Software tool for drone flight management in supervising building extern façades

Objetive:The main goal is to develop a software called DroneFaçadeto manage the drone flight and generate an image mosaic of a building façade, allowing the continuous monitoring and registering the state of the façade through time.Methodology:The software DroneFaçade was developed considering three...

Full description

Autores:
Castillo García, Jaiver
Barrera, Mateo
Bacca Cortes, Bladimir
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/16227
Acceso en línea:
https://hdl.handle.net/10614/16227
https://red.uao.edu.co/
Palabra clave:
Façade deterioration
UAV
Mosaic image
ROS
Image processing
Deterioro de fachadas
UAV
Imagen mosaico
ROS
Procesamiento de imágenes
Rights
openAccess
License
Derechos reservados - Site Owner, 202
id REPOUAO2_1f3d8ba2b9b06cb2e2b5440cfb9ac362
oai_identifier_str oai:red.uao.edu.co:10614/16227
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Software tool for drone flight management in supervising building extern façades
dc.title.translated.spa.fl_str_mv Herramienta software para la gestión de vuelo de un dron en la supervisión de fachadas externas de edificios
title Software tool for drone flight management in supervising building extern façades
spellingShingle Software tool for drone flight management in supervising building extern façades
Façade deterioration
UAV
Mosaic image
ROS
Image processing
Deterioro de fachadas
UAV
Imagen mosaico
ROS
Procesamiento de imágenes
title_short Software tool for drone flight management in supervising building extern façades
title_full Software tool for drone flight management in supervising building extern façades
title_fullStr Software tool for drone flight management in supervising building extern façades
title_full_unstemmed Software tool for drone flight management in supervising building extern façades
title_sort Software tool for drone flight management in supervising building extern façades
dc.creator.fl_str_mv Castillo García, Jaiver
Barrera, Mateo
Bacca Cortes, Bladimir
dc.contributor.author.none.fl_str_mv Castillo García, Jaiver
Barrera, Mateo
Bacca Cortes, Bladimir
dc.subject.proposal.eng.fl_str_mv Façade deterioration
UAV
Mosaic image
ROS
Image processing
topic Façade deterioration
UAV
Mosaic image
ROS
Image processing
Deterioro de fachadas
UAV
Imagen mosaico
ROS
Procesamiento de imágenes
dc.subject.proposal.spa.fl_str_mv Deterioro de fachadas
UAV
Imagen mosaico
ROS
Procesamiento de imágenes
description Objetive:The main goal is to develop a software called DroneFaçadeto manage the drone flight and generate an image mosaic of a building façade, allowing the continuous monitoring and registering the state of the façade through time.Methodology:The software DroneFaçade was developed considering three operational phases: GPS-based acquisition of waypoints, image-data acquisition flying the drone through the computed trajectory, and the offline mosaic computation. The waypoints are captured using GPS Exchange Format. Then, these waypoints are introduced into DroneFaçade, proper coverage of the façade is computed using the intrinsic camera parameters, the drone trajectory is computed, and the battery changing points are defined. Afterwards, the flight mission starts capturing image data the in the on-board Jetson-Nano development system running ROS. Next, the telemetry and image data are imported into a SQL-database system, and the mosaic computation is performed. At the end, DroneFaçade generates a report in PDF about the façade inspection.Results:To validate DronFaçade two different tests were performed: integration tests according with RUP methodology to check the functional requirements fulfillment, and a quantitative field test to check que quality of the mosaic computed. As a result of the quantitative test, the mosaic image computed by DronFaçade has low structural errors, preserves phase congruency and the magnitude of the image gradients, keeps high correlation and an appearance similarity of up 92.6% with respect to the real scene.. Conclusions:DroneFaçade is a software tool which can be an option to register through time the building façades state and performing corrective actions to avoid high building deterioration thanks to the high quality image mosaics generated.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-07-28T14:27:38Z
dc.date.available.none.fl_str_mv 2025-07-28T14:27:38Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Castillo García, J.; Barrera, M. y Bacca Cortes, B. (2024). Software tool for drone flight management in supervising building extern façades. Investigación e Innovación en Ingenierías. 12(1). pp. 83-101. DOI: 10.17081/invinno.12.1.6667
dc.identifier.issn.spa.fl_str_mv 23448652
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/16227
dc.identifier.doi.spa.fl_str_mv DOI: 10.17081/invinno.12.1.6667
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Castillo García, J.; Barrera, M. y Bacca Cortes, B. (2024). Software tool for drone flight management in supervising building extern façades. Investigación e Innovación en Ingenierías. 12(1). pp. 83-101. DOI: 10.17081/invinno.12.1.6667
23448652
DOI: 10.17081/invinno.12.1.6667
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/16227
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 99
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 83
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Investigación e Innovación en Ingenierías
dc.relation.references.none.fl_str_mv [1] Ministerio-Ambiente-Vivienda-Desarrollo-Territorial, “REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10,” Bogotá D.C., 2010.
[2] S. Emelianov, A. Bulgakow, and D. Sayfeddine, “Aerial laser inspection of buildings facades using quadrotor,” Procedia Eng., vol. 85, pp. 140–146, 2014.
[3] R. R. S. de Melo, D. B. Costa, J. S. Álvares, and J. Irizarry, “Applicability of unmanned aerial system (UAS) for safety inspection on construction sites,” Saf. Sci., vol. 98, pp. 174–185, 2017.
[4] A. Carrio et al., “UBRISTES: UAV-Based Building Rehabilitation with Visible and Thermal Infrared Remote Sensing,” Springer, Cham, 2016, pp. 245–256.
[5] S. S. Mansouri, C. Kanellakis, G. Georgoulas, D. Kominiak, T. Gustafsson, and G. Nikolakopoulos, “2D visual area coverage and path planning coupled with camera footprints,” Control Eng. Pract., vol. 75, no. January, pp. 1–16, 2018.
[6] P. F. Amar, “A Human-Robot Cooperation System For Surface Inspection Aerial Missions,” E.T.S. de Ingenieros Informáticos (UPM), 2019.
[7] R. D. Ballesteros Ruiz, A. C. Lordsleem Júnior, and J. H. Aquino Rocha, “Inspeção de fachadas com Veículos Aéreos Não Tripulados (VANT): estudo exploratório,” Rev. ALCONPAT, vol. 11, no. 1, pp. 88–104, 2021.
[8] K. Chen, G. Reichard, A. Akanmu, and X. Xu, “Geo-registering UAV-captured close-range images to GIS-based spatial model for building façade inspections,” Autom. Constr., vol. 122, p. 103503, Feb. 2021.
[9] Y. Tan, G. Li, R. Cai, J. Ma, and M. Wang, “Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection,” Autom. Constr., vol. 139, p. 104284, Jul. 2022.
[10] H. Freimuth and M. König, “Planning and executing construction inspections with unmanned aerial vehicles,” Autom. Constr., vol. 96, pp. 540–553, Dec. 2018.
[11] Y. Tan, S. Li, H. Liu, P. Chen, and Z. Zhou, “Automatic inspection data collection of building surface based on BIM and UAV,” Autom. Constr., vol. 131, p. 103881, Nov. 2021.
[12] Visual Drone, “Visual Drone - Topografía y fotogrametría,” 2022. [Online]. Available: https://visualdrone.co/topografia-y-fotogrametria/. [Accessed: 26-Dec-2019].
[13] C. M. Gualán Llanos and C. D. Campodónico Durango, “Implementación de un sistema de navegación y mapeo en vehículos aéreos no tripulados utilizando dispositivos embebidos y software libre,” Escuela Superior Politécnica del Litoral, 2017.
[14] A. Murtiyoso, M. Koehl, P. Grussenmeyer, and T. Freville, “Acquisition and processing protocols for UAV images: 3D modeling of historical buildings using photogrammetry,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 4, no. 2W2, pp. 163–170, 2017.
[15] Air Photo Colombia S.A.S, “Air Photo Colombia,” 2022. [Online]. Available: https://www.airphotocolombia.com. [Accessed: 29-Aug-2022].
[16] Drones Sky Zoom, “Sky Zoom fotografía y video aéreo,” 2022. [Online]. Available: https://www.dronesskyzoom.com/. [Accessed: 29-Aug-2022].
[17] Open-Robotics, “ROS: Home,” 2022. [Online]. Available: https://www.ros.org/. [Accessed: 06-Sep-2022].
