Parkinson disease analysis using supervised and unsupervised techniques
Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years o...
- Autores:
-
Ariza Colpas, Paola Patricia
Morales Ortega, Roberto
Piñeres Melo, Marlon Alberto
De-La-Hoz-Franco, Emiro
Echeverri Ocampo, Isabel Cristina
Salas-Navarro, Katherinne
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5603
- Acceso en línea:
- https://hdl.handle.net/11323/5603
https://repositorio.cuc.edu.co/
- Palabra clave:
- Parkinson’s disease
Neurodegenerative análisis
Spiral drawings
Machine learning approach
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ff045ce18e8acccbf663897683b1131b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5603 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Parkinson disease analysis using supervised and unsupervised techniques |
title |
Parkinson disease analysis using supervised and unsupervised techniques |
spellingShingle |
Parkinson disease analysis using supervised and unsupervised techniques Parkinson’s disease Neurodegenerative análisis Spiral drawings Machine learning approach |
title_short |
Parkinson disease analysis using supervised and unsupervised techniques |
title_full |
Parkinson disease analysis using supervised and unsupervised techniques |
title_fullStr |
Parkinson disease analysis using supervised and unsupervised techniques |
title_full_unstemmed |
Parkinson disease analysis using supervised and unsupervised techniques |
title_sort |
Parkinson disease analysis using supervised and unsupervised techniques |
dc.creator.fl_str_mv |
Ariza Colpas, Paola Patricia Morales Ortega, Roberto Piñeres Melo, Marlon Alberto De-La-Hoz-Franco, Emiro Echeverri Ocampo, Isabel Cristina Salas-Navarro, Katherinne |
dc.contributor.author.spa.fl_str_mv |
Ariza Colpas, Paola Patricia Morales Ortega, Roberto Piñeres Melo, Marlon Alberto De-La-Hoz-Franco, Emiro Echeverri Ocampo, Isabel Cristina Salas-Navarro, Katherinne |
dc.subject.spa.fl_str_mv |
Parkinson’s disease Neurodegenerative análisis Spiral drawings Machine learning approach |
topic |
Parkinson’s disease Neurodegenerative análisis Spiral drawings Machine learning approach |
description |
Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years of age. Cases have also been identified of this disorder in patients as young as 18 years old suffer from this disease. Many tests have been developed throughout the literary review in order to identify patients tending to suffer from this disease that currently massifies its prevalence in the world. This article shows the implementation of different machine learning techniques such as LWL, ThresholdSelector, Kstar, VotedPercepton, CVParameterSelection, based on a test performed on experimental individuals and controls in order to identify the presence of the disease. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-12T18:46:47Z |
dc.date.available.none.fl_str_mv |
2019-11-12T18:46:47Z |
dc.date.issued.none.fl_str_mv |
2019-07-19 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5603 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5603 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/14f12ff3-3c88-4a0e-aa68-8727647d38b8/download https://repositorio.cuc.edu.co/bitstreams/58714d99-a5b1-481c-a1d1-876c0cfc2a15/download https://repositorio.cuc.edu.co/bitstreams/6b47fe68-d20e-47f7-93ac-b8653c23d655/download https://repositorio.cuc.edu.co/bitstreams/9331c437-8690-4411-87dc-12614b89e59b/download https://repositorio.cuc.edu.co/bitstreams/5e6a8b17-e292-416f-95ae-5be4b172c058/download |
bitstream.checksum.fl_str_mv |
e752c26fb95bf0f2828eb3e574814785 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 76175f4d0156f8f826a882728df64050 c707fb2d5f7316f627cbd9841ad18b0e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166888834727936 |
spelling |
Ariza Colpas, Paola PatriciaMorales Ortega, RobertoPiñeres Melo, Marlon AlbertoDe-La-Hoz-Franco, EmiroEcheverri Ocampo, Isabel CristinaSalas-Navarro, Katherinne2019-11-12T18:46:47Z2019-11-12T18:46:47Z2019-07-19https://hdl.handle.net/11323/5603Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Parkinson’s disease is classified as a disease of neurological origin, which is degenerative and chronic. Currently, the number of people affected by this disease has increased, one in 100 people over 60 years old, although it has been shown that the onset of this disease is approximately 60 years of age. Cases have also been identified of this disorder in patients as young as 18 years old suffer from this disease. Many tests have been developed throughout the literary review in order to identify patients tending to suffer from this disease that currently massifies its prevalence in the world. This article shows the implementation of different machine learning techniques such as LWL, ThresholdSelector, Kstar, VotedPercepton, CVParameterSelection, based on a test performed on experimental individuals and controls in order to identify the presence of the disease.Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Morales Ortega, Roberto-will be generated-orcid-0000-0002-8219-9943-600Piñeres Melo, Marlon AlbertoDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Echverri Ocampo, Isabel Cristina-will be generated-orcid-0000-0002-1628-2570-600Salas-Navarro, Katherinne-will be generated-orcid-0000-0002-6290-3542-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parkinson’s diseaseNeurodegenerative análisisSpiral drawingsMachine learning approachParkinson disease analysis using supervised and unsupervised techniquesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdfParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdfapplication/pdf62241https://repositorio.cuc.edu.co/bitstreams/14f12ff3-3c88-4a0e-aa68-8727647d38b8/downloade752c26fb95bf0f2828eb3e574814785MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/58714d99-a5b1-481c-a1d1-876c0cfc2a15/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6b47fe68-d20e-47f7-93ac-b8653c23d655/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.jpgParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.jpgimage/jpeg46559https://repositorio.cuc.edu.co/bitstreams/9331c437-8690-4411-87dc-12614b89e59b/download76175f4d0156f8f826a882728df64050MD55TEXTParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.txtParkinson Disease Analysis Using Supervised and Unsupervised Techniques.pdf.txttext/plain1234https://repositorio.cuc.edu.co/bitstreams/5e6a8b17-e292-416f-95ae-5be4b172c058/downloadc707fb2d5f7316f627cbd9841ad18b0eMD5611323/5603oai:repositorio.cuc.edu.co:11323/56032024-09-17 14:22:27.819http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |