Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content

This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratio...

Full description

Autores:
Dapper, Paulo Rodrigo
Ehrenbring, Hinoel Zamis
Pacheco, Fernanda
Christ, Roberto
Costella Menegussi, Giovanna
de Oliveira, Maria Fernanda
Tutikian, Bernardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9056
Acceso en línea:
https://hdl.handle.net/11323/9056
https://doi.org/10.3390/su132313410
https://repositorio.cuc.edu.co/
Palabra clave:
Sustainability
Composite materials
Impact
Structural elements
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_f992c8b0e67a74a925be0c9718bc3d99
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9056
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
title Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
spellingShingle Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
Sustainability
Composite materials
Impact
Structural elements
title_short Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
title_full Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
title_fullStr Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
title_full_unstemmed Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
title_sort Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder content
dc.creator.fl_str_mv Dapper, Paulo Rodrigo
Ehrenbring, Hinoel Zamis
Pacheco, Fernanda
Christ, Roberto
Costella Menegussi, Giovanna
de Oliveira, Maria Fernanda
Tutikian, Bernardo
dc.contributor.author.spa.fl_str_mv Dapper, Paulo Rodrigo
Ehrenbring, Hinoel Zamis
Pacheco, Fernanda
Christ, Roberto
Costella Menegussi, Giovanna
de Oliveira, Maria Fernanda
Tutikian, Bernardo
dc.subject.proposal.eng.fl_str_mv Sustainability
Composite materials
Impact
Structural elements
topic Sustainability
Composite materials
Impact
Structural elements
description This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratios of 1.5% and 3.0%. Compressive strength, flexural tensile strength, residual strength, and ballistic impact strength were determined using experimental methods. Test results showed that regardless of fiber content, the UHPC specimens prepared with the hybrid fibers showed similar performance against ballistic impact, exerting relatively low impact energy below 1000 J. The UHPC3.0 mixture made with 3.0% hybrid fiber content exhibited the best performance in terms of energy absorption and spalling resistance at impact energy levels greater than 4000 J. Plate sections with thicknesses of 7 mm showed class III performance (highest level), as recommended for military-based applications.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-03
dc.date.accessioned.none.fl_str_mv 2022-03-08T16:13:47Z
dc.date.available.none.fl_str_mv 2022-03-08T16:13:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su132313410
dc.identifier.issn.spa.fl_str_mv 2071-1050
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9056
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/su132313410
dc.identifier.doi.spa.fl_str_mv 10.3390/su132313410
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su132313410
2071-1050
10.3390/su132313410
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9056
https://doi.org/10.3390/su132313410
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]
2. Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [CrossRef]
3. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]
4. Silva, L.F.; Pinto, D.; Neckel, A.; Oliveira, M.L. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef]
5. Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustaina-bility and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [CrossRef]
6. Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures con-sidering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [CrossRef]
7. Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [CrossRef]
8. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D.W.; Nguyen, K.; Xia, J.; Setunge, S. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr. Build. Mater. 2021, 271, 121512. [CrossRef]
9. Kim, H.; Koh, T.; Pyo, S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr. Build. Mater. 2016, 123, 153–160. [CrossRef]
10. Association Française de Génie Civil. Documents Scientifiques et Techniques Bétons Fibrés à Ultra-Hautes Performances— Recommendations; AFGC: Paris, France, 2013.
11. Chellapandian, M.; Prakash, S.; Sharma, A. Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression. Compos. Struct. 2017, 176, 205–216. [CrossRef]
12. Guo, W.; Fan, W.; Shao, X.; Shen, D.; Chen, B. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations. Compos. Struct. 2018, 185, 307–326. [CrossRef]
13. Shin, H.; Min, K.-H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [CrossRef]
14. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [CrossRef]
15. Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [CrossRef]
16. Wu, H.; Ren, G.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Constr. Build. Mater. 2018, 173, 251–261. [CrossRef]
17. Torregrosa, E.E.C. Dosage Optimization and Bolted Connections for UHPFRC Ties. Ph.D. Thesis, Universitat Politecnica de Valencia, València, Spain, 2015.
18. Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos Com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Master’s Thesis, Universidade do Vale do Rio do Sinos, São Leopoldo, Brazil, 2014.
19. Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [CrossRef]
20. Wang, X.-Y.; Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Constr. Build. Mater. 2015, 98, 810–819. [CrossRef]
21. Figueiredo, A.D. Concreto Reforçado Com Fibras. Professorship. Habilitation Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011.
22. Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [CrossRef]
23. Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng. 2018, 114, 20–31. [CrossRef]
24. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [CrossRef]
25. Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiberreinforced concrete. Compos. Part B Eng. 2014, 58, 279–292. [CrossRef]
26. Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Constr. Build. Mater. 2016, 121, 612–621. [CrossRef]
27. Quinino, U.C.D.M. Investigação Experimental Das Propriedades mecâNicas de Compósitos de Concreto com Adições Híbridas de Fibras. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.
28. Máca, P.; Sovják, R.; Konvalinka, P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014, 63, 158–163. [CrossRef]
29. Wu, H.; Fang, Q.; Gong, J.; Liu, J.; Zhang, J.; Gong, Z. Projectile impact resistance of corundum aggregated UHP-SFRC. Int. J. Impact Eng. 2015, 84, 38–53. [CrossRef]
30. Mehdipour, I.; Khayat, K.H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Pack-ing Density and Compressive Strength of Sustainable Cement Paste. ACI Mater. J. 2016, 113, 361–372.
31. Liu, J.; Wu, C.; Chen, X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 2017, 135, 447–458. [CrossRef]
32. Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng. Struct. 2018, 173, 166–179. [CrossRef]
33. Peng, G.-F.; Niu, X.-J.; Shang, Y.-J.; Zhang, D.-P.; Chen, X.-W.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [CrossRef]
34. Pacheco, F.; Christ, R.; Gil, A.M.; Tutikian, B.F. SEM and 3D microtomography application to investigate the distribution of fibers in advanced cementitious composites. Rev. IBRACON Estrut. Mater. 2019, 9, 824–832. [CrossRef]
35. ASTM. C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2012.
36. Almansa, E.M.; Cánovas, M.F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles. Cem. Concr. Res. 1999, 29, 1807–1814. [CrossRef]
37. Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [CrossRef]
38. Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [CrossRef]
39. ASTM. D8101: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt Projectile; ASTM International: West Conshohocken, PA, USA, 2018.
40. ASTM. E3112: Standard Test Method for Ballistic-Resistant Products and Shoot Packs; ASTM International: West Conshohocken, PA, USA, 2017.
41. Law Enforcement Standards Laboratory of the National Bureau of Standards. NIJ 0108.01:Ballistic Resistant Protective Materials; National Institute of Justice: Washington, DC, USA, 1985.
42. Wang, R.; Gao, X. Relationship between Flowability, Entrapped Air Content and Strength of UHPC Mixtures Containing Different Dosage of Steel Fiber. Appl. Sci. 2016, 6, 216. [CrossRef]
43. Ehrenbring, H.Z.; Quinino, U.C.D.M.; Oliveira, L.F.S.; Tutikian, B.F. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 2019, 20, 1064–1075. [CrossRef]
44. Banyhussan, Q.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; ¸Sahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [CrossRef]
45. Ren, F.; Mattus, C.H.; Wang, J.-A.; DiPaolo, B.P. Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes. Cem. Concr. Compos. 2013, 41, 1–8. [CrossRef]
46. Tai, Y. Flat ended projectile penetrating ultra-high strength concrete plate target. Theor. Appl. Fract. Mech. 2009, 51, 117–128. [CrossRef]
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 23
dc.relation.citationvolume.spa.fl_str_mv 13
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/13/23/13410
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9a3e5376-c50c-46ee-adc8-aa037935dff1/download
https://repositorio.cuc.edu.co/bitstreams/6fccbd35-58f1-4500-91ea-538b13135cce/download
https://repositorio.cuc.edu.co/bitstreams/ecd3258c-43e6-456c-9e1e-63e82feb5578/download
https://repositorio.cuc.edu.co/bitstreams/3ddf626b-47bb-4807-92b3-d626ec26138e/download
bitstream.checksum.fl_str_mv 54f1319044d91d5c1ca6893e93fbd810
e30e9215131d99561d40d6b0abbe9bad
2430fcee75ae463ec2434f00c1f7f963
f4fcee33280641750aff9a87b3bd1089
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1831932194381103104
spelling Dapper, Paulo RodrigoEhrenbring, Hinoel ZamisPacheco, FernandaChrist, RobertoCostella Menegussi, Giovannade Oliveira, Maria FernandaTutikian, Bernardo2022-03-08T16:13:47Z2022-03-08T16:13:47Z2021-12-03Dapper, P.R.; Ehrendring, H.Z.; Pacheco, F.; Christ, R.; Menegussi, G.C.; Oliveira, M.F.d.; Tutikian, B.F. Ballistic Impact Resistance of UHPC Plates Made with Hybrid Fibers and Low Binder Content. Sustainability 2021, 13, 13410. https://doi.org/10.3390/su1323134102071-1050https://hdl.handle.net/11323/9056https://doi.org/10.3390/su13231341010.3390/su132313410Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study assesses the ballistic impact strength of thin plates made of ultra-high-performance concrete (UHPC) with low cement content (250 kg/m3) and volumes of 80% steel and 20% polypropylene (PP) hybrid fibers. The plates were prepared with thicknesses of 30, 50, and 70 mm and fiber volume ratios of 1.5% and 3.0%. Compressive strength, flexural tensile strength, residual strength, and ballistic impact strength were determined using experimental methods. Test results showed that regardless of fiber content, the UHPC specimens prepared with the hybrid fibers showed similar performance against ballistic impact, exerting relatively low impact energy below 1000 J. The UHPC3.0 mixture made with 3.0% hybrid fiber content exhibited the best performance in terms of energy absorption and spalling resistance at impact energy levels greater than 4000 J. Plate sections with thicknesses of 7 mm showed class III performance (highest level), as recommended for military-based applications.15 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ballistic impact resistance of UHPC plates made with hybrid fibers and low binder contentArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2071-1050/13/23/13410Sustainability1. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]2. Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [CrossRef]3. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]4. Silva, L.F.; Pinto, D.; Neckel, A.; Oliveira, M.L. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef]5. Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustaina-bility and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [CrossRef]6. Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures con-sidering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [CrossRef]7. Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [CrossRef]8. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D.W.; Nguyen, K.; Xia, J.; Setunge, S. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr. Build. Mater. 2021, 271, 121512. [CrossRef]9. Kim, H.; Koh, T.; Pyo, S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr. Build. Mater. 2016, 123, 153–160. [CrossRef]10. Association Française de Génie Civil. Documents Scientifiques et Techniques Bétons Fibrés à Ultra-Hautes Performances— Recommendations; AFGC: Paris, France, 2013.11. Chellapandian, M.; Prakash, S.; Sharma, A. Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression. Compos. Struct. 2017, 176, 205–216. [CrossRef]12. Guo, W.; Fan, W.; Shao, X.; Shen, D.; Chen, B. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations. Compos. Struct. 2018, 185, 307–326. [CrossRef]13. Shin, H.; Min, K.-H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [CrossRef]14. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [CrossRef]15. Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [CrossRef]16. Wu, H.; Ren, G.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Constr. Build. Mater. 2018, 173, 251–261. [CrossRef]17. Torregrosa, E.E.C. Dosage Optimization and Bolted Connections for UHPFRC Ties. Ph.D. Thesis, Universitat Politecnica de Valencia, València, Spain, 2015.18. Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos Com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Master’s Thesis, Universidade do Vale do Rio do Sinos, São Leopoldo, Brazil, 2014.19. Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [CrossRef]20. Wang, X.-Y.; Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Constr. Build. Mater. 2015, 98, 810–819. [CrossRef]21. Figueiredo, A.D. Concreto Reforçado Com Fibras. Professorship. Habilitation Thesis, Universidade de São Paulo, São Paulo, Brazil, 2011.22. Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [CrossRef]23. Othman, H.; Marzouk, H. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. Int. J. Impact Eng. 2018, 114, 20–31. [CrossRef]24. Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [CrossRef]25. Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiberreinforced concrete. Compos. Part B Eng. 2014, 58, 279–292. [CrossRef]26. Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The addition of synthetic fibres to concrete to improve impact/ballistic toughness. Constr. Build. Mater. 2016, 121, 612–621. [CrossRef]27. Quinino, U.C.D.M. Investigação Experimental Das Propriedades mecâNicas de Compósitos de Concreto com Adições Híbridas de Fibras. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.28. Máca, P.; Sovják, R.; Konvalinka, P. Mix design of UHPFRC and its response to projectile impact. Int. J. Impact Eng. 2014, 63, 158–163. [CrossRef]29. Wu, H.; Fang, Q.; Gong, J.; Liu, J.; Zhang, J.; Gong, Z. Projectile impact resistance of corundum aggregated UHP-SFRC. Int. J. Impact Eng. 2015, 84, 38–53. [CrossRef]30. Mehdipour, I.; Khayat, K.H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Pack-ing Density and Compressive Strength of Sustainable Cement Paste. ACI Mater. J. 2016, 113, 361–372.31. Liu, J.; Wu, C.; Chen, X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 2017, 135, 447–458. [CrossRef]32. Liu, J.; Wu, C.; Su, Y.; Li, J.; Shao, R.; Chen, G.; Liu, Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng. Struct. 2018, 173, 166–179. [CrossRef]33. Peng, G.-F.; Niu, X.-J.; Shang, Y.-J.; Zhang, D.-P.; Chen, X.-W.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [CrossRef]34. Pacheco, F.; Christ, R.; Gil, A.M.; Tutikian, B.F. SEM and 3D microtomography application to investigate the distribution of fibers in advanced cementitious composites. Rev. IBRACON Estrut. Mater. 2019, 9, 824–832. [CrossRef]35. ASTM. C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2012.36. Almansa, E.M.; Cánovas, M.F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles. Cem. Concr. Res. 1999, 29, 1807–1814. [CrossRef]37. Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [CrossRef]38. Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [CrossRef]39. ASTM. D8101: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt Projectile; ASTM International: West Conshohocken, PA, USA, 2018.40. ASTM. E3112: Standard Test Method for Ballistic-Resistant Products and Shoot Packs; ASTM International: West Conshohocken, PA, USA, 2017.41. Law Enforcement Standards Laboratory of the National Bureau of Standards. NIJ 0108.01:Ballistic Resistant Protective Materials; National Institute of Justice: Washington, DC, USA, 1985.42. Wang, R.; Gao, X. Relationship between Flowability, Entrapped Air Content and Strength of UHPC Mixtures Containing Different Dosage of Steel Fiber. Appl. Sci. 2016, 6, 216. [CrossRef]43. Ehrenbring, H.Z.; Quinino, U.C.D.M.; Oliveira, L.F.S.; Tutikian, B.F. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 2019, 20, 1064–1075. [CrossRef]44. Banyhussan, Q.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; ¸Sahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [CrossRef]45. Ren, F.; Mattus, C.H.; Wang, J.-A.; DiPaolo, B.P. Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes. Cem. Concr. Compos. 2013, 41, 1–8. [CrossRef]46. Tai, Y. Flat ended projectile penetrating ultra-high strength concrete plate target. Theor. Appl. Fract. Mech. 2009, 51, 117–128. [CrossRef]1512313SustainabilityComposite materialsImpactStructural elementsPublicationORIGINALBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdfBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdfapplication/pdf6008103https://repositorio.cuc.edu.co/bitstreams/9a3e5376-c50c-46ee-adc8-aa037935dff1/download54f1319044d91d5c1ca6893e93fbd810MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6fccbd35-58f1-4500-91ea-538b13135cce/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.txtBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.txttext/plain66531https://repositorio.cuc.edu.co/bitstreams/ecd3258c-43e6-456c-9e1e-63e82feb5578/download2430fcee75ae463ec2434f00c1f7f963MD53THUMBNAILBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.jpgBallistic Impact Resistance of UHPC Plates Made with Hybrid.pdf.jpgimage/jpeg16195https://repositorio.cuc.edu.co/bitstreams/3ddf626b-47bb-4807-92b3-d626ec26138e/downloadf4fcee33280641750aff9a87b3bd1089MD5411323/9056oai:repositorio.cuc.edu.co:11323/90562024-09-17 14:14:50.974https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==