Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior
Additive manufacturing of polymers is used for rapid prototyping and in specifc applications for the fabrication of fnal products. As the application range grows to the industrial sector, functional parts require better mechanical properties and tighter tolerance ranges. Short-fber reinforced polyme...
- Autores:
-
León‑Becerra, Juan
Correa‑Aguirre, Juan Pablo
González‑Estrada, Octavio Andrés
Pertuz, Alberto David
Hidalgo Salazar, Miguel Ángel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15888
- Acceso en línea:
- https://hdl.handle.net/10614/15888
https://red.uao.edu.co/
- Palabra clave:
- Thermoplastic composites
Surface roughness
FFF
DMA
Thermo-mechanical analysis
- Rights
- closedAccess
- License
- Derechos reservados - Springer, 2024
id |
REPOUAO2_1a208eb364adb289e05bb7ddbb0b50cf |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15888 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
title |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
spellingShingle |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior Thermoplastic composites Surface roughness FFF DMA Thermo-mechanical analysis |
title_short |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
title_full |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
title_fullStr |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
title_full_unstemmed |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
title_sort |
Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior |
dc.creator.fl_str_mv |
León‑Becerra, Juan Correa‑Aguirre, Juan Pablo González‑Estrada, Octavio Andrés Pertuz, Alberto David Hidalgo Salazar, Miguel Ángel |
dc.contributor.author.none.fl_str_mv |
León‑Becerra, Juan Correa‑Aguirre, Juan Pablo González‑Estrada, Octavio Andrés Pertuz, Alberto David Hidalgo Salazar, Miguel Ángel |
dc.subject.proposal.eng.fl_str_mv |
Thermoplastic composites Surface roughness FFF DMA Thermo-mechanical analysis |
topic |
Thermoplastic composites Surface roughness FFF DMA Thermo-mechanical analysis |
description |
Additive manufacturing of polymers is used for rapid prototyping and in specifc applications for the fabrication of fnal products. As the application range grows to the industrial sector, functional parts require better mechanical properties and tighter tolerance ranges. Short-fber reinforced polymers can handle higher stresses and signifcantly less deformation tan raw AM polymers, but their surface roughness and viscoelastic behavior are poorly understood. The authors perform the dynamical mechanical analysis, line, and surface roughness characterization of fused flament fabricated composites in this work. Mainly, Onyx, a short carbon-flled fber nylon thermoplastic composite, was used in three diferent build orientations: fat, on-edge, and upright. Then, the efect of build orientation on the viscoelastic and roughness properties is discussed. Results showed that despite using the same raw material, printing direction has a moderate impact on the viscoelastic behavior and a signifcant efect on the surface roughness of the part. For instance, a diference of 25 °C in the Tg was observed between the on-edge and upright build orientation, with the latter the highest. Also, the fat print orientation presented the lowest values in the z-roughness of all the three build orientations analyzed |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-13T13:39:41Z |
dc.date.available.none.fl_str_mv |
2024-11-13T13:39:41Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
León‑Becerra, J., et. al. (2024). Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior. The international journal of advanced manufacturing technology. Volumen 130. p.p. 425–435. https://link.springer.com/article/10.1007/s00170-023-12503-w |
dc.identifier.issn.none.fl_str_mv |
02683768 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15888 |
dc.identifier.eissn.none.fl_str_mv |
14333015 |
