Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation

Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Opt...

Full description

Autores:
Vieira, Yasmin
A. Pereira, Hércules
Leichtweis, Jandira
Mistura, Clóvia M.
Foletto, Edson
S. Oliveira, Luis F.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8349
Acceso en línea:
https://hdl.handle.net/11323/8349
https://doi.org/10.1016/j.scitotenv.2021.146991
https://repositorio.cuc.edu.co/
Palabra clave:
Hospital wastewater
Ibuprofen
Diclofenac
Degradation
Microwave
Zero-valent iron
Aguas residuales hospitalarias
Ibuprofeno
Diclofenaco
Degradación
Microondas
Hierro de valencia ceroMicroonda
Hierro de valencia cero
Rights
embargoedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_f1887cf50cee692e1d91af376fd4e54f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8349
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
dc.title.translated.spa.fl_str_mv Tratamiento eficaz de aguas residuales hospitalarias con diclofenaco e ibuprofeno en alta concentración utilizando una tecnología prometedora basada en una reacción de degradación catalizada por Fe0 bajo irradiación de microondas.
title Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
spellingShingle Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
Hospital wastewater
Ibuprofen
Diclofenac
Degradation
Microwave
Zero-valent iron
Aguas residuales hospitalarias
Ibuprofeno
Diclofenaco
Degradación
Microondas
Hierro de valencia ceroMicroonda
Hierro de valencia cero
title_short Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
title_full Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
title_fullStr Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
title_full_unstemmed Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
title_sort Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation
dc.creator.fl_str_mv Vieira, Yasmin
A. Pereira, Hércules
Leichtweis, Jandira
Mistura, Clóvia M.
Foletto, Edson
S. Oliveira, Luis F.
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Vieira, Yasmin
A. Pereira, Hércules
Leichtweis, Jandira
Mistura, Clóvia M.
Foletto, Edson
S. Oliveira, Luis F.
Dotto, Guilherme Luiz
dc.subject.eng.fl_str_mv Hospital wastewater
Ibuprofen
Diclofenac
Degradation
Microwave
Zero-valent iron
topic Hospital wastewater
Ibuprofen
Diclofenac
Degradation
Microwave
Zero-valent iron
Aguas residuales hospitalarias
Ibuprofeno
Diclofenaco
Degradación
Microondas
Hierro de valencia ceroMicroonda
Hierro de valencia cero
dc.subject.spa.fl_str_mv Aguas residuales hospitalarias
Ibuprofeno
Diclofenaco
Degradación
Microondas
Hierro de valencia ceroMicroonda
Hierro de valencia cero
description Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L−1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewater
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-03T18:37:51Z
dc.date.available.none.fl_str_mv 2021-06-03T18:37:51Z
dc.date.issued.none.fl_str_mv 2021-04-02
dc.date.embargoEnd.none.fl_str_mv 2023-04-02
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 00489697
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8349
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.scitotenv.2021.146991
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 00489697
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8349
https://doi.org/10.1016/j.scitotenv.2021.146991
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ahmadpour, N., Sayadi, M.H., Sobhani, S., Hajiani, M., 2020. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J. Environ. Manag. 271. https://doi.org/10.1016/j.jenvman.2020.110964.
Al Hakim, S., Baalbaki, A., Tantawi, O., Ghauch, A., 2019. Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Adv. 9, 33472–33485. https://doi.org/10.1039/c9ra05362j.
Alvarez, H.M., Barbosa, D.P., Fricks, A.T., Aranda, D.A.G., Valdés, R.H., Antunes, O.A.C., 2006. Production of piperonal, vanillin, and p-anisaldehyde via solventless supported iodobenzene diacetate oxidation of isosafrol, isoeugenol, and anethol under microwave irradiation. Org. Process. Res. Dev. 10, 941–943. https://doi.org/10.1021/ op060117t.
de Andrade, J.R., Vieira, M.G.A., da Silva, M.G.C., Wang, S., 2020. Oxidative degradation of pharmaceutical losartan potassium with N-doped hierarchical porous carbon and peroxymonosulfate. Chem. Eng. J. 382. https://doi.org/10.1016/j.cej.2019.122971.
Armaković, S.J., Armaković, S., Šibul, F., Četojević-Simin, D.D., Tubić, A., Abramović, B.F., 2020. Kinetics, mechanism and toxicity of intermediates of solar light induced photocatalytic degradation of pindolol: experimental and computational modeling approach. J. Hazard. Mater. 393. https://doi.org/10.1016/j.jhazmat.2020.122490.
Arthur, R.B., Bonin, J.L., Ardill, L.P., Rourk, E.J., Patterson, H.H., Stemmler, E.A., 2018. Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. J. Hazard. Mater. 358, 1–9. https://doi.org/10.1016/j.jhazmat.2018.06.018.
Babuponnusami, A., Muthukumar, K., 2012. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep. Purif. Technol. 98, 130–135. https://doi.org/10.1016/j.seppur.2012.04.034.
Bahrami, H., Eslami, A., Nabizadeh, R., Mohseni-Bandpi, A., Asadi, A., Sillanpää, M., 2018. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology. J. Clean. Prod. 198, 1210–1218. https://doi.org/10.1016/j.jclepro.2018.07.100.
Balta, Z., Simsek, E.B., 2020. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. Xinxing Tan Cailiao/New Carbon Mater. 35, 371–383. https://doi.org/10.1016/ S1872-5805(20)60495-4.
Bautitz, I.R., Velosa, A.C., Nogueira, R.F.P., 2012. Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88, 688–692. https://doi.org/10.1016/j. chemosphere.2012.03.077
Beheshti, F., Tehrani, M.A., R, Khadir, A., 2019. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: analysis of various operational parameters. Int. J. Environ. Sci. Technol. 16, 7987–7996. https://doi. org/10.1007/s13762-019-02212-x.
Bi, X., Wang, P., Jiang, H., 2008. Catalytic activity of CuOn–La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. J. Hazard. Mater. 154, 543–549. https://doi.org/10.1016/J.JHAZMAT.2007.10.069.
Bing, J., Hu, C., Nie, Y., Yang, M., Qu, J., 2015. Mechanism of catalytic ozonation in Fe2O3/ Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ. Sci. Technol. 49, 1690–1697. https://doi.org/10.1021/es503729h.
Caddick, S., 1995. Microwave assisted organic reactions. Tetrahedron 51, 10403–10432. https://doi.org/10.1016/0040-4020(95)00662-R
Cao, J., Xiong, Z., Lai, B., 2018. Effect of initial pH on the tetracycline (TC) removal by zerovalent iron: adsorption, oxidation and reduction. Chem. Eng. J. 343, 492–499. https:// doi.org/10.1016/j.cej.2018.03.036
Carvalho, N.M.F., Alvarez, H.M., Horn, A., Antunes, O.A.C., 2008. Influence of microwave irradiation in the cyclohexane oxidation catalyzed by Fe(III) complexes. Catal. Today 133–135, 689–694. https://doi.org/10.1016/j.cattod.2007.12.106.
Chong, S., Zhang, G., Zhang, N., Liu, Y., Huang, T., Chang, H., 2017. Diclofenac degradation in water by FeCeOx catalyzed H2O2: influencing factors, mechanism and pathways. J. Hazard. Mater. 334, 150–159. https://doi.org/10.1016/j.jhazmat.2017.04.008.
Cuervo Lumbaque, E., Salmoria Araújo, D., Moreira Klein, T., Lopes Tiburtius, E.R., Argüello, J., Sirtori, C., 2019a. Solar photo-Fenton-like process at neutral pH: Fe(III)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals. Catal. Today 328, 259–266. https://doi.org/10.1016/j.cattod.2019.01.006
Cuervo Lumbaque, E., Wielens Becker, R., Salmoria Araújo, D., Dallegrave, A., Ost Fracari, T., Lavayen, V., Sirtori, C., 2019b. Degradation of pharmaceuticals in different water matrices by a solar homo/heterogeneous photo-Fenton process over modified alginate spheres. Environ. Sci. Pollut. Res. 26, 6532–6544. https://doi.org/10.1007/ s11356-018-04092-z.