[18] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed. Addison-Wesley Professional, 2003.
[19] W. Richardson, “How to estimate the maximum and recommended flight times of a UAS, UAV, or Drone System,” Louisiana, 2015.
[20] Microsoft, “Image Composite Editor,” 2023. [Online]. Available: https://www.microsoft.com/en-us/research/project/image-composite-editor/. [Accessed: 01-Jun-2023].
[21] New-House-Internet-Services, “PTGui,” 2023. [Online]. Available: https://ptgui.com/about.html. [Accessed: 01-Jun-2023].
[22] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
[23] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.
[24] A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” Feb. 2021.
[25] M. Lloyd, “UAV Forecast,” 2023. [Online]. Available: https://www.uavforecast.com/. [Accessed: 01-Jun-2023].
[26] A. Maluf Blanco and E. S. Michelena Fernández, "Estudio de factores que afectan la integración de los sistemas de gestión en el Centro Nacional de Biopreparados, Cuba", Investigación e Innovación en Ingenierías, vol. 8, no. 1, pp. 37–53, Jan. 2020. https://doi.org/10.17081/invinno.8.1.3592
[27] M. U. Müller, N. Ekhtiari, R. M. Almeida, and C. Rieke, “SUPER-RESOLUTION OF MULTISPECTRAL SATELLITE IMAGES USING CONVOLUTIONAL NEURAL NETWORKS,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. V-1–2020, pp. 33–40, Aug. 2020.
dc.rights.spa.fl_str_mv Derechos reservados - Site Owner, 202
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Site Owner, 202
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Simón Bolivar
dc.publisher.place.spa.fl_str_mv Barranquilla
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/2a1c4203-136a-4984-9594-3583a4908763/download
https://red.uao.edu.co/bitstreams/ac62fc72-c861-4ba6-b46f-f2c24019360d/download
https://red.uao.edu.co/bitstreams/77b1b7d5-d25b-4aae-ae30-61ae8dcc40b9/download
https://red.uao.edu.co/bitstreams/1b988423-889e-4729-94c9-31cacb0e3f9b/download
bitstream.checksum.fl_str_mv 56cff2250dfef48d64baa78bf6f5c8d0
6987b791264a2b5525252450f99b10d1
b8feba8122425dffbe3cf29948b23427
35308396a9e93da67912c1213ef3df59
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1851053289836118016
spelling Castillo García, JaiverBarrera, MateoBacca Cortes, Bladimir2025-07-28T14:27:38Z2025-07-28T14:27:38Z2024Castillo García, J.; Barrera, M. y Bacca Cortes, B. (2024). Software tool for drone flight management in supervising building extern façades. Investigación e Innovación en Ingenierías. 12(1). pp. 83-101. DOI: 10.17081/invinno.12.1.666723448652https://hdl.handle.net/10614/16227DOI: 10.17081/invinno.12.1.6667Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Objetive:The main goal is to develop a software called DroneFaçadeto manage the drone flight and generate an image mosaic of a building façade, allowing the continuous monitoring and registering the state of the façade through time.Methodology:The software DroneFaçade was developed considering three operational phases: GPS-based acquisition of waypoints, image-data acquisition flying the drone through the computed trajectory, and the offline mosaic computation. The waypoints are captured using GPS Exchange Format. Then, these waypoints are introduced into DroneFaçade, proper coverage of the façade is computed using the intrinsic camera parameters, the drone trajectory is computed, and the battery changing points are defined. Afterwards, the flight mission starts capturing image data the in the on-board Jetson-Nano development system running ROS. Next, the telemetry and image data are imported into a SQL-database system, and the mosaic computation is performed. At the end, DroneFaçade generates a report in PDF about the façade inspection.Results:To validate DronFaçade two different tests were performed: integration tests according with RUP methodology to check the functional requirements fulfillment, and a quantitative field test to check que quality of the mosaic computed. As a result of the quantitative test, the mosaic image computed by DronFaçade has low structural errors, preserves phase congruency and the magnitude of the image gradients, keeps high correlation and an appearance similarity of