Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratio...
- Autores:
-
Dapper, Paulo Rodrigo
Ehrenbring, Hinoel Zamis
Pacheco, Fernanda
Christ, Roberto
Costella Menegussi, Giovanna
de Oliveira, Maria Fernanda
Tutikian, Bernardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9056
- Acceso en línea:
- https://hdl.handle.net/11323/9056
https://doi.org/10.3390/su132313410
https://repositorio.cuc.edu.co/
- Palabra clave:
- Sustainability
Composite materials
Impact
Structural elements
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_f992c8b0e67a74a925be0c9718bc3d99 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9056 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
title |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
spellingShingle |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content Sustainability Composite materials Impact Structural elements |
title_short |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
title_full |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
title_fullStr |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
title_full_unstemmed |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
title_sort |
Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content |
dc.creator.fl_str_mv |
Dapper, Paulo Rodrigo Ehrenbring, Hinoel Zamis Pacheco, Fernanda Christ, Roberto Costella Menegussi, Giovanna de Oliveira, Maria Fernanda Tutikian, Bernardo |
dc.contributor.author.spa.fl_str_mv |
Dapper, Paulo Rodrigo Ehrenbring, Hinoel Zamis Pacheco, Fernanda Christ, Roberto Costella Menegussi, Giovanna de Oliveira, Maria Fernanda Tutikian, Bernardo |
dc.subject.proposal.eng.fl_str_mv |
Sustainability Composite materials Impact Structural elements |
topic |
Sustainability Composite materials Impact Structural elements |
description |
This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratios of 1.5% and 3.0%. Compressive strength, flexural tensile strength, residual strength, and ballistic impact strength were determined using experimental methods. Test results showed that regardless of fiber content, the UHPC specimens prepared with the hybrid fibers showed similar performance against ballistic impact, exerting relatively low impact energy below 1000 J. The UHPC3.0 mixture made with 3.0% hybrid fiber content exhibited the best performance in terms of energy absorption and spalling resistance at impact energy levels greater than 4000 J. Plate sections with thicknesses of 7 mm showed class III performance (highest level), as recommended for military-based applications. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-03 |
dc.date.accessioned.none.fl_str_mv |
2022-03-08T16:13:47Z |
dc.date.available.none.fl_str_mv |
2022-03-08T16:13:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su132313410 |
dc.identifier.issn.spa.fl_str_mv |
2071-1050 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9056 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/su132313410 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/su132313410 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su132313410 2071-1050 10.3390/su132313410 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9056 https://doi.org/10.3390/su132313410 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
dc.relation.references.spa.fl_str_mv |
1. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef] 2. Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [CrossRef] 3. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef] 4. Silva, L.F.; Pinto, D.; Neckel, A.; Oliveira, M.L. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef] 5. Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustaina-bility and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [CrossRef] 6. Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures con-sidering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [CrossRef] 7. Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [CrossRef] 8. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D.W.; Nguyen, K.; Xia, J.; Setunge, S. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr. Build. Mater. 2021, 271, 121512. [CrossRef] 9. Kim, H.; Koh, T.; Pyo, S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr. Build. Mater. 2016, 123, 153–160. [CrossRef] 10. Association Française de Génie Civil. Documents Scientifiques et Techniques Bétons Fibrés à Ultra-Hautes Performances— Recommendations; AFGC: Paris, France, 2013. 11. Chellapandian, M.; Prakash, S.; Sharma, A. Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression. Compos. Struct. 2017, 176, 205–216. [CrossRef] 12. Guo, W.; Fan, W.; Shao, X.; Shen, D.; Chen, B. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations. Compos. Struct. 2018, 185, 307–326. [CrossRef] 13. Shin, H.; Min, K.-H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [CrossRef] 14. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [CrossRef] 15. Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [CrossRef] 16. Wu, H.; Ren, G.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Constr. Build. Mater. 2018, 173, 251–261. [CrossRef] 17. Torregrosa, E.E.C. Dosage Optimization and Bolted Connections for UHPFRC Ties. Ph.D. Thesis, Universitat Politecnica de Valencia, València, Spain, 2015. 18. Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos Com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Master’s Thesis, Universidade do Vale do Rio do Sinos, São Leopoldo, Brazil, 2014. 19. Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [CrossRef] 20. Wang, X.-Y.; Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Constr. Build. Mater. 2015, 98, 810–819. [CrossRef] 21. Figueiredo, A.D. Concreto Reforçado Com Fibras. Professorship. Habilitation Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011. 22. Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [CrossRef] 23. Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng. 2018, 114, 20–31. [CrossRef] 24. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [CrossRef] 25. Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiberreinforced concrete. Compos. Part B Eng. 2014, 58, 279–292. [CrossRef] 26. Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Constr. Build. Mater. 2016, 121, 612–621. [CrossRef] 27. Quinino, U.C.D.M. Investigação Experimental Das Propriedades mecâNicas de Compósitos de Concreto com Adições Híbridas de Fibras. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015. 28. Máca, P.; Sovják, R.; Konvalinka, P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014, 63, 158–163. [CrossRef] 29. Wu, H.; Fang, Q.; Gong, J.; Liu, J.; Zhang, J.; Gong, Z. Projectile impact resistance of corundum aggregated UHP-SFRC. Int. J. Impact Eng. 2015, 84, 38–53. [CrossRef] 30. Mehdipour, I.; Khayat, K.H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Pack-ing Density and Compressive Strength of Sustainable Cement Paste. ACI Mater. J. 2016, 113, 361–372. 31. Liu, J.; Wu, C.; Chen, X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 2017, 135, 447–458. [CrossRef] 32. Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng. Struct. 2018, 173, 166–179. [CrossRef] 33. Peng, G.-F.; Niu, X.-J.; Shang, Y.-J.; Zhang, D.-P.; Chen, X.-W.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [CrossRef] 34. Pacheco, F.; Christ, R.; Gil, A.M.; Tutikian, B.F. SEM and 3D microtomography application to investigate the distribution of fibers in advanced cementitious composites. Rev. IBRACON Estrut. Mater. 2019, 9, 824–832. [CrossRef] 35. ASTM. C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2012. 36. Almansa, E.M.; Cánovas, M.F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles. Cem. Concr. Res. 1999, 29, 1807–1814. [CrossRef] 37. Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [CrossRef] 38. Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [CrossRef] 39. ASTM. D8101: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt Projectile; ASTM International: West Conshohocken, PA, USA, 2018. 40. ASTM. E3112: Standard Test Method for Ballistic-Resistant Products and Shoot Packs; ASTM International: West Conshohocken, PA, USA, 2017. 41. Law Enforcement Standards Laboratory of the National Bureau of Standards. NIJ 0108.01:Ballistic Resistant Protective Materials; National Institute of Justice: Washington, DC, USA, 1985. 42. Wang, R.; Gao, X. Relationship between Flowability, Entrapped Air Content and Strength of UHPC Mixtures Containing Different Dosage of Steel Fiber. Appl. Sci. 2016, 6, 216. [CrossRef] 43. Ehrenbring, H.Z.; Quinino, U.C.D.M.; Oliveira, L.F.S.; Tutikian, B.F. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 2019, 20, 1064–1075. [CrossRef] 44. Banyhussan, Q.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; ¸Sahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [CrossRef] 45. Ren, F.; Mattus, C.H.; Wang, J.-A.; DiPaolo, B.P. Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes. Cem. Concr. Compos. 2013, 41, 1–8. [CrossRef] 46. Tai, Y. Flat ended projectile penetrating ultra-high strength concrete plate target. Theor. Appl. Fract. Mech. 2009, 51, 117–128. [CrossRef] |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