dc.identifier.instname.none.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.none.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
León‑Becerra, J., et. al. (2024). Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior. The international journal of advanced manufacturing technology. Volumen 130. p.p. 425–435. https://link.springer.com/article/10.1007/s00170-023-12503-w 02683768 14333015 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15888 https://red.uao.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
435 |
dc.relation.citationstartpage.none.fl_str_mv |
425 |
dc.relation.citationvolume.none.fl_str_mv |
130 |
dc.relation.ispartofjournal.none.fl_str_mv |
The international journal of advanced manufacturing technology |
dc.relation.references.none.fl_str_mv |
1. Palić N, Slavković V, Jovanović Ž, Živić F, Grujović N (2019) Mechanical behaviour of small load bearing structures fabricated by 3d printing,. Appl Eng Lett 4(3):88–92. https://doi.org/10. 18485/aeletters.2019.4.3.2 2. Mercado Rivera FJ, Rojas Arciniegas AJ (2020) Additive manufacturing methods: techniques, materials, and closed-loop control applications,. Int J Adv Manuf Technol 109(1–2):17–31. https:// doi.org/10.1007/s00170-020-05663-6 3. Hoa S, Reddy B (2021) Rosca D (2021) “Development of omega stiffeners using 4D printing of composites,.” Compos Struct 272:114264. https://doi.org/10.1016/j.compstruct.2021.114264. 4. Yu Y et al (2020) Material characterization and precise fnite element analysis of fber reinforced thermoplastic composites for 4D printing,. CAD Comput Aided Des 122:102817. https://doi.org/ 10.1016/j.cad.2020.102817 5. Juan León B, Díaz-Rodríguez JG, González-Estrada OA (2020) Daño en partes de manufactura aditiva reforzadas por fbras continuas,. Revista UIS Ingenierías 19(2):161–175. https://doi.org/ 10.18273/revuin.v19n2-2020018 6. Heidari-Rarani M, Rafee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM 3D printing of continuous carbon fber reinforced PLA composites Compos B Eng 175 https://doi. org/10.1016/j.compositesb.2019.107147 7. León-Becerra JS, González-Estrada OA (2020) W Pinto-Hernández, “Mechanical characterization of additive manufacturing composite parts,.” Respuestas 25:2. https://doi.org/10.22463/0122820x.2189 8. Leon-Becerra J, González-Estrada OA, Sánchez-Acevedo H (2022) Comparison of models to predict mechanical properties of FR-AM composites and a fractographical study,. Polymers (Basel) 14(17):3546. https://doi.org/10.3390/polym14173546 9. Mohammadizadeh M, Fidan I (2020) “Experimental evaluation of additively manufactured continuous fber reinforced nylon composites,” Minerals Metals and Materials Series 321–328 https:// doi.org/10.1007/978-3-030-36296-6_30 10. Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, GarcíaMoreno I, Reverte JM (2019) Additive manufacturing of continuous fbre reinforced thermoplastic composites using fused deposition modelling: efect of process parameters on mechanical properties. Compos Sci Technol 181 https://doi.org/10.1016/j. compscitech.2019.107688 11. Nugroho A, Ardiansyah R, Rusita L, Larasati IL (2018) Efect of layer thickness on fexural properties of PLA (PolyLactid Acid) by 3D printing,. J Phys Conf Ser 1130:1. https://doi.org/10.1088/ 1742-6596/1130/1/012017 12. Anoop MS, Senthil P, Sooraj VS (2021) An investigation on viscoelastic characteristics of 3D-printed FDM components using RVE numerical analysis,. J Braz Soc Mech Sci Eng 43:1. https:// doi.org/10.1007/s40430-020-02724-5 13. Edelen DL, Bruck HA (2022) Predicting failure modes of 3D-printed multi-material polymer sandwich structures from process parameters,. J Sandwich Struct Mater 24(2):1049–1075. https://doi.org/10.1177/10996362211020445 14. Jin Y et al (2020) Novel 2D dynamic elasticity maps for inspection of anisotropic properties in fused deposition modeling objects,. Polym (Basel) 12:9. https://doi.org/10.3390/polym12091966 15. Díaz JG, León-Becerra J, Pertuz AD, González-Estrada OA, Jaramillo-Gutiérrez MI (2021) Evaluation through SEM image processing of the volumetric fber content in continuos fberreinforced additive manufacturing composites,. Mater Res 24:2. https://doi.org/10.1590/1980-5373-mr-2022-0049 16. Mohammadizadeh M, Fidan I, Allen M, Imeri A (2018) Creep behavior analysis of additively manufactured fber-reinforced components,. Int J Adv Manuf Technol 99(5–8):1225–1234. https://doi.org/10.1007/s00170-018-2539-z 17. Mohammadizadeh M, Gupta A, Fidan I (2021) Mechanical benchmarking of additively manufactured continuous and short carbon fber reinforced nylon,. J Compos Mater 55(25):3629–3638. https://doi.org/10.1177/00219983211020070 18. Calignano F, Lorusso M, Roppolo I, Minetola P (2020) Investigation of the mechanical properties of a carbon fbre-reinforced nylon flament for 3d printing,. Machines 8(3):1–13. https://doi. org/10.3390/machines8030052 19. León-Becerra J, González-Estrada OA, Quiroga J (2021) Efect of relative density in in-plane mechanical properties of common 3D-printed polylactic acid lattice structures,. ACS Omega 6(44):29830–29838. https://doi.org/10.1021/acsomega.1c04295 20. Reverte JM, Ángel Caminero M, Chacón JM, García-Plaza E, Núñez PJ, Becar JP (2020) Mechanical and geometric performance of PLA-based polymer composites processed by the fused flament fabrication additive manufacturing technique,. Materials 13:8. https://doi.org/10.3390/MA13081924 21. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fber reinforced polymers processing,. Mater Des 118:256–265. https://doi.org/10.1016/j. matdes.2017.01.050 22. Mohamed OA, Masood SH, Bhowmik JL (2016) “Analytical modelling and optimization of the temperature-dependent dynamic mechanical properties of fused deposition fabricated parts made of PC-ABS,” Materials 9 11https://doi.org/10.3390/ma9110895 23. Blanco I, Siracusa V (2021) The use of thermal techniques in the characterization of bio-sourced polymers,. Materials 14:7. https:// doi.org/10.3390/ma14071686 24. Zander NE, Park JH, Boelter ZR, Gillan MA (2019) Recycled cellulose polypropylene composite feedstocks for material extrusion additive manufacturing,. ACS Omega 4(9):13879–13888. https:// doi.org/10.1021/acsomega.9b01564 25. Coppola B, Cappetti N, di Maio L, Scarfato P, Incarnato L (2018) 3D printing of PLA/clay nanocomposites: infuence of printing temperature on printed samples properties,. Materials 11:10. https://doi.org/10.3390/ma11101947 26. Mazurchevici SN, Mazurchevici AD, Nedelcu D (2020) Dynamical mechanical and thermal analyses of biodegradable raw materials for additive manufacturing,. Materials 13:8. https://doi.org/10. 3390/MA13081819 27. Galeja M, Hejna A, Kosmela P, Kulawik A (2020) Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle,. Materials 13:2. https://doi.org/10.3390/ma13020297 28. Billah KMM, Lorenzana FAR, Martinez NL, Wicker RB, Espalin D (2020) “Thermomechanical characterization of short carbon fber and short glass fber-reinforced ABS used in large format additive manufacturing,” Addit Manuf 35 https://doi.org/10. 1016/j.addma.2020.101299 29. Cannella F, Garinei A, Marsili R, Speranzini E (2018) Dynamic mechanical analysis and thermoelasticity for investigating composite structural elements made with additive manufacturing,. Compos Struct 185:466–473. https://doi.org/10.1016/j.comps truct.2017.11.029 30. Abayazid FF, Ghajari M (2020) “Material characterisation of additively manufactured elastomers at diferent strain rates and build orientations,” Addit Manuf 33 https://doi.org/10.1016/j.addma. 2020.101160 31. Robinson M et al (2018) Mechanical characterisation of additively manufactured elastomeric structures for variable strain rate applications,. Addit Manuf 27:398–407. https://doi.org/10.1016/j. addma.2019.03.022 32. Webster S, Lin H, Carter FM III, Ehmann K, Cao J (2021) Physical mechanisms in hybrid additive manufacturing: a process design framework,. J Mater Process Technol 291:117048. https:// doi.org/10.1016/j.jmatprotec.2021.117048 33. Iragi M, Pascual-González C, Esnaola A, Lopes CS, Aretxabaleta L (2019) “Ply and interlaminar behaviours of 3D printed continuous carbon fbre-reinforced thermoplastic laminates; efects of processing conditions and microstructure,” Addit Manuf 30 https://doi.org/10.1016/j.addma.2019.100884 34. YeJ Yao T, Deng Z, Zhang K, Dai S, Liu X (2021) A modifed creep model of polylactic acid (PLA-max) materials with diferent printing angles processed by fused flament fabrication,. J Appl Polym Sci 138:17. https://doi.org/10.1002/app.50270 35. Fernandes RR, Tamijani AY, Al-Haik M (2021) “Mechanical characterization of additively manufactured fiber-reinforced composites,” Aerosp Sci Technol 113 https://doi.org/10.1016/j. ast.2021.106653 36. Zhao J, Perkins E, Li XF, Bond A, Marghitu D (2021) Nonlinear vibratory properties of additive manufactured continuous carbon fiber reinforced polymer composites,. Int J Adv Manuf Technol 117(3–4):1077–1089. https://doi.org/10.1007/ s00170-021-07456-x 37. Pascual-González C, Iragi M, Fernández A, Fernández-Blázquez JP, Aretxabaleta L, Lopes CS (2020) “An approach to analyse the factors behind the micromechanical response of 3D-printed composites,” Compos B Eng 186 https://doi.org/10.1016/j.compo sitesb.2020.107820 38. García E, Núñez PJ, Chacón JM, Caminero MA, Kamarthi S (2020) Comparative study of geometric properties of unreinforced PLA and PLA-Graphene composite materials applied to additive manufacturing using FFF technology. Polym Test 91 https://doi. org/10.1016/j.polymertesting.2020.106860 39. Caminero MÁ, Chacón JM, García-Plaza E, Núñez PJ, Reverte JM, Becar JP (2019) Additive manufacturing of PLA-based composites using fused flament fabrication: efect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture,. Polymers (Basel) 11:5. https://doi.org/10. 3390/polym11050799 40. UNE-EN ISO 4287 (1999) “Especifcación geométrica de productos. Calidad superfcial: Método del perfl. Términos, defniciones y parámetros del estado superfcial 41. Klata E, van de Velde K, Krucińska I (2003) DSC investigations of polyamide 6 in hybrid GF/PA 6 yarns and composites,. Polym Test 22(8):929–937. https://doi.org/10.1016/S0142-9418(03)00043-6 42. Díaz-Rodríguez JG, Pertúz-Comas AD, González-Estrada OA (2021) Mechanical properties for long fbre reinforced fused deposition manufactured composites,. Compos B Eng 211:108657. https://doi.org/10.1016/j.compositesb.2021.108657 43. Menard KP, Menard NR (2020) Dynamic Mechanical Analysis, 3rd edn. CRC Press, Boca Raton, FL 44. al Rashid A, Koҫ M, (2021) Creep and recovery behavior of continuous fber-reinforced 3DP composites,. Polymers (Basel) 13(10):1644. https://doi.org/10.3390/polym13101644 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Springer, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00170-023-12503-w |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/1db79dd7-e447-40f8-b287-e5854b1d89b4/download |
bitstream.checksum.fl_str_mv |
6987b791264a2b5525252450f99b10d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1831928585258008576 |
spelling |
León‑Becerra, JuanCorrea‑Aguirre, Juan PabloGonzález‑Estrada, Octavio AndrésPertuz, Alberto DavidHidalgo Salazar, Miguel Ángelvirtual::5783-12024-11-13T13:39:41Z2024-11-13T13:39:41Z2024León‑Becerra, J., et. al. (2024). Additive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behavior. The international journal of advanced manufacturing technology. Volumen 130. p.p. 425–435. https://link.springer.com/article/10.1007/s00170-023-12503-w02683768https://hdl.handle.net/10614/1588814333015Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Additive manufacturing of polymers is used for rapid prototyping and in specifc applications for the fabrication of fnal products. As the application range grows to the industrial sector, functional parts require better mechanical properties and tighter tolerance ranges. Short-fber reinforced polymers can handle higher stresses and signifcantly less deformation tan raw AM polymers, but their surface roughness and viscoelastic behavior are poorly understood. The authors perform the dynamical mechanical analysis, line, and surface roughness characterization of fused flament fabricated composites in this work. Mainly, Onyx, a short carbon-flled fber nylon thermoplastic composite, was used in three diferent build orientations: fat, on-edge, and upright. Then, the efect of build orientation on the viscoelastic and roughness properties is discussed. Results showed that despite using the same raw material, printing direction has a moderate impact on the viscoelastic behavior and a signifcant efect on the surface roughness of the part. For instance, a diference of 25 °C in the Tg was observed between the on-edge and upright build orientation, with the latter the highest. Also, the fat print orientation presented the lowest values in the z-roughness of all the three build orientations analyzed11 páginasapplication/pdfengSpringerUnited KingdomDerechos reservados - Springer, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbhttps://link.springer.com/article/10.1007/s00170-023-12503-wAdditive manufacturing of short carbon filled fiber nylon: effect of build orientation on surface roughness and viscoelastic behaviorArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85435425130The international journal of advanced manufacturing technology1. Palić N, Slavković V, Jovanović Ž, Živić F, Grujović N (2019) Mechanical behaviour of small load bearing structures fabricated by 3d printing,. Appl Eng Lett 4(3):88–92. https://doi.org/10. 18485/aeletters.2019.4.3.2 2. Mercado Rivera FJ, Rojas Arciniegas AJ (2020) Additive manufacturing methods: techniques, materials, and closed-loop control applications,. Int J Adv Manuf Technol 109(1–2):17–31. https:// doi.org/10.1007/s00170-020-05663-6 3. Hoa S, Reddy B (2021) Rosca D (2021) “Development of omega stiffeners using 4D printing of composites,.” Compos Struct 272:114264. https://doi.org/10.1016/j.compstruct.2021.114264. 4. Yu Y et al (2020) Material characterization and precise fnite element analysis of fber reinforced thermoplastic composites for 4D printing,. CAD Comput Aided Des 122:102817. https://doi.org/ 10.1016/j.cad.2020.102817 5. Juan León B, Díaz-Rodríguez JG, González-Estrada OA (2020) Daño en partes de manufactura aditiva reforzadas por fbras continuas,. Revista UIS Ingenierías 19(2):161–175. https://doi.org/ 10.18273/revuin.v19n2-2020018 6. Heidari-Rarani M, Rafee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM 3D printing of continuous carbon fber reinforced PLA composites Compos B Eng 175 https://doi. org/10.1016/j.compositesb.2019.107147 7. León-Becerra JS, González-Estrada OA (2020) W Pinto-Hernández, “Mechanical characterization of additive manufacturing composite parts,.” Respuestas 25:2. https://doi.org/10.22463/0122820x.2189 8. Leon-Becerra J, González-Estrada OA, Sánchez-Acevedo H (2022) Comparison of models to predict mechanical properties of FR-AM composites and a fractographical study,. Polymers (Basel) 14(17):3546. https://doi.org/10.3390/polym14173546 9. Mohammadizadeh M, Fidan I (2020) “Experimental evaluation of additively manufactured continuous fber reinforced nylon composites,” Minerals Metals and Materials Series 321–328 https:// doi.org/10.1007/978-3-030-36296-6_30 10. Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, GarcíaMoreno I, Reverte JM (2019) Additive manufacturing of continuous fbre reinforced thermoplastic composites using fused deposition modelling: efect of process parameters on mechanical properties. Compos Sci Technol 181 https://doi.org/10.1016/j. compscitech.2019.107688 11. Nugroho A, Ardiansyah R, Rusita L, Larasati IL (2018) Efect of layer thickness on fexural properties of PLA (PolyLactid Acid) by 3D printing,. J Phys Conf Ser 1130:1. https://doi.org/10.1088/ 1742-6596/1130/1/012017 12. Anoop MS, Senthil P, Sooraj VS (2021) An investigation on viscoelastic characteristics of 3D-printed FDM components using RVE numerical analysis,. J Braz Soc Mech Sci Eng 43:1. https:// doi.org/10.1007/s40430-020-02724-5 13. Edelen DL, Bruck HA (2022) Predicting failure modes of 3D-printed multi-material polymer sandwich structures from process parameters,. J Sandwich Struct Mater 24(2):1049–1075. https://doi.org/10.1177/10996362211020445 14. Jin Y et al (2020) Novel 2D dynamic elasticity maps for inspection of anisotropic properties in fused deposition modeling objects,. Polym (Basel) 12:9. https://doi.org/10.3390/polym12091966 15. Díaz JG, León-Becerra J, Pertuz AD, González-Estrada OA, Jaramillo-Gutiérrez MI (2021) Evaluation through SEM image processing of the volumetric fber content in continuos fberreinforced additive manufacturing composites,. Mater Res 24:2. https://doi.org/10.1590/1980-5373-mr-2022-0049 16. Mohammadizadeh M, Fidan I, Allen M, Imeri A (2018) Creep behavior analysis of additively manufactured fber-reinforced components,. Int J Adv Manuf Technol 99(5–8):1225–1234. https://doi.org/10.1007/s00170-018-2539-z 17. Mohammadizadeh M, Gupta A, Fidan I (2021) Mechanical benchmarking of additively manufactured continuous and short carbon fber reinforced nylon,. J Compos Mater 55(25):3629–3638. https://doi.org/10.1177/00219983211020070 18. Calignano F, Lorusso M, Roppolo I, Minetola P (2020) Investigation of the mechanical properties of a carbon fbre-reinforced nylon flament for 3d printing,. Machines 8(3):1–13. https://doi. org/10.3390/machines8030052 19. León-Becerra J, González-Estrada OA, Quiroga J (2021) Efect of relative density in in-plane mechanical properties of common 3D-printed polylactic acid lattice structures,. ACS Omega 6(44):29830–29838. https://doi.org/10.1021/acsomega.1c04295 20. Reverte JM, Ángel Caminero M, Chacón JM, García-Plaza E, Núñez PJ, Becar JP (2020) Mechanical and geometric performance of PLA-based polymer composites processed by the fused flament fabrication additive manufacturing technique,. Materials 13:8. https://doi.org/10.3390/MA13081924 21. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fber reinforced polymers processing,. Mater Des 118:256–265. https://doi.org/10.1016/j. matdes.2017.01.050 22. Mohamed OA, Masood SH, Bhowmik JL (2016) “Analytical modelling and optimization of the temperature-dependent dynamic mechanical properties of fused deposition fabricated parts made of PC-ABS,” Materials 9 11https://doi.org/10.3390/ma9110895 23. Blanco I, Siracusa V (2021) The use of thermal techniques in the characterization of bio-sourced polymers,. Materials 14:7. https:// doi.org/10.3390/ma14071686 24. Zander NE, Park JH, Boelter ZR, Gillan MA (2019) Recycled cellulose polypropylene composite feedstocks for material extrusion additive manufacturing,. ACS Omega 4(9):13879–13888. https:// doi.org/10.1021/acsomega.9b01564 25. Coppola B, Cappetti N, di Maio L, Scarfato P, Incarnato L (2018) 3D printing of PLA/clay nanocomposites: infuence of printing temperature on printed samples properties,. Materials 11:10. https://doi.org/10.3390/ma11101947 26. Mazurchevici SN, Mazurchevici AD, Nedelcu D (2020) Dynamical mechanical and thermal analyses of biodegradable raw materials for additive manufacturing,. Materials 13:8. https://doi.org/10. 3390/MA13081819 27. Galeja M, Hejna A, Kosmela P, Kulawik A (2020) Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle,. Materials 13:2. https://doi.org/10.3390/ma13020297 28. Billah KMM, Lorenzana FAR, Martinez NL, Wicker RB, Espalin D (2020) “Thermomechanical characterization of short carbon fber and short glass fber-reinforced ABS used in large format additive manufacturing,” Addit Manuf 35 https://doi.org/10. 1016/j.addma.2020.101299 29. Cannella F, Garinei A, Marsili R, Speranzini E (2018) Dynamic mechanical analysis and thermoelasticity for investigating composite structural elements made with additive manufacturing,. Compos Struct 185:466–473. https://doi.org/10.1016/j.comps truct.2017.11.029 30. Abayazid FF, Ghajari M (2020) “Material characterisation of additively manufactured elastomers at diferent strain rates and build orientations,” Addit Manuf 33 https://doi.org/10.1016/j.addma. 