up 92.6% with respect to the real scene.. Conclusions:DroneFaçade is a software tool which can be an option to register through time the building façades state and performing corrective actions to avoid high building deterioration thanks to the high quality image mosaics generated.Objectivo:Desarrollo de una herramienta software llamada DroneFaçade para la gestión de vuelo de drones y generar un mosaico de la fachada del edificio, permitiendo así la supervisión continua y el registro el estado de la fachada a lo largo del tiempoMetodología: El software DroneFaçade fue desarrollado considerando tres fases operacionales: adquisición de way-pointsusando GPS, adquisición de imágenes volando el dron a lo largo de la trayectoria calculada, y cálculo del mosaico fuera de línea. Los way-pooints son capturados usando el formato GPS Exchange. Luego, estos way-points son introducidos en DroneFaçade, una adecuada cobertura es calculada usando los parámetros intrínsecos de la cámara, se calcula la trayectoria del dron y se definen los puntos de cambio de batería. Luego, la misión de vuelo inicia capturando las imágenes en el sistema de desarrollo Jetson-Nanoa bordo que corre ROS. Luego, los datos de telemetría e imágenes son importados en una base de datos SQL, y se calcula el mosaico de la fachada inspeccionada. Al final, DroneFaçade genera un reporte en PDF acerca de la inspección de la fachada.Resultados:Para validar DroneFaçade dos diferentes pruebas fueron desarrolladas: pruebas de integración de acuerdo con la metodología RUP para chequear el cumplimiento de los requerimientos funcionales, y una prueba cuantitativa en campo para chequear la calidad del mosaico calculado. Como resultado de la prueba cuantitativa, la imagen de mosaico calculada por DroneFaçade tiene bajos errores estructurales, preserva la congruencia de fase y los gradientes de la imagen, mantiene una alta correlación y una similitud deapariencia de hasta el 92.6% con respecto a la escena real. Conclusiones:: DroneFaçade es una herramienta software que puede ser una opción para registrar a lo largo del tiempo el estado de las fachadas de los edificios y realizar acciones correctivas para evitar altos deterioros en éstos gracias a los mosaicos generados de alta calidad16 páginasapplication/pdfengUniversidad Simón BolivarBarranquillaDerechos reservados - Site Owner, 202https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Software tool for drone flight management in supervising building extern façadesHerramienta software para la gestión de vuelo de un dron en la supervisión de fachadas externas de edificiosArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a859918312Investigación e Innovación en Ingenierías[1] Ministerio-Ambiente-Vivienda-Desarrollo-Territorial, “REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10,” Bogotá D.C., 2010.[2] S. Emelianov, A. Bulgakow, and D. Sayfeddine, “Aerial laser inspection of buildings facades using quadrotor,” Procedia Eng., vol. 85, pp. 140–146, 2014.[3] R. R. S. de Melo, D. B. Costa, J. S. Álvares, and J. Irizarry, “Applicability of unmanned aerial system (UAS) for safety inspection on construction sites,” Saf. Sci., vol. 98, pp. 174–185, 2017.[4] A. Carrio et al., “UBRISTES: UAV-Based Building Rehabilitation with Visible and Thermal Infrared Remote Sensing,” Springer, Cham, 2016, pp. 245–256.[5] S. S. Mansouri, C. Kanellakis, G. Georgoulas, D. Kominiak, T. Gustafsson, and G. Nikolakopoulos, “2D visual area coverage and path planning coupled with camera footprints,” Control Eng. Pract., vol. 75, no. January, pp. 1–16, 2018.[6] P. F. Amar, “A Human-Robot Cooperation System For Surface Inspection Aerial Missions,” E.T.S. de Ingenieros Informáticos (UPM), 2019.[7] R. D. Ballesteros Ruiz, A. C. Lordsleem Júnior, and J. H. Aquino Rocha, “Inspeção de fachadas com Veículos Aéreos Não Tripulados (VANT): estudo exploratório,” Rev. ALCONPAT, vol. 11, no. 1, pp. 88–104, 2021.[8] K. Chen, G. Reichard, A. Akanmu, and X. Xu, “Geo-registering UAV-captured close-range images to GIS-based spatial model for building façade inspections,” Autom. Constr., vol. 122, p. 103503, Feb. 2021.[9] Y. Tan, G. Li, R. Cai, J. Ma, and M. Wang, “Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection,” Autom. Constr., vol. 139, p. 104284, Jul. 2022.[10] H. Freimuth and M. König, “Planning and executing construction inspections with unmanned aerial vehicles,” Autom. Constr., vol. 96, pp. 540–553, Dec. 2018.[11] Y. Tan, S. Li, H. Liu, P. Chen, and Z. Zhou, “Automatic inspection data collection of building surface based on BIM and UAV,” Autom. Constr., vol. 131, p. 103881, Nov. 2021.[12] Visual Drone, “Visual Drone - Topografía y fotogrametría,” 2022. [Online]. Available: https://visualdrone.co/topografia-y-fotogrametria/. [Accessed: 26-Dec-2019].[13] C. M. Gualán Llanos and C. D. Campodónico Durango, “Implementación de un sistema de navegación y mapeo en vehículos aéreos no tripulados utilizando dispositivos embebidos y software libre,” Escuela Superior Politécnica del Litoral, 2017.[14] A. Murtiyoso, M. Koehl, P. Grussenmeyer, and T. Freville, “Acquisition and processing protocols for UAV images: 3D modeling of historical buildings using photogrammetry,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 4, no. 2W2, pp. 163–170, 2017.[15] Air Photo Colombia S.A.S, “Air Photo Colombia,” 2022. [Online]. Available: https://www.airphotocolombia.com. [Accessed: 29-Aug-2022].[16] Drones Sky Zoom, “Sky Zoom fotografía y video aéreo,” 2022. [Online]. Available: https://www.dronesskyzoom.com/. [Accessed: 29-Aug-2022].[17] Open-Robotics, “ROS: Home,” 2022. [Online]. Available: https://www.ros.org/. [Accessed: 06-Sep-2022].[18] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed. Addison-Wesley Professional, 2003.[19] W. Richardson, “How to estimate the maximum and recommended flight times of a UAS, UAV, or Drone System,” Louisiana, 2015.[20] Microsoft, “Image Composite Editor,” 2023. [Online]. Available: https://www.microsoft.com/en-us/research/project/image-composite-editor/. [Accessed: 01-Jun-2023].[21] New-House-Internet-Services, “PTGui,” 2023. [Online]. Available: https://ptgui.com/about.html. [Accessed: 01-Jun-2023].[22] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.[23] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.[24] A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” Feb. 2021.[25] M. Lloyd, “UAV Forecast,” 2023. [Online]. Available: https://www.uavforecast.com/. [Accessed: 01-Jun-2023].[26] A. Maluf Blanco and E. S. Michelena Fernández, "Estudio de factores que afectan la integración de los sistemas de gestión en el Centro Nacional de Biopreparados, Cuba", Investigación e Innovación en Ingenierías, vol. 8, no. 1, pp. 37–53, Jan. 2020. https://doi.org/10.17081/invinno.8.1.3592[27] M. U. Müller, N. Ekhtiari, R. M. Almeida, and C. Rieke, “SUPER-RESOLUTION OF MULTISPECTRAL SATELLITE IMAGES USING CONVOLUTIONAL NEURAL NETWORKS,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. V-1–2020, pp. 33–40, Aug. 2020.Façade deteriorationUAVMosaic imageROSImage processingDeterioro de fachadasUAVImagen mosaicoROSProcesamiento de imágenesComunidad generalPublicationORIGINALSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdfSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf1328032https://red.uao.edu.co/bitstreams/2a1c4203-136a-4984-9594-3583a4908763/download56cff2250dfef48d64baa78bf6f5c8d0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/ac62fc72-c861-4ba6-b46f-f2c24019360d/download6987b791264a2b5525252450f99b10d1MD52TEXTSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdf.txtSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdf.txtExtracted texttext/plain45946https://red.uao.edu.co/bitstreams/77b1b7d5-d25b-4aae-ae30-61ae8dcc40b9/downloadb8feba8122425dffbe3cf29948b23427MD53THUMBNAILSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdf.jpgSoftware_tool_for_drone_flight_management_in_supervising_building_extern_façades.pdf.jpgGenerated Thumbnailimage/jpeg13078https://red.uao.edu.co/bitstreams/1b988423-889e-4729-94c9-31cacb0e3f9b/download35308396a9e93da67912c1213ef3df59MD5410614/16227oai:red.uao.edu.co:10614/162272025-07-31 03:03:14.79https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Site Owner, 202open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==