23 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI AG |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/13/23/13410 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9a3e5376-c50c-46ee-adc8-aa037935dff1/download https://repositorio.cuc.edu.co/bitstreams/6fccbd35-58f1-4500-91ea-538b13135cce/download https://repositorio.cuc.edu.co/bitstreams/ecd3258c-43e6-456c-9e1e-63e82feb5578/download https://repositorio.cuc.edu.co/bitstreams/3ddf626b-47bb-4807-92b3-d626ec26138e/download |
bitstream.checksum.fl_str_mv |
54f1319044d91d5c1ca6893e93fbd810 e30e9215131d99561d40d6b0abbe9bad 2430fcee75ae463ec2434f00c1f7f963 f4fcee33280641750aff9a87b3bd1089 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1831932194381103104 |
spelling |
Dapper, Paulo RodrigoEhrenbring, Hinoel ZamisPacheco, FernandaChrist, RobertoCostella Menegussi, Giovannade Oliveira, Maria FernandaTutikian, Bernardo2022-03-08T16:13:47Z2022-03-08T16:13:47Z2021-12-03Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su1323134102071-1050https://hdl.handle.net/11323/9056https://doi.org/10.3390/su13231341010.3390/su132313410Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratios of 1.5% and 3.0%. Compressive strength, flexural tensile strength, residual strength, and ballistic impact strength were determined using experimental methods. Test results showed that regardless of fiber content, the UHPC specimens prepared with the hybrid fibers showed similar performance against ballistic impact, exerting relatively low impact energy below 1000 J. The UHPC3.0 mixture made with 3.0% hybrid fiber content exhibited the best performance in terms of energy absorption and spalling resistance at impact energy levels greater than 4000 J. Plate sections with thicknesses of 7 mm showed class III performance (highest level), as recommended for military-based applications.15 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder contentArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2071-1050/13/23/13410Sustainability1. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]2. Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [CrossRef]3. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]4. Silva, L.F.; Pinto, D.; Neckel, A.; Oliveira, M.L. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef]5. Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustaina-bility and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [CrossRef]6. Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures con-sidering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [CrossRef]7. Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [CrossRef]8. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D.W.; Nguyen, K.; Xia, J.; Setunge, S. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr. Build. Mater. 2021, 271, 121512. [CrossRef]9. Kim, H.; Koh, T.; Pyo, S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr. Build. Mater. 2016, 123, 153–160. [CrossRef]10. Association Française de Génie Civil. Documents Scientifiques et Techniques Bétons Fibrés à Ultra-Hautes Performances— Recommendations; AFGC: Paris, France, 2013.11. Chellapandian, M.; Prakash, S.; Sharma, A. Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression. Compos. Struct. 2017, 176, 205–216. [CrossRef]12. Guo, W.; Fan, W.; Shao, X.; Shen, D.; Chen, B. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations. Compos. Struct. 2018, 185, 307–326. [CrossRef]13. Shin, H.; Min, K.-H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [CrossRef]14. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [CrossRef]15. Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [CrossRef]16. Wu, H.; Ren, G.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Constr. Build. Mater. 2018, 173, 251–261. [CrossRef]17. Torregrosa, E.E.C. Dosage Optimization and Bolted Connections for UHPFRC Ties. Ph.D. Thesis, Universitat Politecnica de Valencia, València, Spain, 2015.18. Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos Com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Master’s Thesis, Universidade do Vale do Rio do Sinos, São Leopoldo, Brazil, 2014.19. Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [CrossRef]20. Wang, X.-Y.; Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Constr. Build. Mater. 2015, 98, 810–819. [CrossRef]21. Figueiredo, A.D. Concreto Reforçado Com Fibras. Professorship. Habilitation Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011.22. Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [CrossRef]23. Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng. 2018, 114, 20–31. [CrossRef]24. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [CrossRef]25. Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiberreinforced concrete. Compos. Part B Eng. 2014, 58, 279–292. [CrossRef]26. Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Constr. Build. Mater. 2016, 121, 612–621. [CrossRef]27. Quinino, U.C.D.M. Investigação Experimental Das Propriedades mecâNicas de Compósitos de Concreto com Adições Híbridas de Fibras. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.28. Máca, P.; Sovják, R.; Konvalinka, P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014, 63, 158–163. [CrossRef]29. Wu, H.; Fang, Q.; Gong, J.; Liu, J.; Zhang, J.; Gong, Z. Projectile impact resistance of corundum aggregated UHP-SFRC. Int. J. Impact Eng. 2015, 84, 38–53. [CrossRef]30. Mehdipour, I.; Khayat, K.H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Pack-ing Density and Compressive Strength of Sustainable Cement Paste. ACI Mater. J. 2016, 113, 361–372.31. Liu, J.; Wu, C.; Chen, X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 2017, 135, 447–458. [CrossRef]32. Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng. Struct. 2018, 173, 166–179. [CrossRef]33. Peng, G.-F.; Niu, X.-J.; Shang, Y.-J.; Zhang, D.-P.; Chen, X.-W.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [CrossRef]34. Pacheco, F.; Christ, R.; Gil, A.M.; Tutikian, B.F. SEM and 3D microtomography application to investigate the distribution of fibers in advanced cementitious composites. Rev. IBRACON Estrut. Mater. 2019, 9, 824–832. [CrossRef]35. ASTM. C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2012.36. Almansa, E.M.; Cánovas, M.F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles. Cem. Concr. Res. 1999, 29, 1807–1814. [CrossRef]37. Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [CrossRef]38. Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [CrossRef]39. ASTM. D8101: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt Projectile; ASTM International: West Conshohocken, PA, USA, 2018.40. ASTM. E3112: Standard Test Method for Ballistic-Resistant Products and Shoot Packs; ASTM International: West Conshohocken, PA, USA, 2017.41. Law Enforcement Standards Laboratory of the National Bureau of Standards. NIJ 0108.01:Ballistic Resistant Protective Materials; National Institute of Justice: Washington, DC, USA, 1985.42. Wang, R.; Gao, X. Relationship between Flowability, Entrapped Air Content and Strength of UHPC Mixtures Containing Different Dosage of Steel Fiber. Appl. Sci. 2016, 6, 216. [CrossRef]43. Ehrenbring, H.Z.; Quinino, U.C.D.M.; Oliveira, L.F.S.; Tutikian, B.F. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 2019, 20, 1064–1075. [CrossRef]44. Banyhussan, Q.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; ¸Sahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [CrossRef]45. Ren, F.; Mattus, C.H.; Wang, J.-A.; DiPaolo, B.P. Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes. Cem. Concr. Compos. 2013, 41, 1–8. [CrossRef]46. Tai, Y. Flat ended projectile penetrating ultra-high strength concrete plate target. Theor. Appl. Fract. Mech. 2009, 51, 117–128. [CrossRef]1512313SustainabilityComposite materialsImpactStructural elementsPublicationORIGINALBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdfBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdfapplication/pdf6008103https://repositorio.cuc.edu.co/bitstreams/9a3e5376-c50c-46ee-adc8-aa037935dff1/download54f1319044d91d5c1ca6893e93fbd810MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6fccbd35-58f1-4500-91ea-538b13135cce/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.txtBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.txttext/plain66531https://repositorio.cuc.edu.co/bitstreams/ecd3258c-43e6-456c-9e1e-63e82feb5578/download2430fcee75ae463ec2434f00c1f7f963MD53THUMBNAILBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.jpgBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.jpgimage/jpeg16195https://repositorio.cuc.edu.co/bitstreams/3ddf626b-47bb-4807-92b3-d626ec26138e/downloadf4fcee33280641750aff9a87b3bd1089MD5411323/9056oai:repositorio.cuc.edu.co:11323/90562024-09-17 14:14:50.974https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |