electronic devices, including an Arduino board, servo motors, sensors, a relay and a motor, all integrated into a scaled conveyor belt. On the other hand, open software was used to implement an image classification program with different features (shape, color, size, among others). The exact construction steps, circuits, and code are presented in detail and should encourage other scientists to replicate the experimental setup, especially if they are looking for experimental teaching of artificial intelligence, since the system allows object classification using the machine learning paradigm to facilitate the teaching of artificial intelligence concepts with computer vision conceptsEl siguiente documento detalla hardware de bajo costo y herramientas de software de código abierto disponibles que se pueden combinar para apoyar metodologías de enseñanza activas como el Aprendizaje Basado en Problemas (ABP) e incorporar habilidades tecnológicas orientadas al trabajo en los estudiantes. Esta propuesta presenta un prototipo de Recursos Educativos Abiertos (REA) que integra herramientas de software y hardware con el propósito específico de facilitar la instrucción en Inteligencia Artificial. El hardware consiste en dispositivos electrónicos asequibles, incluyendo una placa Arduino , servomotores , sensores, un relé y un motor, todos integrados en una cinta transportadora a escala . Por otro lado, se utilizó software abierto para implementar un programa de clasificación de imágenes con diferentes características (forma, color, tamaño, entre otras). Los pasos exactos de construcción, los circuitos y el código se presentan en detalle y deberían alentar a otros científicos a replicar la configuración experimental, especialmente si buscan la enseñanza experimental de la inteligencia artificial, ya que el sistema permite la clasificación de objetos utilizando el paradigma de aprendizaje automático para facilitar la enseñanza de conceptos de inteligencia artificial con conceptos de visión por computadora23 páginasapplication/pdfengElsevierReino UnidoDerechos reservados - Elsevier, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Low-cost desktop learning factory to support the teaching of artificial intelligenceFábrica de aprendizaje de escritorio de bajo costo para apoyar la enseñanza de la inteligencia artificialArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8523118HardwareX[1] S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N. Okoroafor, H. Jordt, M.P. Wenderoth, Active learning increases student performance in science, engineering, and mathematics, Proc. Natl. Acad. Sci. 111 (23) (2014) 8410–8415.[2] E. Al-Masri, S. Kabu, P. Dixith, Emerging hardware prototyping technologies as tools for learning, IEEE Access 8 (2020) 80207–80217.[3] E. Lopez-Caudana, M.S. Ramirez-Montoya, S. Martínez-Pérez, G. Rodríguez-Abitia, Using robotics to enhance active learning in mathematics: A multi-scenario study, Mathematics 8 (12) (2020) 2163.[4] J. Jesionkowska, F. Wild, Y. Deval, Active learning augmented reality for STEAM education—A case study, Educ. Sci. 10 (8) (2020) 198.[5] A.A. Nicol, S.M. Owens, S.S. Le Coze, A. MacIntyre, C. Eastwood, Comparison of high-technology active learning and low-technology active learning classrooms, Act. Learn. Higher Educ. 19 (3) (2018) 253–265.[6] E.J. Theobald, M.J. Hill, E. Tran, S. Agrawal, E.N. Arroyo, S. Behling, N. Chambwe, D.L. Cintrón, J.D. Cooper, G. Dunster, et al., Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math, Proc. Natl. Acad. Sci. 117 (12) (2020) 6476–6483.[7] D. Varna, V. Abromavičius, A system for a real-time electronic component detection and classification on a conveyor belt, Appl. Sci. 12 (11) (2022) 5608.[8] Y. Zhang, L. Li, M. Ripperger, J. Nicho, M. Veeraraghavan, A. Fumagalli, Gilbreth: A conveyor-belt based pick-and-sort industrial robotics application, in: 2018 Second IEEE International Conference on Robotic Computing, IRC, IEEE, 2018, pp. 17–24.[9] G. Karalekas, S. Vologiannidis, J. Kalomiros, Europa: A case study for teaching sensors, data acquisition and robotics via a ROS-based educational robot, Sensors 20 (9) (2020) 2469.[10] J. Vega, J.M. Cañas, PiBot: An open low-cost robotic platform with camera for STEM education, Electronics 7 (12) (2018) 430.[11] T. Brosnan, D.-W. Sun, Inspection and grading of agricultural and food products by computer vision systems—a review, Comput. Electron. Agric. 36 (2–3) (2002) 193–213.[12] G. Yang, J. Jin, Q. Lei, Y. Wang, J. Zhou, Z. Sun, X. Li, W. Wang, Garbage classification system with yolov5 based on image recognition, in: 2021 IEEE 6th International Conference on Signal and Image Processing, ICSIP, IEEE, 2021, pp. 11–18.[13] LEGO Education, MINDSTORMS® EV3 core set computer integrated manufacturing, 2023, https://education.lego.com/en-us/lessons/ev3-cim. (Accessed April 25, 2023).[14] Simulation of transport and machining of workpieces. Fischertechnik. Training models, 2023, https://www.fischertechnik.de/en/products/industry-anduniversities/ training-models/96785-simpunching-machine-with-conveyor-belt-24v. (Accessed April 25, 2023).[15] Hiwonder, JetMax: The AI vision robotic arm for endless creativity, 2022, https://www.kickstarter.com/projects/jetmax/jetmax-the-ai-vision-robotic-armfor- endless-creativity. (Accessed April 25, 2023).Machine learningArtificial intelligenceEducation k-12Teaching strategyAprendizaje automáticoInteligencia artificialEducación K-12Estrategia de enseñanzaComunidad generalPublicationfc227fb1-22ec-47f0-afe7-521c61fddd32virtual::6212-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::6212-1https://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::6212-10000-0002-9731-8458virtual::6212-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::6212-1ORIGINALLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdfLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf8746888https://red.uao.edu.co/bitstreams/d5d66f66-0ff1-4332-b2d5-8beac6502cd6/downloadbd2f332b170cf4a2b2fb33a59e78c328MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/527a9b1f-a249-48c5-a9f8-a951395eab5c/download6987b791264a2b5525252450f99b10d1MD52TEXTLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdf.txtLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdf.txtExtracted texttext/plain43333https://red.uao.edu.co/bitstreams/7a5a7296-c210-405c-8775-60ac9a0f6864/downloadad586520d8b379e5e15603f85b5d4213MD53THUMBNAILLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdf.jpgLow-cost_desktop_learning_factory_to_support_the_teaching_of_artificial_intelligence.pdf.jpgGenerated Thumbnailimage/jpeg12906https://red.uao.edu.co/bitstreams/fec35247-74e7-4325-9bf8-c08139749d07/download1243b3bdf57a3fc06b7a3d9d0f5399b8MD5410614/16221oai:red.uao.edu.co:10614/162212025-07-27 03:01:31.877https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==