Daneshkhah, M., Hossaini, H., Malakootian, M., 2017. Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron. J. Environ. Chem. Eng. 5, 3490–3499. https://doi.org/10.1016/j.jece.2017.06.040.
Dehghani, M.H., Karri, R.R., Alimohammadi, M., Nazmara, S., Zarei, A., Saeedi, Z., 2020. Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles. J. Mol. Liq. 311, 113317. https://doi.org/10.1016/j.molliq.2020.113317.
Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., 2014. Zero-valent iron/persulfate(Fe0/ PS) oxidation acetaminophen in water. Int. J. Environ. Sci. Technol. 11, 881–890. https://doi.org/10.1007/s13762-013-0284-2.
Deng, J., Dong, H., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., Zhang, L., Fan, C., 2018. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep. Purif. Technol. 202, 130–137. https://doi.org/10.1016/j.seppur.2018.03.048.
Dolatabadi, M., Ahmadzadeh, S., 2019. A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology. Water Sci. Technol. 80, 685–694. https://doi.org/10.2166/wst.2019.312.
Dong, Z., Zhang, Q., Hong, J., Chen, B.Y., Xu, Q., 2018. Deciphering acetaminophen degradation using novel microporous beads reactor activate persulfate process with minimum iron leachate for sustainable treatment. Catal. Lett. 148, 2095–2108. https://doi. org/10.1007/s10562-018-2418-0.
Dong, W., Jin, Y., Zhou, K., Sun, S.P., Li, Y., Chen, X.D., 2019. Efficient degradation of pharmaceutical micropollutants in water and wastewater by FeIII-NTA-catalyzed neutral photo-Fenton process. Sci. Total Environ. 688, 513–520. https://doi.org/10.1016/j. scitotenv.2019.06.315.
Du, J., Guo, W., Li, X., Li, Q., Wang, B., Huang, Y., Ren, N., 2017. Degradation of sulfamethoxazole by a heterogeneous Fenton-like system with microscale zero-valent iron: kinetics, effect factors, and pathways. J. Taiwan Inst. Chem. Eng. 81, 232–238. https:// doi.org/10.1016/j.jtice.2017.10.017.
Du, Y., Dai, M., Cao, J., Peng, C., 2019. Fabrication of a low-cost adsorbent supported zerovalent iron by using red mud for remoVIng Pb(II) and Cr(VI) from aqueous solutions. RSC Adv. 9, 33486–33496. https://doi.org/10.1039/c9ra06978j.
Furlong, E.T., Batt, A.L., Glassmeyer, S.T., Noriega, M.C., Kolpin, D.W., Mash, H., Schenck, K.M., 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals EPA public access. Sci. Total Environ. 579, 1629–1642. https://doi.org/10.1016/j.scitotenv.2016.03.128.
Gallego-Schmid, A., Tarpani, R.R.Z., Miralles-Cuevas, S., Cabrera-Reina, A., Malato, S., Azapagic, A., 2019. Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci. Total Environ. 650, 2210–2220. https://doi.org/10.1016/j.scitotenv.2018.09.361.
Gao, Qiong, Y., Gao, N. Yun, Wang, W., Kang, S. Fei, Xu, J. Hong, Xiang, H. Ming, Yin, D. Qiang, 2018. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water. Ultrason. Sonochem. 49, 33–40. https://doi.org/10.1016/j.ultsonch.2018.07.001.
Gao, Y.Q., Zhang, J., Zhou, J.Q., Li, C., Gao, N.Y., Yin, D.Q., 2020. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: influencing factors, degradation pathways and toxicity analysis. RSC Adv. 10, 20991–20999. https://doi.org/ 10.1039/d0ra01273d.
Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F., 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 32, 147–156. https://doi.org/10.1016/J. NBT.2014.01.001.
Ghenaatgar, A., Tehrani, M.A., R, Khadir, A., 2019. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: optimization of operational parameters and kinetic studies. J. Water Process Eng. 32. https://doi.org/ 10.1016/j.jwpe.2019.100969.
GilPavas, E., Correa-Sánchez, S., 2019. Optimization of the heterogeneous electro-Fenton process assisted by scrap zero-valent iron for treating textile wastewater: assessment of toxicity and biodegradability. J. Water Process Eng. 32. https://doi.org/10.1016/j. jwpe.2019.100924.
Gómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006a. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.
Gómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006b. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.
Gomez, V., Wright, K., Esquenazi, G.L., Barron, A.R., 2019. Microwave treatment of a hot mill sludge from the steel industry: en route to recycling an industrial waste. J. Clean. Prod. 207, 182–189. https://doi.org/10.1016/J.JCLEPRO.2018.08.294.
Han, S.T., Li, J., Xi, H.L., Xu, D.N., Zuo, Y., Zhang, J.H., 2009. Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. J. Hazard. Mater. 163, 1165–1172. https:// doi.org/10.1016/j.jhazmat.2008.07.077.
He, Z., Yang, S., Ju, Y., Sun, C., 2009. Microwave photocatalytic degradation of Rhodamine B using TiO2supported on activated carbon: mechanism implication. J. Environ. Sci. 21, 268–272. https://doi.org/10.1016/S1001-0742(08)62262-7.
He, Z., Mahmud, S., Yang, Y., Zhu, L., Zhao, Y., Zeng, Q., Xiong, Z., Zhao, S., 2020. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep. Purif. Technol. 250, 117266. https:// doi.org/10.1016/j.seppur.2020.117266.
Hernando, M.D., Heath, E., Petrovic, M., Barceló, D., 2006. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Analytical and Bioanalytical Chemistry, pp. 985–991 https://doi.org/10.1007/ s00216-006-0394-5.
Homem, V., Alves, A., Santos, L., 2013. Microwave-assisted Fenton’s Oxidation of Amoxicillin. 220, pp. 35–44. https://doi.org/10.1016/j.cej.2013.01.047.
Horikoshi, S., Serpone, N., 2014. Coupled microwave/photoassisted methods for environmental remediation. Molecules 19, 18102–18128. https://doi.org/10.3390/ molecules191118102.
Horikoshi, S., Osawa, A., Abe, M., Serpone, N., 2011. On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115, 23030–23035. https://doi.org/10.1021/jp2076269.
Huddersman, K., Palitsin, A.V., 2017. Modelling and simulation of a novel pilot-scale microwave assisted catalytic reactor for continuous flow treatment of wastewaters. Lecture Notes in Civil Engineering. Springer, pp. 644–649 https://doi.org/10.1007/978-3- 319-58421-8_101.
ISO, 1989. Water Quality Determination of the Chemical Oxygen Demand. Geneva
Janssens, R., Cristóvão, B.M., Bronze, M.R., Crespo, J.G., Pereira, V.J., Luis, P., 2020. Photocatalysis using UV-A and UV-C light sources for advanced oxidation of anticancer drugs spiked in laboratory-grade water and synthetic urine. Ind. Eng. Chem. Res. 59, 647–653. https://doi.org/10.1021/acs.iecr.9b04608.
Ju, Y.M., Yang, S.G., Ding, Y.C., Sun, C., Gu, C.G., He, Z., Qin, C., He, H., Xu, B., 2009. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: intermediates and degradation mechanism. J. Hazard. Mater. 171, 123–132. https://doi.org/10.1016/j.jhazmat.2009.05.120.
Kappe, C.O., 2004. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.200400655.
Karim, S., Bae, S., Greenwood, D., Hanna, K., Singhal, N., 2017. Degradation of 17Αethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Res. 125, 32–41. https://doi.org/10.1016/j.watres.2017.08.029.
