Modelo de predicción de default en pymes de la ciudad de Medellín

58 páginas

Autores:
Aristizábal Guzmán, Jacobo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/7152
Acceso en línea:
https://repository.eia.edu.co/handle/11190/7152
Palabra clave:
Riesgo de crédito
Pymes
Predicción de default
Machine learning
Random Forest
Regresión logística
Rights
openAccess
License
Derechos Reservados - Universidad EIA, 2025
id REIA2_381ffd6f6fbbe84450176bf8d5685fe8
oai_identifier_str oai:repository.eia.edu.co:11190/7152
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.none.fl_str_mv Modelo de predicción de default en pymes de la ciudad de Medellín
title Modelo de predicción de default en pymes de la ciudad de Medellín
spellingShingle Modelo de predicción de default en pymes de la ciudad de Medellín
Riesgo de crédito
Pymes
Predicción de default
Machine learning
Random Forest
Regresión logística
title_short Modelo de predicción de default en pymes de la ciudad de Medellín
title_full Modelo de predicción de default en pymes de la ciudad de Medellín
title_fullStr Modelo de predicción de default en pymes de la ciudad de Medellín
title_full_unstemmed Modelo de predicción de default en pymes de la ciudad de Medellín
title_sort Modelo de predicción de default en pymes de la ciudad de Medellín
dc.creator.fl_str_mv Aristizábal Guzmán, Jacobo
dc.contributor.advisor.none.fl_str_mv Lochmuller, Christian
dc.contributor.author.none.fl_str_mv Aristizábal Guzmán, Jacobo
dc.subject.proposal.spa.fl_str_mv Riesgo de crédito
Pymes
Predicción de default
Machine learning
Random Forest
Regresión logística
topic Riesgo de crédito
Pymes
Predicción de default
Machine learning
Random Forest
Regresión logística
description 58 páginas
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-28T20:37:57Z
dc.date.available.none.fl_str_mv 2025-07-28T20:37:57Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/7152
url https://repository.eia.edu.co/handle/11190/7152
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Derechos Reservados - Universidad EIA, 2025
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos Reservados - Universidad EIA, 2025
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad EIA
dc.publisher.program.none.fl_str_mv Ingeniería Financiera
dc.publisher.faculty.none.fl_str_mv Escuela de Ciencias Económicas y Administrativas
dc.publisher.place.none.fl_str_mv Envigado (Antioquia, Colombia)
publisher.none.fl_str_mv Universidad EIA
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/da1eb04b-890a-458b-acad-3d068af75edb/download
https://repository.eia.edu.co/bitstreams/e8f785e5-3b86-4752-b484-c3102c3ae7f9/download
https://repository.eia.edu.co/bitstreams/1b26e602-3898-40f9-affd-be222a6ab9da/download
https://repository.eia.edu.co/bitstreams/5c0f3a3a-14c7-4e5c-9076-2786d295cd52/download
bitstream.checksum.fl_str_mv 2264fce645ac2952653ce3f3b8fa781e
90378ad278cc8ddd102790a0450df3af
bae54f862dd189f0335d119584cde67f
eae8395b8b6a4212e1d1666dc5544bcf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968101907496960
spelling Lochmuller, ChristianAristizábal Guzmán, Jacobo2025-07-28T20:37:57Z2025-07-28T20:37:57Z2025https://repository.eia.edu.co/handle/11190/715258 páginasRESUMEN: El presente trabajo de grado tiene como objetivo desarrollar y comparar modelos predictivos para estimar el riesgo de default en pequeñas y medianas empresas (Pymes) de la ciudad de Medellín, utilizando técnicas de clasificación supervisada como regresión logística, random forest y redes neuronales. A partir de información financiera histórica proveniente de la Superintendencia de Sociedades, se construyó una base de datos con variables relevantes para el análisis del comportamiento crediticio empresarial. Cada modelo fue entrenado y evaluado mediante métricas de desempeño como precisión, sensibilidad, especificidad y exactitud, con el fin de determinar su capacidad para discriminar entre empresas riesgosas y no riesgosas. Los resultados evidencian que el modelo de Random Forest obtuvo el mejor rendimiento general, con una exactitud del 96.3%, una alta sensibilidad de 98.7% y una precisión del 94.3%, lo que lo posiciona como la alternativa más eficaz para predecir el incumplimiento de pagos. Se concluye que el uso de modelos avanzados de machine learning puede ser una herramienta valiosa para las entidades financieras al momento de gestionar el riesgo crediticio del segmento Pyme. Asimismo, se recomienda su integración en la etapa de análisis de riesgo dentro del proceso de otorgamiento de crédito, permitiendo una toma de decisiones más objetiva, ágil y fundamentada en datos.ABSTRACT: This undergraduate thesis aims to develop and compare predictive models to estimate the risk of default in small and medium-sized enterprises (SMEs) located in Medellín, Colombia, using supervised classification techniques such as logistic regression, random forest, and neural networks. This analysis of credit outcomes is based on historical financial data extracted from “Super intendencia de Sociedades de Colombia” – the surveillance entity for commercial companies. Each model was trained and evaluated using performance metrics such as precision, recall, specificity, and accuracy to determine their ability to distinguish between risky and non-risky companies. The results show that the Random Forest model achieved the highest overall performance, with an accuracy of 96.3%, a recall of 98.7%, and a precision of 94.3%, making it the most effective choice for predicting credit default. In conclusion, advanced machine learning models can serve as valuable tools for financial institutions when managing credit risk in the SME segment. Hence it is recommended that these models be integrated into the credit study process to enable more objective, efficient, and data-driven decision-making.PregradoIngeniero(a) Financiero(a)application/pdfspaUniversidad EIAIngeniería FinancieraEscuela de Ciencias Económicas y AdministrativasEnvigado (Antioquia, Colombia)Derechos Reservados - Universidad EIA, 2025Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelo de predicción de default en pymes de la ciudad de MedellínTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Riesgo de créditoPymesPredicción de defaultMachine learningRandom ForestRegresión logísticaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82553https://repository.eia.edu.co/bitstreams/da1eb04b-890a-458b-acad-3d068af75edb/download2264fce645ac2952653ce3f3b8fa781eMD55ORIGINALAristizábalJacobo_2025_ModeloPrediccionDefault.pdfAristizábalJacobo_2025_ModeloPrediccionDefault.pdfTrabajo de gradoapplication/pdf728056https://repository.eia.edu.co/bitstreams/e8f785e5-3b86-4752-b484-c3102c3ae7f9/download90378ad278cc8ddd102790a0450df3afMD56TEXTAristizábalJacobo_2025_ModeloPrediccionDefault.pdf.txtAristizábalJacobo_2025_ModeloPrediccionDefault.pdf.txtExtracted texttext/plain86121https://repository.eia.edu.co/bitstreams/1b26e602-3898-40f9-affd-be222a6ab9da/downloadbae54f862dd189f0335d119584cde67fMD57THUMBNAILAristizábalJacobo_2025_ModeloPrediccionDefault.pdf.jpgAristizábalJacobo_2025_ModeloPrediccionDefault.pdf.jpgGenerated Thumbnailimage/jpeg9015https://repository.eia.edu.co/bitstreams/5c0f3a3a-14c7-4e5c-9076-2786d295cd52/downloadeae8395b8b6a4212e1d1666dc5544bcfMD5811190/7152oai:repository.eia.edu.co:11190/71522025-07-28 