e— Calculus

In this work formulate the e— calculus based on the nature of the electric charges, using Newton third law and the Coulomb law, the e— algebra and the q — e deformed algebra associating the variables ei; ej as elementary charges, and x as the conductive variable. The e— derivative is defined from a...

Full description

Autores:
Jaramillo-Quiceno, Julio César
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/30403
Acceso en línea:
http://hdl.handle.net/10784/30403
Palabra clave:
e—derivative, e— algebra, e-integral, q — e algebra
Rights
License
Copyright © 2021 Julio César Jaramillo-Quiceno
Description
Summary:In this work formulate the e— calculus based on the nature of the electric charges, using Newton third law and the Coulomb law, the e— algebra and the q — e deformed algebra associating the variables ei; ej as elementary charges, and x as the conductive variable. The e— derivative is defined from a simple experiment off-on light bulb respectively. On the other hand, the e— series, the e— integral, the q — e derivatives, series and integrals and their respective convergence criteria are formulated. On the e— integrals a path or closed contour Γ (x) is established to define the e— contour integrals and finally the q — e deformed calculus and the q — e Heisenberg algebra are formulated.