Khan, S.J., Ongerth, J.E., 2002. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling. Water Science and Technology. IWA Publishing, pp. 105–113 https://doi.org/10.2166/ wst.2002.0065.
Kim, D.G., Ko, S.O., 2020. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical. Chem. Eng. J. 399. https://doi.org/10.1016/j.cej.2020.125377.
Konstas, P.S., Kosma, C., Konstantinou, I., Albanis, T., 2019. Photocatalytic treatment of pharmaceuticals in real hospital wastewaters for effluent quality amelioration. Water (Switzerland) 11. https://doi.org/10.3390/w11102165.
Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 46, 1536–1545. https://doi.org/ 10.1021/es203495d.
Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., Stadler, F.J., 2019. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.111177.
Lan, Y., Barthe, L., Antonin, A., Causserand, C., 2020. Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: membrane fouling control and long-term stability. Sep. Purif. Technol. 231. https:// doi.org/10.1016/j.seppur.2019.115920
Lienert, J., Bürki, T., Escher, B.I., 2007. Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science and Technology, pp. 87–96 https://doi.org/10.2166/wst.2007.560.
de Lima Perini, J.A., Fernandes Pupo Nogueira, R., 2016. Zero-valent iron mediated degradation of sertraline - effect of H2O2 addition and application to sewage treatment plant effluent. J. Chem. Technol. Biotechnol. 91, 276–282. https://doi.org/10.1002/ jctb.4705.
Lin, A.Y.C., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 407, 3793–3802. https://doi.org/10.1016/j.scitotenv.2009.03.009.
Liu, Z., Lei, H., Bai, T., Wang, W., Chen, K., Chen, J., Hu, Q., 2015a. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyrite-bearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084.
Liu, Z., Lei, Yi, H., Bai, T., Wang, W. Zheng, Chen, K., Chen, J. Jian, Hu, Q. Wen, 2015b. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyritebearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084
Liu, X., Cao, Z., Yuan, Z., Zhang, J., Guo, X., Yang, Y., He, F., Zhao, Y., Xu, J., 2018. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem. Eng. J. 334, 508–518. https://doi.org/10.1016/j.cej.2017.10.060.
Ma, X., Cheng, Y., Ge, Y.,Wu, H., Li, Q., Gao, N., Deng, J., 2018. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason. Sonochem. 40, 763–772. https://doi.org/10.1016/j.ultsonch.2017.08.025.
Machado, S., Pacheco, J.G., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C., 2017. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int. J. Environ. Sci. Technol. 14, 1109–1118. https://doi.org/10.1007/s13762-016-1197-7.
Mawioo, P.M., Garcia, H.A., Hooijmans, C.M., Velkushanova, K., Simonič, M., Mijatović, I., Brdjanovic, D., 2017. A pilot-scale microwave technology for sludge sanitization and drying. Sci. Total Environ. 601–602, 1437–1448. https://doi.org/10.1016/j. scitotenv.2017.06.004.
Michael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M., Barceló, D., Fatta-Kassinos, D., 2014. Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl. Catal. B Environ. 147, 1015–1027. https://doi.org/10.1016/j.apcatb.2013.10.035
Mohammadi, H., Bina, B., Ebrahimi, A., 2018. A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways. Process. Saf. Environ. Prot. 117, 200–213. https://doi.org/10.1016/j.psep.2018.05.001.
Mondal, S.K., Saha, A.K., Sinha, A., 2018. Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization. J. Clean. Prod. 171, 1203–1214. https://doi.org/10.1016/j.jclepro.2017.10.091.
Moseley, J.D., Lenden, P., Lockwood, M., Ruda, K., Sherlock, J.P., Thomson, A.D., Gilday, J.P., 2008. A comparison of commercial microwave reactors for scale-up within process chemistry. Org. Process. Res. Dev. 12, 30–40. https://doi.org/10.1021/op700186z
Mossmann, A., Dotto, G.L., Hotza, D., Jahn, S.L., Foletto, E.L., 2019. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo–Fenton process. J. Environ. Chem. Eng. 7, 102963. https://doi.org/10.1016/j.jece.2019.102963.
Müller, P., Klán, P., Ćrkva, V., 2003. The electrodeless discharge lamp: a prospective tool for photochemistry part 4. Temperature- and envelope material-dependent emission characteristics. J. Photochem. Photobiol. A Chem. 158, 1–5. https://doi.org/10.1016/ S1010-6030(03)00101-1.
Pan, X., Lv, N., Li, C., Ning, J., Wang, T., Wang, R., Zhou, M., Zhu, G., 2019. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem. Eng. J. 359, 662–671. https://doi.org/10.1016/j. cej.2018.11.135.
Parra, L.R., Pantoja, L.G., Mena, N.L., Machuca-Martínez, F., Urresta, J., 2020. Evaluation of TiO2 and SnO supported on graphene oxide (TiO2-GO and SnO-GO) photocatalysts for treatment of hospital wastewater. Water (Switzerland) 12. https://doi.org/ 10.3390/w12051438.
Pirsaheb, M., Moradi, S., Shahlaei, M., Wang, X., Farhadian, N., 2019. A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water. J. Clean. Prod. 209, 1523–1532. https://doi. org/10.1016/j.jclepro.2018.11.175
Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C., Bergamasco, R., 2019. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. https://doi.org/ 10.1016/j.chemosphere.2019.02.009.
Rahmani, H., Gholami, M., Mahvi, A.H., Ali-Mohammadi, M., Rahmani, K., 2014. Tinidazol antibiotic degradation in aqueous solution by zero valent iron nanoparticles and hydrogen peroxide in the presence of ultrasound radiation. J. Water Chem. Technol. 36, 317–324. https://doi.org/10.3103/S1063455X14060101.
Rana, A., Kumari, N., Tyagi, M., Jagadevan, S., 2018. Leaf-extract mediated zero-valent iron for oxidation of arsenic (III): preparation, characterization and kinetics. Chem. Eng. J. 347, 91–100. https://doi.org/10.1016/j.cej.2018.04.075.
Remya, N., Lin, J.G., 2011. Current status of microwave application in wastewater treatmenta review. Chem. Eng. J. 166, 797–813. https://doi.org/10.1016/j.cej.2010.11.100.
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.07.059
Rogowska, J., Zimmermann, A., Muszyńska, A., Ratajczyk, W., Wolska, L., 2019. Pharmaceutical household waste practices: preliminary findings from a case study in Poland. Environ. Manag. 64, 97–106. https://doi.org/10.1007/s00267-019-01174-7.
Ruiz-Torres, C.A., Araujo-Martínez, R.F., Martínez-Castañón, G.A., Morales-Sánchez, J.E., Lee, T.J., Shin, H.S., Hwang, Y., Hurtado-Macías, A., Ruiz, F., 2019. A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction. Environ. Eng. Res. 24, 463–473. https://doi.org/10.4491/EER.2018.320.
Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M., 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 461–462, 302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077.
Schmink, J.R., Leadbeater, N.E., 2010. Microwave heating as a tool for sustainable chemistry: an introduction. Microwave Heating as a Tool for Sustainable Chemistry. CRC Press, pp. 1–24 https://doi.org/10.1201/9781439812709.
Schuster, A., Hädrich, C., Kümmerer, K., 2008. Flows of active pharmaceutical ingredients originating from health care practices on a local, regional, and nationwide level in Germany-is hospital effluent treatment an effective approach for risk reduction? Water Air Soil Pollut. Focus 8, 457–471. https://doi.org/10.1007/s11267-008-9183-9.
Scott, T.M., Phillips, P.J., Kolpin, D.W., Colella, K.M., Furlong, E.T., Foreman, W.T., Gray, J.L., 2018. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters. Sci. Total Environ. 636, 69–79. https://doi. org/10.1016/j.scitotenv.2018.04.160.
Segura, Y., Martínez, F., Melero, J.A., 2013. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl. Catal. B Environ. 136–137, 64–69. https://doi.org/10.1016/j.apcatb.2013.01.036.
Serpone, N., Horikoshi, S., Emeline, A.V., 2010. Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C: Photochem Rev 11, 114–131. https://doi.org/10.1016/j.jphotochemrev.2010.07.003.
Shao, Y., Zhao, P., Yue, Q., Wu, Y., Gao, B., Kong, W., 2018. Preparation of wheat strawsupported nanoscale zero-valent iron and its removal performance on ciprofloxacin. Ecotoxicol. Environ. Saf. 158, 100–107. https://doi.org/10.1016/j.ecoenv.2018.04.020
Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011a. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.
Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011b. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.
Singh, K.P., Singh, A.K., Gupta, S., Rai, P., 2012. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ. Sci. Pollut. Res. 19, 2063–2078. https://doi.org/10.1007/s11356- 011-0700-4.
Snyder, S., Vanderford, B., Pearson, R., Quiñones, O., Yoon, Y., 2003a. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 7, 224–234. https://doi.org/10.1061/(ASCE)1090- 025X(2003)7:4(224).
Snyder, S.A., Westerhoff, P., Yoon, Y., Sedlak, D.L., 2003b. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. https://doi.org/10.1089/109287503768335931.
Stieber, M., Putschew, A., Jekel, M., 2011. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 45, 4944–4950. https://doi.org/10.1021/ es200034j.
Straub, J.O., 2016. Reduction in the environmental exposure of pharmaceuticals through diagnostics, personalised healthcare and other approaches. A mini review and discussion paper. Sustain. Chem. Pharm. https://doi.org/10.1016/j. scp.2015.12.001.
Strauss, C.R., Trainor, R.W., 1995. Developments in microwave-assisted organic chemistry. Aust. J. Chem. 48, 1665–1692. https://doi.org/10.1071/CH9951665.
Tan, C., Dong, Y., Fu, D., Gao, N., Ma, J., Liu, X., 2018. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: kinetics and mechanism of radical generation. Chem. Eng. J. 334, 1006–1015. https://doi.org/10.1016/j. cej.2017.10.020.
Vedenyapina, M.D., Kurmysheva, A.Y., Rakishev, A.K., Kryazhev, Y.G., 2019. Activated carbon as sorbents for treatment of pharmaceutical wastewater (review). Solid Fuel Chem. 53, 382–394. https://doi.org/10.3103/S0361521919070061.
Verlicchi, P., Galletti, A., Petrovic, M., BarcelÓ, D., 2010. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2010.06.005.
Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., Barceló, D., 2012. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 430, 109–118. https://doi.org/10.1016/j. scitotenv.2012.04.055.
Vieira, Y., Ceretta, M.B., Foletto, E.L., Wolski, E.A., Silvestri, S., 2020a. Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. J. Water Process Eng. 36, 101397. https://doi.org/ 10.1016/j.jwpe.2020.101397.
Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S.L., de Moraes Flores, É.M., Dotto, G.L., Foletto, E.L., 2020b. New insights into the mechanism of heterogeneous activation of nano– magnetite by microwave irradiation for use as Fenton catalyst. J. Environ. Chem. Eng. 8, 103787. https://doi.org/10.1016/j.jece.2020.103787.
Wang, N., Wang, P., 2016. Study and application status of microwave in organic wastewater treatment - a review. Chem. Eng. J. 283, 193–214. https://doi.org/10.1016/j. cej.2015.07.046.
Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., Dai, Y., 2012. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030. https://doi.org/10.1021/ am300835p.
Wang, N., Zheng, T., Jiang, J., Lung, Seng, W., Miao, X., Wang, P., 2014. Pilot-scale treatment of p-nitrophenol wastewater by microwave-enhanced Fenton oxidation process: effects of system parameters and kinetics study. Chem. Eng. J. 239, 351–359. https:// doi.org/10.1016/j.cej.2013.11.038.
Wen, Z., Zhang, Y., Dai, C., 2014. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A Physicochem. Eng. Asp. 457, 433–440. https://doi.org/10.1016/j.colsurfa.2014.06.017.
Weng, X., Cai, W., Lin, S., Chen, Z., 2017. Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl. Clay Sci. 147, 137–142. https://doi.org/ 10.1016/j.clay.2017.07.023.
Wennmalm, Å., Gunnarsson, B.O., 2005. Public health care management of water pollution with pharmaceuticals: environmental classification and analysis of pharmaceutical residues in sewage water. Ther. Innov. Regul. Sci. 39, 291–297. https://doi.org/ 10.1177/009286150503900307.
Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39, 6649–6663. https://doi.org/10.1021/ es0484799.
Wielens Becker, R., Ibáñez, M., Cuervo Lumbaque, E., Wilde, M.L., Flores da Rosa, T., Hernández, F., Sirtori, C., 2020. Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Sci. Total Environ. 699, 134218. https:// doi.org/10.1016/j.scitotenv.2019.134218
Wu, Y., Yue, Q., Gao, Y., Ren, Z., Gao, B., 2018. Performance of bimetallic nanoscale zerovalent iron particles for removal of oxytetracycline. J. Environ. Sci. (China) 69, 173–182. https://doi.org/10.1016/j.jes.2017.10.006.
Wu, J., Wang, B., Cagnetta, G., Huang, J., Wang, Y., Deng, S., Yu, G., 2020. Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep. Purif. Technol. 239. https://doi.org/10.1016/j.seppur.2020.116534.
Xue, C., Mao, Y., Wang, W., Song, Z., Zhao, X., Sun, J., Wang, Y., 2019. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase – a review. J. Environ. Sci. (China) https://doi.org/10.1016/j.jes.2019.01.019.
Zhang, Y., 2009. Model selection: a Lagrange optimization approach. J. Stat. Plan. Inference 139, 3142–3159. https://doi.org/10.1016/j.jspi.2009.02.016.
Zhang, X., Hayward, D.O., Mingos, D.M.P., 1999. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 0, 975–976. https://doi.org/10.1039/a901245a.
Zhang, Q., Peng, Y., Deng, F., Wang, M., Chen, D., 2020. Porous Z-scheme MnO2/Mnmodified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 246. https://doi.org/10.1016/j.seppur.2020.116890.
Zhu, S., Wang, W., Xu, Y., Zhu, Z., Liu, Z., Cui, F., 2019. Iron sludge-derived magnetic Fe0/ Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 365, 99–110. https://doi.org/10.1016/j.cej.2019.02.011.
Zou, R., Angelidaki, I., Yang, X., Tang, K., Andersen, H.R., Zhang, Y., 2020. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bioelectro-Fenton (BEF) system. Sci. Total Environ. 727. https://doi.org/10.1016/ j.scitotenv.2020.138684.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Science of the Total Environment
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0048969721020611
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dddd57ba-d596-4b7a-9207-c6119099bc0b/download
https://repositorio.cuc.edu.co/bitstreams/9be749b0-55e5-4a30-a41f-9e3522713dc7/download
https://repositorio.cuc.edu.co/bitstreams/9651a281-ca19-4482-88e6-4f55581b417e/download
https://repositorio.cuc.edu.co/bitstreams/a7c2be98-e08d-427c-9240-c6d21ea68fae/download
https://repositorio.cuc.edu.co/bitstreams/fc2e49ef-c539-4c41-a853-b39babfd2606/download
bitstream.checksum.fl_str_mv ab5c9c5b5eed6968ffc59b65188cf63c
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
7f523f4f0031598ca48cc52e876845e4
c2526d34ecc78647cfe6e773a0dadfb3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166625806778368
spelling Vieira, YasminA. Pereira, HérculesLeichtweis, JandiraMistura, Clóvia M.Foletto, EdsonS. Oliveira, Luis F.Dotto, Guilherme Luiz2021-06-03T18:37:51Z2021-06-03T18:37:51Z2021-04-022023-04-0200489697https://hdl.handle.net/11323/8349https://doi.org/10.1016/j.scitotenv.2021.146991Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L−1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewaterEn este trabajo, las aguas residuales hospitalarias reales fueron tratadas eficazmente mediante una tecnología prometedora basada en la reacción de degradación catalizada por Fe0 bajo irradiación de microondas. Los polvos de Fe0 se sintetizaron y caracterizaron mediante diferentes técnicas, dando como resultado una muestra monofásica con partículas esféricas. Las condiciones experimentales óptimas se determinaron mediante un diseño central compuesto giratorio combinado con una metodología de superficie de respuesta, lo que resultó en una reducción del 96,8% de la demanda química de oxígeno y una eliminación del 100% de carbono orgánico, después de aplicar una potencia de MW de 780 W y una dosis de Fe0 de 0,36 g L − 1. durante 60 min. Entre los varios compuestos orgánicos identificados en la muestra de aguas residuales, el diclofenaco y el ibuprofeno estaban presentes en concentraciones más altas; por lo tanto, se establecieron como contaminantes objetivo. Ambos compuestos se degradaron completamente en 35 min de tiempo de reacción. Se investigaron y propusieron sus posibles vías de degradación. En general, el método desarrollado en este trabajo eliminó de manera efectiva las altas concentraciones de productos farmacéuticos en las aguas residuales de los hospitales.Vieira, Yasmin-will be generated-orcid-0000-0003-4053-4042-600A. Pereira, HérculesLeichtweis, Jandira-will be generated-orcid-0000-0003-3522-2730-600Mistura, Clóvia M.Foletto, Edson-will be generated-orcid-0000-0003-2443-7445-600S. Oliveira, Luis F.Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengScience of the Total EnvironmentAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfHospital wastewaterIbuprofenDiclofenacDegradationMicrowaveZero-valent ironAguas residuales hospitalariasIbuprofenoDiclofenacoDegradaciónMicroondasHierro de valencia ceroMicroondaHierro de valencia ceroEffective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiationTratamiento eficaz de aguas residuales hospitalarias con diclofenaco e ibuprofeno en alta concentración utilizando una tecnología prometedora basada en una reacción de degradación catalizada por Fe0 bajo irradiación de microondas.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/abs/pii/S0048969721020611Ahmadpour, N., Sayadi, M.H., Sobhani, S., Hajiani, M., 2020. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J. Environ. Manag. 271. https://doi.org/10.1016/j.jenvman.2020.110964.Al Hakim, S., Baalbaki, A., Tantawi, O., Ghauch, A., 2019. Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Adv. 9, 33472–33485. https://doi.org/10.1039/c9ra05362j.Alvarez, H.M., Barbosa, D.P., Fricks, A.T., Aranda, D.A.G., Valdés, R.H., Antunes, O.A.C., 2006. Production of piperonal, vanillin, and p-anisaldehyde via solventless supported iodobenzene diacetate oxidation of isosafrol, isoeugenol, and anethol under microwave irradiation. Org. Process. Res. Dev. 10, 941–943. https://doi.org/10.1021/ op060117t.de Andrade, J.R., Vieira, M.G.A., da Silva, M.G.C., Wang, S., 2020. Oxidative degradation of pharmaceutical losartan potassium with N-doped hierarchical porous carbon and peroxymonosulfate. Chem. Eng. J. 382. https://doi.org/10.1016/j.cej.2019.122971.Armaković, S.J., Armaković, S., Šibul, F., Četojević-Simin, D.D., Tubić, A., Abramović, B.F., 2020. Kinetics, mechanism and toxicity of intermediates of solar light induced photocatalytic degradation of pindolol: experimental and computational modeling approach. J. Hazard. Mater. 393. https://doi.org/10.1016/j.jhazmat.2020.122490.Arthur, R.B., Bonin, J.L., Ardill, L.P., Rourk, E.J., Patterson, H.H., Stemmler, E.A., 2018. Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. J. Hazard. Mater. 358, 1–9. https://doi.org/10.1016/j.jhazmat.2018.06.018.Babuponnusami, A., Muthukumar, K., 2012. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep. Purif. Technol. 98, 130–135. https://doi.org/10.1016/j.seppur.2012.04.034.Bahrami, H., Eslami, A., Nabizadeh, R., Mohseni-Bandpi, A., Asadi, A., Sillanpää, M., 2018. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology. J. Clean. Prod. 198, 1210–1218. https://doi.org/10.1016/j.jclepro.2018.07.100.Balta, Z., Simsek, E.B., 2020. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. Xinxing Tan Cailiao/New Carbon Mater. 35, 371–383. https://doi.org/10.1016/ S1872-5805(20)60495-4.Bautitz, I.R., Velosa, A.C., Nogueira, R.F.P., 2012. Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88, 688–692. https://doi.org/10.1016/j. chemosphere.2012.03.077Beheshti, F., Tehrani, M.A., R, Khadir, A., 2019. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: analysis of various operational parameters. Int. J. Environ. Sci. Technol. 16, 7987–7996. https://doi. org/10.1007/s13762-019-02212-x.Bi, X., Wang, P., Jiang, H., 2008. Catalytic activity of CuOn–La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. J. Hazard. Mater. 154, 543–549. https://doi.org/10.1016/J.JHAZMAT.2007.10.069.Bing, J., Hu, C., Nie, Y., Yang, M., Qu, J., 2015. Mechanism of catalytic ozonation in Fe2O3/ Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ. Sci. Technol. 49, 1690–1697. https://doi.org/10.1021/es503729h.Caddick, S., 1995. Microwave assisted organic reactions. Tetrahedron 51, 10403–10432. https://doi.org/10.1016/0040-4020(95)00662-RCao, J., Xiong, Z., Lai, B., 2018. Effect of initial pH on the tetracycline (TC) removal by zerovalent iron: adsorption, oxidation and reduction. Chem. Eng. J. 343, 492–499. https:// doi.org/10.1016/j.cej.2018.03.036Carvalho, N.M.F., Alvarez, H.M., Horn, A., Antunes, O.A.C., 2008. Influence of microwave irradiation in the cyclohexane oxidation catalyzed by Fe(III) complexes. Catal. Today 133–135, 689–694. https://doi.org/10.1016/j.cattod.2007.12.106.Chong, S., Zhang, G., Zhang, N., Liu, Y., Huang, T., Chang, H., 2017. Diclofenac degradation in water by FeCeOx catalyzed H2O2: influencing factors, mechanism and pathways. J. Hazard. Mater. 334, 150–159. https://doi.org/10.1016/j.jhazmat.2017.04.008.Cuervo Lumbaque, E., Salmoria Araújo, D., Moreira Klein, T., Lopes Tiburtius, E.R., Argüello, J., Sirtori, C., 2019a. Solar photo-Fenton-like process at neutral pH: Fe(III)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals. Catal. Today 328, 259–266. https://doi.org/10.1016/j.cattod.2019.01.006Cuervo Lumbaque, E., Wielens Becker, R., Salmoria Araújo, D., Dallegrave, A., Ost Fracari, T., Lavayen, V., Sirtori, C., 2019b. Degradation of pharmaceuticals in different water matrices by a solar homo/heterogeneous photo-Fenton process over modified alginate spheres. Environ. Sci. Pollut. Res. 26, 6532–6544. https://doi.org/10.1007/ s11356-018-04092-z.Daneshkhah, M., Hossaini, H., Malakootian, M., 2017. Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron. J. Environ. Chem. Eng. 5, 3490–3499. https://doi.org/10.1016/j.jece.2017.06.040.Dehghani, M.H., Karri, R.R., Alimohammadi, M., Nazmara, S., Zarei, A., Saeedi, Z., 2020. Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles. J. Mol. Liq. 311, 113317. https://doi.org/10.1016/j.molliq.2020.113317.Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., 2014. Zero-valent iron/persulfate(Fe0/ PS) oxidation acetaminophen in water. Int. J. Environ. Sci. Technol. 11, 881–890. https://doi.org/10.1007/s13762-013-0284-2.Deng, J., Dong, H., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., Zhang, L., Fan, C., 2018. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep. Purif. Technol. 202, 130–137. https://doi.org/10.1016/j.seppur.2018.03.048.Dolatabadi, M., Ahmadzadeh, S., 2019. A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology. Water Sci. Technol. 80, 685–694. https://doi.org/10.2166/wst.2019.312.Dong, Z., Zhang, Q., Hong, J., Chen, B.Y., Xu, Q., 2018. Deciphering acetaminophen degradation using novel microporous beads reactor activate persulfate process with minimum iron leachate for sustainable treatment. Catal. Lett. 148, 2095–2108. https://doi. org/10.1007/s10562-018-2418-0.Dong, W., Jin, Y., Zhou, K., Sun, S.P., Li, Y., Chen, X.D., 2019. Efficient degradation of pharmaceutical micropollutants in water and wastewater by FeIII-NTA-catalyzed neutral photo-Fenton process. Sci. Total Environ. 688, 513–520. https://doi.org/10.1016/j. scitotenv.2019.06.315.Du, J., Guo, W., Li, X., Li, Q., Wang, B., Huang, Y., Ren, N., 2017. Degradation of sulfamethoxazole by a heterogeneous Fenton-like system with microscale zero-valent iron: kinetics, effect factors, and pathways. J. Taiwan Inst. Chem. Eng. 81, 232–238. https:// doi.org/10.1016/j.jtice.2017.10.017.Du, Y., Dai, M., Cao, J., Peng, C., 2019. Fabrication of a low-cost adsorbent supported zerovalent iron by using red mud for remoVIng Pb(II) and Cr(VI) from aqueous solutions. RSC Adv. 9, 33486–33496. https://doi.org/10.1039/c9ra06978j.Furlong, E.T., Batt, A.L., Glassmeyer, S.T., Noriega, M.C., Kolpin, D.W., Mash, H., Schenck, K.M., 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals EPA public access. Sci. Total Environ. 579, 1629–1642. https://doi.org/10.1016/j.scitotenv.2016.03.128.Gallego-Schmid, A., Tarpani, R.R.Z., Miralles-Cuevas, S., Cabrera-Reina, A., Malato, S., Azapagic, A., 2019. Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci. Total Environ. 650, 2210–2220. https://doi.org/10.1016/j.scitotenv.2018.09.361.Gao, Qiong, Y., Gao, N. Yun, Wang, W., Kang, S. Fei, Xu, J. Hong, Xiang, H. Ming, Yin, D. Qiang, 2018. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water. Ultrason. Sonochem. 49, 33–40. https://doi.org/10.1016/j.ultsonch.2018.07.001.Gao, Y.Q., Zhang, J., Zhou, J.Q., Li, C., Gao, N.Y., Yin, D.Q., 2020. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: influencing factors, degradation pathways and toxicity analysis. RSC Adv. 10, 20991–20999. https://doi.org/ 10.1039/d0ra01273d.Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F., 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 32, 147–156. https://doi.org/10.1016/J. NBT.2014.01.001.Ghenaatgar, A., Tehrani, M.A., R, Khadir, A., 2019. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: optimization of operational parameters and kinetic studies. J. Water Process Eng. 32. https://doi.org/ 10.1016/j.jwpe.2019.100969.GilPavas, E., Correa-Sánchez, S., 2019. Optimization of the heterogeneous electro-Fenton process assisted by scrap zero-valent iron for treating textile wastewater: assessment of toxicity and biodegradability. J. Water Process Eng. 32. https://doi.org/10.1016/j. jwpe.2019.100924.Gómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006a. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.Gómez, M.J., Petrović, M., Fernández-Alba, A.R., Barceló, D., 2006b. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 1114, 224–233. https://doi.org/10.1016/j.chroma.2006.02.038.Gomez, V., Wright, K., Esquenazi, G.L., Barron, A.R., 2019. Microwave treatment of a hot mill sludge from the steel industry: en route to recycling an industrial waste. J. Clean. Prod. 207, 182–189. https://doi.org/10.1016/J.JCLEPRO.2018.08.294.Han, S.T., Li, J., Xi, H.L., Xu, D.N., Zuo, Y., Zhang, J.H., 2009. Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. J. Hazard. Mater. 163, 1165–1172. https:// doi.org/10.1016/j.jhazmat.2008.07.077.He, Z., Yang, S., Ju, Y., Sun, C., 2009. Microwave photocatalytic degradation of Rhodamine B using TiO2supported on activated carbon: mechanism implication. J. Environ. Sci. 21, 268–272. https://doi.org/10.1016/S1001-0742(08)62262-7.He, Z., Mahmud, S., Yang, Y., Zhu, L., Zhao, Y., Zeng, Q., Xiong, Z., Zhao, S., 2020. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep. Purif. Technol. 250, 117266. https:// doi.org/10.1016/j.seppur.2020.117266.Hernando, M.D., Heath, E., Petrovic, M., Barceló, D., 2006. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Analytical and Bioanalytical Chemistry, pp. 985–991 https://doi.org/10.1007/ s00216-006-0394-5.Homem, V., Alves, A., Santos, L., 2013. Microwave-assisted Fenton’s Oxidation of Amoxicillin. 220, pp. 35–44. https://doi.org/10.1016/j.cej.2013.01.047.Horikoshi, S., Serpone, N., 2014. Coupled microwave/photoassisted methods for environmental remediation. Molecules 19, 18102–18128. https://doi.org/10.3390/ molecules191118102.Horikoshi, S., Osawa, A., Abe, M., Serpone, N., 2011. On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115, 23030–23035. https://doi.org/10.1021/jp2076269.Huddersman, K., Palitsin, A.V., 2017. Modelling and simulation of a novel pilot-scale microwave assisted catalytic reactor for continuous flow treatment of wastewaters. Lecture Notes in Civil Engineering. Springer, pp. 644–649 https://doi.org/10.1007/978-3- 319-58421-8_101.ISO, 1989. Water Quality Determination of the Chemical Oxygen Demand. GenevaJanssens, R., Cristóvão, B.M., Bronze, M.R., Crespo, J.G., Pereira, V.J., Luis, P., 2020. Photocatalysis using UV-A and UV-C light sources for advanced oxidation of anticancer drugs spiked in laboratory-grade water and synthetic urine. Ind. Eng. Chem. Res. 59, 647–653. https://doi.org/10.1021/acs.iecr.9b04608.Ju, Y.M., Yang, S.G., Ding, Y.C., Sun, C., Gu, C.G., He, Z., Qin, C., He, H., Xu, B., 2009. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: intermediates and degradation mechanism. J. Hazard. Mater. 171, 123–132. https://doi.org/10.1016/j.jhazmat.2009.05.120.Kappe, C.O., 2004. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.200400655.Karim, S., Bae, S., Greenwood, D., Hanna, K., Singhal, N., 2017. Degradation of 17Αethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Res. 125, 32–41. https://doi.org/10.1016/j.watres.2017.08.029.Khan, S.J., Ongerth, J.E., 2002. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling. Water Science and Technology. IWA Publishing, pp. 105–113 https://doi.org/10.2166/ wst.2002.0065.Kim, D.G., Ko, S.O., 2020. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical. Chem. Eng. J. 399. https://doi.org/10.1016/j.cej.2020.125377.Konstas, P.S., Kosma, C., Konstantinou, I., Albanis, T., 2019. Photocatalytic treatment of pharmaceuticals in real hospital wastewaters for effluent quality amelioration. Water (Switzerland) 11. https://doi.org/10.3390/w11102165.Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 46, 1536–1545. https://doi.org/ 10.1021/es203495d.Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., Stadler, F.J., 2019. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.111177.Lan, Y., Barthe, L., Antonin, A., Causserand, C., 2020. Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: membrane fouling control and long-term stability. Sep. Purif. Technol. 231. https:// doi.org/10.1016/j.seppur.2019.115920Lienert, J., Bürki, T., Escher, B.I., 2007. Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science and Technology, pp. 87–96 https://doi.org/10.2166/wst.2007.560.de Lima Perini, J.A., Fernandes Pupo Nogueira, R., 2016. Zero-valent iron mediated degradation of sertraline - effect of H2O2 addition and application to sewage treatment plant effluent. J. Chem. Technol. Biotechnol. 91, 276–282. https://doi.org/10.1002/ jctb.4705.Lin, A.Y.C., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 407, 3793–3802. https://doi.org/10.1016/j.scitotenv.2009.03.009.Liu, Z., Lei, H., Bai, T., Wang, W., Chen, K., Chen, J., Hu, Q., 2015a. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyrite-bearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084.Liu, Z., Lei, Yi, H., Bai, T., Wang, W. Zheng, Chen, K., Chen, J. Jian, Hu, Q. Wen, 2015b. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyritebearing mine tailings. Chem. Eng. J. 272, 1–11. https://doi.org/10.1016/j.cej.2015.02.084Liu, X., Cao, Z., Yuan, Z., Zhang, J., Guo, X., Yang, Y., He, F., Zhao, Y., Xu, J., 2018. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem. Eng. J. 334, 508–518. https://doi.org/10.1016/j.cej.2017.10.060.Ma, X., Cheng, Y., Ge, Y.,Wu, H., Li, Q., Gao, N., Deng, J., 2018. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason. Sonochem. 40, 763–772. https://doi.org/10.1016/j.ultsonch.2017.08.025.Machado, S., Pacheco, J.G., Nouws, H.P.A., Albergaria, J.T., Delerue-Matos, C., 2017. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int. J. Environ. Sci. Technol. 14, 1109–1118. https://doi.org/10.1007/s13762-016-1197-7.Mawioo, P.M., Garcia, H.A., Hooijmans, C.M., Velkushanova, K., Simonič, M., Mijatović, I., Brdjanovic, D., 2017. A pilot-scale microwave technology for sludge sanitization and drying. Sci. Total Environ. 601–602, 1437–1448. https://doi.org/10.1016/j. scitotenv.2017.06.004.Michael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M., Barceló, D., Fatta-Kassinos, D., 2014. Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl. Catal. B Environ. 147, 1015–1027. https://doi.org/10.1016/j.apcatb.2013.10.035Mohammadi, H., Bina, B., Ebrahimi, A., 2018. A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways. Process. Saf. Environ. Prot. 117, 200–213. https://doi.org/10.1016/j.psep.2018.05.001.Mondal, S.K., Saha, A.K., Sinha, A., 2018. Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization. J. Clean. Prod. 171, 1203–1214. https://doi.org/10.1016/j.jclepro.2017.10.091.Moseley, J.D., Lenden, P., Lockwood, M., Ruda, K., Sherlock, J.P., Thomson, A.D., Gilday, J.P., 2008. A comparison of commercial microwave reactors for scale-up within process chemistry. Org. Process. Res. Dev. 12, 30–40. https://doi.org/10.1021/op700186zMossmann, A., Dotto, G.L., Hotza, D., Jahn, S.L., Foletto, E.L., 2019. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo–Fenton process. J. Environ. Chem. Eng. 7, 102963. https://doi.org/10.1016/j.jece.2019.102963.Müller, P., Klán, P., Ćrkva, V., 2003. The electrodeless discharge lamp: a prospective tool for photochemistry part 4. Temperature- and envelope material-dependent emission characteristics. J. Photochem. Photobiol. A Chem. 158, 1–5. https://doi.org/10.1016/ S1010-6030(03)00101-1.Pan, X., Lv, N., Li, C., Ning, J., Wang, T., Wang, R., Zhou, M., Zhu, G., 2019. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem. Eng. J. 359, 662–671. https://doi.org/10.1016/j. cej.2018.11.135.Parra, L.R., Pantoja, L.G., Mena, N.L., Machuca-Martínez, F., Urresta, J., 2020. Evaluation of TiO2 and SnO supported on graphene oxide (TiO2-GO and SnO-GO) photocatalysts for treatment of hospital wastewater. Water (Switzerland) 12. https://doi.org/ 10.3390/w12051438.Pirsaheb, M., Moradi, S., Shahlaei, M., Wang, X., Farhadian, N., 2019. A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water. J. Clean. Prod. 209, 1523–1532. https://doi. org/10.1016/j.jclepro.2018.11.175Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C., Bergamasco, R., 2019. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. https://doi.org/ 10.1016/j.chemosphere.2019.02.009.Rahmani, H., Gholami, M., Mahvi, A.H., Ali-Mohammadi, M., Rahmani, K., 2014. Tinidazol antibiotic degradation in aqueous solution by zero valent iron nanoparticles and hydrogen peroxide in the presence of ultrasound radiation. J. Water Chem. Technol. 36, 317–324. https://doi.org/10.3103/S1063455X14060101.Rana, A., Kumari, N., Tyagi, M., Jagadevan, S., 2018. Leaf-extract mediated zero-valent iron for oxidation of arsenic (III): preparation, characterization and kinetics. Chem. Eng. J. 347, 91–100. https://doi.org/10.1016/j.cej.2018.04.075.Remya, N., Lin, J.G., 2011. Current status of microwave application in wastewater treatmenta review. Chem. Eng. J. 166, 797–813. https://doi.org/10.1016/j.cej.2010.11.100.Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.07.059Rogowska, J., Zimmermann, A., Muszyńska, A., Ratajczyk, W., Wolska, L., 2019. Pharmaceutical household waste practices: preliminary findings from a case study in Poland. Environ. Manag. 64, 97–106. https://doi.org/10.1007/s00267-019-01174-7.Ruiz-Torres, C.A., Araujo-Martínez, R.F., Martínez-Castañón, G.A., Morales-Sánchez, J.E., Lee, T.J., Shin, H.S., Hwang, Y., Hurtado-Macías, A., Ruiz, F., 2019. A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction. Environ. Eng. Res. 24, 463–473. https://doi.org/10.4491/EER.2018.320.Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M., 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 461–462, 302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077.Schmink, J.R., Leadbeater, N.E., 2010. Microwave heating as a tool for sustainable chemistry: an introduction. Microwave Heating as a Tool for Sustainable Chemistry. CRC Press, pp. 1–24 https://doi.org/10.1201/9781439812709.Schuster, A., Hädrich, C., Kümmerer, K., 2008. Flows of active pharmaceutical ingredients originating from health care practices on a local, regional, and nationwide level in Germany-is hospital effluent treatment an effective approach for risk reduction? Water Air Soil Pollut. Focus 8, 457–471. https://doi.org/10.1007/s11267-008-9183-9.Scott, T.M., Phillips, P.J., Kolpin, D.W., Colella, K.M., Furlong, E.T., Foreman, W.T., Gray, J.L., 2018. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters. Sci. Total Environ. 636, 69–79. https://doi. org/10.1016/j.scitotenv.2018.04.160.Segura, Y., Martínez, F., Melero, J.A., 2013. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl. Catal. B Environ. 136–137, 64–69. https://doi.org/10.1016/j.apcatb.2013.01.036.Serpone, N., Horikoshi, S., Emeline, A.V., 2010. Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C: Photochem Rev 11, 114–131. https://doi.org/10.1016/j.jphotochemrev.2010.07.003.Shao, Y., Zhao, P., Yue, Q., Wu, Y., Gao, B., Kong, W., 2018. Preparation of wheat strawsupported nanoscale zero-valent iron and its removal performance on ciprofloxacin. Ecotoxicol. Environ. Saf. 158, 100–107. https://doi.org/10.1016/j.ecoenv.2018.04.020Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011a. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E., 2011b. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/ 10.1016/j.chemosphere.2010.10.026.Singh, K.P., Singh, A.K., Gupta, S., Rai, P., 2012. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ. Sci. Pollut. Res. 19, 2063–2078. https://doi.org/10.1007/s11356- 011-0700-4.Snyder, S., Vanderford, B., Pearson, R., Quiñones, O., Yoon, Y., 2003a. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 7, 224–234. https://doi.org/10.1061/(ASCE)1090- 025X(2003)7:4(224).Snyder, S.A., Westerhoff, P., Yoon, Y., Sedlak, D.L., 2003b. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. https://doi.org/10.1089/109287503768335931.Stieber, M., Putschew, A., Jekel, M., 2011. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 45, 4944–4950. https://doi.org/10.1021/ es200034j.Straub, J.O., 2016. Reduction in the environmental exposure of pharmaceuticals through diagnostics, personalised healthcare and other approaches. A mini review and discussion paper. Sustain. Chem. Pharm. https://doi.org/10.1016/j. scp.2015.12.001.Strauss, C.R., Trainor, R.W., 1995. Developments in microwave-assisted organic chemistry. Aust. J. Chem. 48, 1665–1692. https://doi.org/10.1071/CH9951665.Tan, C., Dong, Y., Fu, D., Gao, N., Ma, J., Liu, X., 2018. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: kinetics and mechanism of radical generation. Chem. Eng. J. 334, 1006–1015. https://doi.org/10.1016/j. cej.2017.10.020.Vedenyapina, M.D., Kurmysheva, A.Y., Rakishev, A.K., Kryazhev, Y.G., 2019. Activated carbon as sorbents for treatment of pharmaceutical wastewater (review). Solid Fuel Chem. 53, 382–394. https://doi.org/10.3103/S0361521919070061.Verlicchi, P., Galletti, A., Petrovic, M., BarcelÓ, D., 2010. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2010.06.005.Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., Barceló, D., 2012. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 430, 109–118. https://doi.org/10.1016/j. scitotenv.2012.04.055.Vieira, Y., Ceretta, M.B., Foletto, E.L., Wolski, E.A., Silvestri, S., 2020a. Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. J. Water Process Eng. 36, 101397. https://doi.org/ 10.1016/j.jwpe.2020.101397.Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S.L., de Moraes Flores, É.M., Dotto, G.L., Foletto, E.L., 2020b. New insights into the mechanism of heterogeneous activation of nano– magnetite by microwave irradiation for use as Fenton catalyst. J. Environ. Chem. Eng. 8, 103787. https://doi.org/10.1016/j.jece.2020.103787.Wang, N., Wang, P., 2016. Study and application status of microwave in organic wastewater treatment - a review. Chem. Eng. J. 283, 193–214. https://doi.org/10.1016/j. cej.2015.07.046.Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., Dai, Y., 2012. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030. https://doi.org/10.1021/ am300835p.Wang, N., Zheng, T., Jiang, J., Lung, Seng, W., Miao, X., Wang, P., 2014. Pilot-scale treatment of p-nitrophenol wastewater by microwave-enhanced Fenton oxidation process: effects of system parameters and kinetics study. Chem. Eng. J. 239, 351–359. https:// doi.org/10.1016/j.cej.2013.11.038.Wen, Z., Zhang, Y., Dai, C., 2014. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A Physicochem. Eng. Asp. 457, 433–440. https://doi.org/10.1016/j.colsurfa.2014.06.017.Weng, X., Cai, W., Lin, S., Chen, Z., 2017. Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl. Clay Sci. 147, 137–142. https://doi.org/ 10.1016/j.clay.2017.07.023.Wennmalm, Å., Gunnarsson, B.O., 2005. Public health care management of water pollution with pharmaceuticals: environmental classification and analysis of pharmaceutical residues in sewage water. Ther. Innov. Regul. Sci. 39, 291–297. https://doi.org/ 10.1177/009286150503900307.Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39, 6649–6663. https://doi.org/10.1021/ es0484799.Wielens Becker, R., Ibáñez, M., Cuervo Lumbaque, E., Wilde, M.L., Flores da Rosa, T., Hernández, F., Sirtori, C., 2020. Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Sci. Total Environ. 699, 134218. https:// doi.org/10.1016/j.scitotenv.2019.134218Wu, Y., Yue, Q., Gao, Y., Ren, Z., Gao, B., 2018. Performance of bimetallic nanoscale zerovalent iron particles for removal of oxytetracycline. J. Environ. Sci. (China) 69, 173–182. https://doi.org/10.1016/j.jes.2017.10.006.Wu, J., Wang, B., Cagnetta, G., Huang, J., Wang, Y., Deng, S., Yu, G., 2020. Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep. Purif. Technol. 239. https://doi.org/10.1016/j.seppur.2020.116534.Xue, C., Mao, Y., Wang, W., Song, Z., Zhao, X., Sun, J., Wang, Y., 2019. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase – a review. J. Environ. Sci. (China) https://doi.org/10.1016/j.jes.2019.01.019.Zhang, Y., 2009. Model selection: a Lagrange optimization approach. J. Stat. Plan. Inference 139, 3142–3159. https://doi.org/10.1016/j.jspi.2009.02.016.Zhang, X., Hayward, D.O., Mingos, D.M.P., 1999. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 0, 975–976. https://doi.org/10.1039/a901245a.Zhang, Q., Peng, Y., Deng, F., Wang, M., Chen, D., 2020. Porous Z-scheme MnO2/Mnmodified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 246. https://doi.org/10.1016/j.seppur.2020.116890.Zhu, S., Wang, W., Xu, Y., Zhu, Z., Liu, Z., Cui, F., 2019. Iron sludge-derived magnetic Fe0/ Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 365, 99–110. https://doi.org/10.1016/j.cej.2019.02.011.Zou, R., Angelidaki, I., Yang, X., Tang, K., Andersen, H.R., Zhang, Y., 2020. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bioelectro-Fenton (BEF) system. Sci. Total Environ. 727. https://doi.org/10.1016/ j.scitotenv.2020.138684.PublicationORIGINALEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdfEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdfapplication/pdf163613https://repositorio.cuc.edu.co/bitstreams/dddd57ba-d596-4b7a-9207-c6119099bc0b/downloadab5c9c5b5eed6968ffc59b65188cf63cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/9be749b0-55e5-4a30-a41f-9e3522713dc7/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9651a281-ca19-4482-88e6-4f55581b417e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdf.jpgEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdf.jpgimage/jpeg55855https://repositorio.cuc.edu.co/bitstreams/a7c2be98-e08d-427c-9240-c6d21ea68fae/download7f523f4f0031598ca48cc52e876845e4MD54TEXTEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdf.txtEFFECTIVE TREATMENT OF HOSPITAL WASTEWATER WITH HIGH-CONCENTRATION DICLOFENAC AND IBUPROFEN USING A PROMISING TECHNOLOGY BASED ON DEGRADATION REACTION CATALYZED BY FE0 UNDER MICROWAVE IRRADIATION.pdf.txttext/plain1514https://repositorio.cuc.edu.co/bitstreams/fc2e49ef-c539-4c41-a853-b39babfd2606/downloadc2526d34ecc78647cfe6e773a0dadfb3MD5511323/8349oai:repositorio.cuc.edu.co:11323/83492024-09-17 10:52:06.892http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==