15:39:34.657open.accesshttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comCjxjZW50ZXI+PGI+QVZJU08gREUgUFJJVkFDSURBRDwvYj48L2NlbnRlcj4KPGJyPgo8cD5MYSBFc2N1ZWxhIGRlIEluZ2VuaWVyw61hIGRlIEFudGlvcXVpYSBhIHRyYXbDqXMgZGUgZXN0ZSBhdmlzbywgaW5mb3JtYSBhIGxvcyB0aXR1bGFyZXMgZGUgZGF0b3MgcGVyc29uYWxlcyBxdWUgc2UgZW5jdWVudHJlbiBlbiBzdXMgYmFzZXMgZGUgZGF0b3MgcXVlIGxhcyBwb2zDrXRpY2FzIGRlIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMgbGEgRUlBIHNvbjo8L3A+CjxwPkFsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHNlIGxlIHJlc3BldGFyw6FuIHN1cyBkZXJlY2hvcyBhIGNvbm9jZXIgw61udGVncmFtZW50ZSB5IGRlIGZvcm1hIGdyYXR1aXRhIHN1cyBkYXRvcyBwZXJzb25hbGVzLCBhc8OtIGNvbW8gYSBhY3R1YWxpemFybG9zIHkgcmVjdGlmaWNhcmxvcyBmcmVudGUgYSBsYSBFSUEgbyBsb3MgZW5jYXJnYWRvcyBkZWwgdHJhdGFtaWVudG8uPC9wPgo8cD5BbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIGVuIHRyYXRhbWllbnRvLCBwb2Ryw6EgY29ub2NlciBlbCB1c28gcXVlIHNlIGxlIGhhIGRhZG8gYSBzdXMgZGF0b3MgcGVyc29uYWxlcywgcHJldmlhIHNvbGljaXR1ZC48L3A+CjxwPkVsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHBvZHLDoSBzb2xpY2l0YXIgcHJ1ZWJhIGRlIGxhIGF1dG9yaXphY2nDs24gb3RvcmdhZGEgYSBsYSBFSUEuIHNhbHZvIGN1YW5kbyBleHByZXNhbWVudGUgc2UgZXhjZXB0w7plIGNvbW8gcmVxdWlzaXRvIHBhcmEgZWwgdHJhdGFtaWVudG8sIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBsZXkuPC9wPgo8cD5FbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwdWVkZSByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24geSBzb2xpY2l0YXIgbGEgc3VwcmVzacOzbiBkZWwgZGF0byBjdWFuZG8gZW4gZWwgdHJhdGFtaWVudG8gbm8gc2UgcmVzcGV0ZW4gbG9zIHByaW5jaXBpb3MsIGRlcmVjaG9zIHkgZ2FyYW50w61hcyBjb25zdGl0dWNpb25hbGVzIHkgbGVnYWxlcy4gTGEgcmV2b2NhdG9yaWEgeSBzdXByZXNpw7NuIHByb2NlZGVyw6EgY3VhbmRvIGxhIFN1cGVyaW50ZW5kZW5jaWEgZGUgSW5kdXN0cmlhIHkgQ29tZXJjaW8gKFNJQykgaGF5YSBkZXRlcm1pbmFkbyBxdWUgZW4gZWwgdHJhdGFtaWVudG8sIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVLDjUEgREUgQU5USU9RVUlBIGhhIGluY3VycmlkbyBlbiBjb25kdWN0YXMgY29udHJhcmlhcyBhIGVzdGEgTGV5IHkgYSBsYSBDb25zdGl0dWNpw7NuIFBvbMOtdGljYS48L3A+CjxwPlBhcmEgZWZlY3RvcyBkZSBlamVyY2VyIHN1cyBkZXJlY2hvcyBkZSBjb25vY2VyLCBhY3R1YWxpemFyLCByZWN0aWZpY2FyIHkgc3VwcmltaXIgaW5mb3JtYWNpw7NuLCByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24sIGVudHJlIG90cm9zOyBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgYWN1ZGlyIGEgbGEgRVNDVUVMQSBERSBJTkdFTklFUsONQSBERSBBTlRJT1FVSUEsIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIGFsIMOhcmVhIGRlIGNvbXVuaWNhY2lvbmVzLCBtZWRpYW50ZSBjb3JyZW8gZWxlY3Ryw7NuaWNvIGEgd2VibWFzdGVyQGVpYS5lZHUuY28gLjwvcD4KPHA+RW4gY2FzbyBkZSBpbmZyYWNjaW9uZXMgYSBsYSBsZXkgMTU4MSBkZSAyMDEyLCBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgcHJlc2VudGFyIHF1ZWphIGFudGUgbGEgU3VwZXJpbnRlbmRlbmNpYSBkZSBJbmR1c3RyaWEgeSBDb21lcmNpbyAoU0lDKS48L3A+CjxwPkVsIHRpdHVsYXIgc2Vyw6EgaW5mb3JtYWRvIGFjZXJjYSBkZSBsYSBubyBvYmxpZ2F0b3JpZWRhZCBkZSBsYXMgcmVzcHVlc3RhcyBhIGxhcyBwcmVndW50YXMgcXVlIGxlIHNlYW4gaGVjaGFzLCBjdWFuZG8gw6lzdGFzIHZlcnNlbiBzb2JyZSBkYXRvcyBzZW5zaWJsZXMsIHRhbGVzIGNvbW8gb3JpZ2VuIHJhY2lhbCBvIMOpdG5pY28sIG9yaWVudGFjacOzbiBwb2zDrXRpY2EsIGNvbnZpY2Npb25lcyByZWxpZ2lvc2FzICwgcGVydGVuZW5jaWEgYSBzaW5kaWNhdG9zLCBvcmdhbml6YWNpb25lcyBzb2NpYWxlcyBkZSBkZXJlY2hvcyBodW1hbm9zLCBkYXRvcyByZWxhdGl2b3MgYSBsYSBzYWx1ZCwgYSBsYSB2aWRhIHNleHVhbCB5IGRhdG9zIGJpb23DqXRyaWNvcyBvIHNvYnJlIGxvcyBkYXRvcyBkZSBsb3MgbmnDsW9zLCBuacOxYXMgeSBhZG9sZXNjZW50ZXMuPC9wPgo8cD5FbCB0aXR1bGFyIHBvZHLDoSBjb25vY2VyIG51ZXN0cmEgcG9sw610aWNhIGRlIHRyYXRhbWllbnRvLCBsb3MgZGF0b3Mgc3VzdGFuY2lhbGVzIHF1ZSBzZSBsbGVndWVuIGEgcHJvZHVjaXIgZW4gZWwgcHJlc2VudGUgYXZpc28gbyBlbiBsYXMgcG9sw610aWNhcyBkZSB0cmF0YW1pZW50bywgc2Vyw6FuIHB1YmxpY2FkYXMgZW4gbnVlc3RybyBzaXRpbyB3ZWIsIG1lZGlvIGVsZWN0csOzbmljbyBoYWJpdHVhbCBkZSBjb250YWN0byBjb24gbG9zIHRpdHVsYXJlcy4K