Parkinson disease analysis using supervised and unsupervised techniques

Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years o...

Full description

Autores:
Ariza Colpas, Paola Patricia
Morales Ortega, Roberto
Piñeres Melo, Marlon Alberto
De-La-Hoz-Franco, Emiro
Echeverri Ocampo, Isabel Cristina
Salas-Navarro, Katherinne
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5603
Acceso en línea:
https://hdl.handle.net/11323/5603
https://repositorio.cuc.edu.co/
Palabra clave:
Parkinson’s disease
Neurodegenerative análisis
Spiral drawings
Machine learning approach
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_ff045ce18e8acccbf663897683b1131b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5603
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Parkinson disease analysis using supervised and unsupervised techniques
title Parkinson disease analysis using supervised and unsupervised techniques
spellingShingle Parkinson disease analysis using supervised and unsupervised techniques
Parkinson’s disease
Neurodegenerative análisis
Spiral drawings
Machine learning approach
title_short Parkinson disease analysis using supervised and unsupervised techniques
title_full Parkinson disease analysis using supervised and unsupervised techniques
title_fullStr Parkinson disease analysis using supervised and unsupervised techniques
title_full_unstemmed Parkinson disease analysis using supervised and unsupervised techniques
title_sort Parkinson disease analysis using supervised and unsupervised techniques
dc.creator.fl_str_mv Ariza Colpas, Paola Patricia
Morales Ortega, Roberto
Piñeres Melo, Marlon Alberto
De-La-Hoz-Franco, Emiro
Echeverri Ocampo, Isabel Cristina
Salas-Navarro, Katherinne
dc.contributor.author.spa.fl_str_mv Ariza Colpas, Paola Patricia
Morales Ortega, Roberto
Piñeres Melo, Marlon Alberto
De-La-Hoz-Franco, Emiro
Echeverri Ocampo, Isabel Cristina
Salas-Navarro, Katherinne
dc.subject.spa.fl_str_mv Parkinson’s disease
Neurodegenerative análisis
Spiral drawings
Machine learning approach
topic Parkinson’s disease
Neurodegenerative análisis
Spiral drawings
Machine learning approach
description Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years of age. Cases have also been identified of this disorder in patients as young as 18 years old suffer from this disease. Many tests have been developed throughout the literary review in order to identify patients tending to suffer from this disease that currently massifies its prevalence in the world. This article shows the implementation of different machine learning techniques such as LWL, ThresholdSelector, Kstar, VotedPercepton, CVParameterSelection, based on a test performed on experimental individuals and controls in order to identify the presence of the disease.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-12T18:46:47Z
dc.date.available.none.fl_str_mv 2019-11-12T18:46:47Z
dc.date.issued.none.fl_str_mv 2019-07-19
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5603
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5603
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/14f12ff3-3c88-4a0e-aa68-8727647d38b8/download
https://repositorio.cuc.edu.co/bitstreams/58714d99-a5b1-481c-a1d1-876c0cfc2a15/download
https://repositorio.cuc.edu.co/bitstreams/6b47fe68-d20e-47f7-93ac-b8653c23d655/download
https://repositorio.cuc.edu.co/bitstreams/9331c437-8690-4411-87dc-12614b89e59b/download
https://repositorio.cuc.edu.co/bitstreams/5e6a8b17-e292-416f-95ae-5be4b172c058/download
bitstream.checksum.fl_str_mv e752c26fb95bf0f2828eb3e574814785
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
76175f4d0156f8f826a882728df64050
c707fb2d5f7316f627cbd9841ad18b0e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166888834727936
spelling Ariza Colpas, Paola PatriciaMorales Ortega, RobertoPiñeres Melo, Marlon AlbertoDe-La-Hoz-Franco, EmiroEcheverri Ocampo, Isabel CristinaSalas-Navarro, Katherinne2019-11-12T18:46:47Z2019-11-12T18:46:47Z2019-07-19https://hdl.handle.net/11323/5603Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years of age. Cases have also been identified of this disorder in patients as young as 18 years old suffer from this disease. Many tests have been developed throughout the literary review in order to identify patients tending to suffer from this disease that currently massifies its prevalence in the world. This article shows the implementation of different machine learning techniques such as LWL, ThresholdSelector, Kstar, VotedPercepton, CVParameterSelection, based on a test performed on experimental individuals and controls in order to identify the presence of the disease.Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Morales Ortega, Roberto-will be generated-orcid-0000-0002-8219-9943-600Piñeres Melo, Marlon AlbertoDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Echverri Ocampo, Isabel Cristina-will be generated-orcid-0000-0002-1628-2570-600Salas-Navarro, Katherinne-will be generated-orcid-0000-0002-6290-3542-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parkinson’s diseaseNeurodegenerative análisisSpiral drawingsMachine learning approachParkinson disease analysis using supervised and unsupervised techniquesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdfParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdfapplication/pdf62241https://repositorio.cuc.edu.co/bitstreams/14f12ff3-3c88-4a0e-aa68-8727647d38b8/downloade752c26fb95bf0f2828eb3e574814785MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/58714d99-a5b1-481c-a1d1-876c0cfc2a15/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6b47fe68-d20e-47f7-93ac-b8653c23d655/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.jpgParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.jpgimage/jpeg46559https://repositorio.cuc.edu.co/bitstreams/9331c437-8690-4411-87dc-12614b89e59b/download76175f4d0156f8f826a882728df64050MD55TEXTParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.txtParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.txttext/plain1234https://repositorio.cuc.edu.co/bitstreams/5e6a8b17-e292-416f-95ae-5be4b172c058/downloadc707fb2d5f7316f627cbd9841ad18b0eMD5611323/5603oai:repositorio.cuc.edu.co:11323/56032024-09-17 14:22:27.819http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=