2020.101160 31. Robinson M et al (2018) Mechanical characterisation of additively manufactured elastomeric structures for variable strain rate applications,. Addit Manuf 27:398–407. https://doi.org/10.1016/j. addma.2019.03.022 32. Webster S, Lin H, Carter FM III, Ehmann K, Cao J (2021) Physical mechanisms in hybrid additive manufacturing: a process design framework,. J Mater Process Technol 291:117048. https:// doi.org/10.1016/j.jmatprotec.2021.117048 33. Iragi M, Pascual-González C, Esnaola A, Lopes CS, Aretxabaleta L (2019) “Ply and interlaminar behaviours of 3D printed continuous carbon fbre-reinforced thermoplastic laminates; efects of processing conditions and microstructure,” Addit Manuf 30 https://doi.org/10.1016/j.addma.2019.100884 34. YeJ Yao T, Deng Z, Zhang K, Dai S, Liu X (2021) A modifed creep model of polylactic acid (PLA-max) materials with diferent printing angles processed by fused flament fabrication,. J Appl Polym Sci 138:17. https://doi.org/10.1002/app.50270 35. Fernandes RR, Tamijani AY, Al-Haik M (2021) “Mechanical characterization of additively manufactured fiber-reinforced composites,” Aerosp Sci Technol 113 https://doi.org/10.1016/j. ast.2021.106653 36. Zhao J, Perkins E, Li XF, Bond A, Marghitu D (2021) Nonlinear vibratory properties of additive manufactured continuous carbon fiber reinforced polymer composites,. Int J Adv Manuf Technol 117(3–4):1077–1089. https://doi.org/10.1007/ s00170-021-07456-x 37. Pascual-González C, Iragi M, Fernández A, Fernández-Blázquez JP, Aretxabaleta L, Lopes CS (2020) “An approach to analyse the factors behind the micromechanical response of 3D-printed composites,” Compos B Eng 186 https://doi.org/10.1016/j.compo sitesb.2020.107820 38. García E, Núñez PJ, Chacón JM, Caminero MA, Kamarthi S (2020) Comparative study of geometric properties of unreinforced PLA and PLA-Graphene composite materials applied to additive manufacturing using FFF technology. Polym Test 91 https://doi. org/10.1016/j.polymertesting.2020.106860 39. Caminero MÁ, Chacón JM, García-Plaza E, Núñez PJ, Reverte JM, Becar JP (2019) Additive manufacturing of PLA-based composites using fused flament fabrication: efect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture,. Polymers (Basel) 11:5. https://doi.org/10. 3390/polym11050799 40. UNE-EN ISO 4287 (1999) “Especifcación geométrica de productos. Calidad superfcial: Método del perfl. Términos, defniciones y parámetros del estado superfcial 41. Klata E, van de Velde K, Krucińska I (2003) DSC investigations of polyamide 6 in hybrid GF/PA 6 yarns and composites,. Polym Test 22(8):929–937. https://doi.org/10.1016/S0142-9418(03)00043-6 42. Díaz-Rodríguez JG, Pertúz-Comas AD, González-Estrada OA (2021) Mechanical properties for long fbre reinforced fused deposition manufactured composites,. Compos B Eng 211:108657. https://doi.org/10.1016/j.compositesb.2021.108657 43. Menard KP, Menard NR (2020) Dynamic Mechanical Analysis, 3rd edn. CRC Press, Boca Raton, FL 44. al Rashid A, Koҫ M, (2021) Creep and recovery behavior of continuous fber-reinforced 3DP composites,. Polymers (Basel) 13(10):1644. https://doi.org/10.3390/polym13101644 Thermoplastic compositesSurface roughnessFFFDMAThermo-mechanical analysisComunidad generalPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5783-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5783-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::5783-10000-0002-6907-2091virtual::5783-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::5783-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/1db79dd7-e447-40f8-b287-e5854b1d89b4/download6987b791264a2b5525252450f99b10d1MD5210614/15888oai:red.uao.edu.co:10614/158882024-11-13 08:55:46.447https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer, 2024metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |