Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches
This work uses conventional and statistical physics modeling approaches to address ciprofloxacin (CIP) adsorption by graphene oxide (GO) from aqueous solution and fresh synthetic urine. Instrumental techniques such as FTIR, XRD, SEM, TGA, BET, and EDS were employed to characterize the adsorbent mate...
- Autores:
-
da Silva Bruckmann, Franciele
Piazzi Fuhr, Ana Carolina Ferreira
Zibetti, Letícia
Bender, Caroline Raquel
Oliveira Silva, Luis Felipe
DA BOIT MARTINELLO, KATIA
Ahmad, Naushad
Mohandoss, Sonaimuthu
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13303
- Acceso en línea:
- https://hdl.handle.net/11323/13303
https://repositorio.cuc.edu.co/
- Palabra clave:
- Antibiotic
Carbon nanomaterials
Fresh synthetic urine
Statistical physics modeling
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_e416e174d7a630eb430df0761103b412 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13303 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
title |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
spellingShingle |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches Antibiotic Carbon nanomaterials Fresh synthetic urine Statistical physics modeling |
title_short |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
title_full |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
title_fullStr |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
title_full_unstemmed |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
title_sort |
Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approaches |
dc.creator.fl_str_mv |
da Silva Bruckmann, Franciele Piazzi Fuhr, Ana Carolina Ferreira Zibetti, Letícia Bender, Caroline Raquel Oliveira Silva, Luis Felipe DA BOIT MARTINELLO, KATIA Ahmad, Naushad Mohandoss, Sonaimuthu Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
da Silva Bruckmann, Franciele Piazzi Fuhr, Ana Carolina Ferreira Zibetti, Letícia Bender, Caroline Raquel Oliveira Silva, Luis Felipe DA BOIT MARTINELLO, KATIA Ahmad, Naushad Mohandoss, Sonaimuthu Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Antibiotic Carbon nanomaterials Fresh synthetic urine Statistical physics modeling |
topic |
Antibiotic Carbon nanomaterials Fresh synthetic urine Statistical physics modeling |
description |
This work uses conventional and statistical physics modeling approaches to address ciprofloxacin (CIP) adsorption by graphene oxide (GO) from aqueous solution and fresh synthetic urine. Instrumental techniques such as FTIR, XRD, SEM, TGA, BET, and EDS were employed to characterize the adsorbent material. The adsorption experiments were performed in a typical batch using different initial concentrations of CIP, adsorbent dosage, pH, and temperatures. Besides, the statistical physics approach was employed to investigate the CIP adsorption onto GO. Five models based on mono, double, and multilayers were used to describe the equilibrium isotherms. Steric and energetic parameters such as the number of adsorbed molecules per site, receptor site density, and half-saturation were considered. The kinetic data were adjusted using three conventional models (pseudo 1st order, pseudo 2nd order, and general order). The pH effect and influence of adsorbent dosage on adsorption performance were also investigated and discussed. In addition, adsorption mechanisms hypotheses were proposed based on experimental data and adsorption modeling using a statistical physics approach. Furthermore, the current work reports the removal of CIP at concentrations commonly found in urine considering factors such as fraction excreted in unmetabolized form, daily defined dose, and average daily urine volume excreted. The adsorption capacity values in aqueous medium and fresh synthetic urine were were 354.24 and 291.39 mg g−1, respectively. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-09T15:34:44Z |
dc.date.available.none.fl_str_mv |
2024-09-09T15:34:44Z 2026-05-01 |
dc.date.issued.none.fl_str_mv |
2024-05-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Franciele da Silva Bruckmann, Ana Carolina Ferreira Piazzi Fuhr, Letícia Zibetti, Caroline Raquel Bender, Luis Felipe Oliveira Silva, Kátia da Boit Martinello, Naushad Ahmad, Sonaimuthu Mohandoss, Guilherme Luiz Dotto, Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: Conventional and statistical physics modeling approaches, Chemical Engineering Journal, Volume 487, 2024, 150484, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2024.150484 |
dc.identifier.issn.spa.fl_str_mv |
1385-8947 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13303 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cej.2024.150484 |
dc.identifier.eissn.spa.fl_str_mv |
1873-3212 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Franciele da Silva Bruckmann, Ana Carolina Ferreira Piazzi Fuhr, Letícia Zibetti, Caroline Raquel Bender, Luis Felipe Oliveira Silva, Kátia da Boit Martinello, Naushad Ahmad, Sonaimuthu Mohandoss, Guilherme Luiz Dotto, Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: Conventional and statistical physics modeling approaches, Chemical Engineering Journal, Volume 487, 2024, 150484, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2024.150484 1385-8947 10.1016/j.cej.2024.150484 1873-3212 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13303 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Chemical Engineering Journal |
dc.relation.references.spa.fl_str_mv |
[1] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, E. I. Müller, L.F.O. Silva, G.L. Dotto, C.R. Bohn Rhoden, Highly efficient adsorption of Tetracycline using chitosan-based magnetic adsorbent, Polymers 14 (2022) 4854, https://doi.org/10.3390/polym14224854. [2] J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, K.M.Y. Leung, R.W.S. Lai, C. Galb´ anMalagon, ´ A.D. Adell, J. Mondon, M. Metian, R.A. Marchant, A. Bouzas-Monroy, A. Cuni-Sanchez, A. Coors, P. Carriquiriborde, M. Rojo, C. Gordon, M. Cara, M. Moermond, T. Luarte, V. Petrosyan, Y. Perikhanyan, C.S. Mahon, C.J. McGurk, T. Hofmann, T. Kormoker, V. Iniguez, J. Guzman-Otazo, J.L. Tavares, F. Gildasio De Figueiredo, M.T.P. Razzolini, V. Dougnon, G. Gbaguidi, O. Traor´e, J.M. Blais, L. E. Kimpe, M. Wong, D. Wong, R. Ntchantcho, J. Pizarro, G.-G. Ying, C.-E. Chen, M. Paez, ´ J. Martínez-Lara, J.-P. Otamonga, J. Pot´e, S.A. Ifo, P. Wilson, S. Echeverría-S´ aenz, N. Udikovic-Kolic, M. Milakovic, D. Fatta-Kassinos, L. Ioannou-Ttofa, V. Beluˇsova, ´ J. Vymazal, M. Cardenas-Bustamante, ´ B.A. Kassa, J. Garric, A. Chaumot, P. Gibba, I. Kunchulia, S. Seidensticker, G. Lyberatos, H. P. Halldorsson, ´ M. Melling, T. Shashidhar, M. Lamba, A. Nastiti, A. Supriatin, N. Pourang, A. Abedini, O. Abdullah, S.S. Gharbia, F. Pilla, B. Chefetz, T. Topaz, K. M. Yao, B. Aubakirova, R. Beisenova, L. Olaka, J.K. Mulu, P. Chatanga, V. Ntuli, N. T. Blama, S. Sherif, A.Z. Aris, L.J. Looi, M. Niang, S.T. Traore, R. Oldenkamp, O. Ogunbanwo, M. Ashfaq, M. Iqbal, Z. Abdeen, A. O’Dea, J.M. Morales-Saldana, ˜ M. Custodio, H. de la Cruz, I. Navarrete, F. Carvalho, A.B. Gogra, B.M. Koroma, V. Cerkvenik-Flajs, M. Gombaˇc, M. Thwala, K. Choi, H. Kang, J.L.C. Ladu, A. Rico, P. Amerasinghe, A. Sobek, G. Horlitz, A.K. Zenker, A.C. King, J.-J. Jiang, R. Kariuki, M. Tumbo, U. Tezel, T.T. Onay, J.B. Lejju, Y. Vystavna, Y. Vergeles, H. Heinzen, A. P´erez-Parada, D.B. Sims, M. Figy, D. Good, C. Teta, Pharmaceutical pollution of the world’s rivers, e2113947119, Proc. Natl. Acad. Sci. 119 (2022), https://doi.org/10.1073/pnas.2113947119. [3] O. Hettithanthri, A.U. Rajapaksha, S. Keerthanan, S. Ramanayaka, M. Vithanage, Colloidal biochar for enhanced adsorption of antibiotic ciprofloxacin in aqueous and synthetic hydrolyzed human urine matrices, Chemosphere 297 (2022) 133984, https://doi.org/10.1016/j.chemosphere.2022.133984. [4] B. Nouaille-Degorce, C. Veau, S. Dautrey, M. Tod, D. Laouari, C. Carbon, R. Farinotti, Influence of renal failure on ciprofloxacin Pharmacokinetics in rats, Antimicrob. Agents Chemother. 42 (1998) 289–292, https://doi.org/10.1128/ aac.42.2.289. [5] D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater. 148 (2007) 751–755, https://doi.org/10.1016/j.jhazmat.2007.07.008. [6] F.H. Borba, A. Schmitz, L. Pellenz, F. Bueno, N. Kasper, B.M. Wenzel, S. Baroni, I. C. Dall’Oglio, A.N. Modenes, ´ Genotoxicity and by-products assessment in degradation and mineralization of ciprofloxacin by UV/H2O2 process, J. Environ. Chem. Eng. 6 (2018) 6979–6988, https://doi.org/10.1016/j.jece.2018.10.068. [7] R. Dionísio, D. Daniel, G.D. de Alkimin, B. Nunes, Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: short- and long-term effects on Daphnia magna, Environ. Toxicol. Pharmacol. 74 (2020) 103295, https://doi.org/ 10.1016/j.etap.2019.103295. [8] S. Badawy, Y. Yang, Y. Liu, M.A. Marawan, I. Ares, M.-A. Martinez, M.-R. MartínezLarranaga, ˜ X. Wang, A. Anadon, ´ M. Martínez, Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism, Crit. Rev. Toxicol. 51 (2021) 754–787, https://doi.org/10.1080/10408444.2021.2024496. [9] H. Zhang, S.K. Khanal, Y. Jia, S. Song, H. Lu, Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: mechanisms and thermodynamics, Chem. Eng. J. 378 (2019) 122103, https://doi.org/10.1016/j. cej.2019.122103. [10] M. Ajdukovi´c, G. Stevanovi´c, S. Marinovi´c, Z. Mojovi´c, P. Bankovi´c, K. Radulovi´c, N. Jovi´c-Joviˇci´c, Ciprofloxacin adsorption onto a smectite–chitosan-derived nanocomposite obtained by hydrothermal synthesis, Water 15 (2023) 2608, https://doi.org/10.3390/w15142608. [11] N. Rahman, P. Varshney, Facile synthesis and Characterization of Zn(II)- impregnated chitosan/graphene oxide: evaluation of its efficiency for removal of ciprofloxacin from aqueous solution, J. Inorg. Organomet. Polym. Mater. 31 (2021) 3595–3612, https://doi.org/10.1007/s10904-021-01981-8. [12] F. da Silva Bruckmann, C. Mafra Ledur, I. Zanella da Silva, G. Luiz Dotto, C. Rodrigo Bohn Rhoden,, A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide, J. Mol. Liq. 353 (2022) 118837, https://doi.org/10.1016/j.molliq.2022.118837. [13] G. Moussavi, Z. Hossaini, M. Pourakbar, High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide, Chem. Eng. J. 287 (2016) 665–673, https://doi.org/10.1016/j.cej.2015.11.025. [14] O. Amrhar, L. El Gana, M. Mobarak, Calculation of adsorption isotherms by statistical physics models: a review, Environ. Chem. Lett. 19 (2021) 4519–4547, https://doi.org/10.1007/s10311-021-01279-8. [15] J.C. Diel, K. da Boit Martinello, C.L. da Silveira, H.A. Pereira, D.S.P. Franco, L.F. O. Silva, G.L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations, Chem. Eng. J. 431 (2022) 134095, https://doi.org/ 10.1016/j.cej.2021.134095. [16] K. Oueslati, A. Naifar, A. Sakly, G.Z. Kyzas, A.B. Lamine, Statistical and physical interpretation of dye adsorption onto low-cost biomass by using simulation methods, Colloids Surf. Physicochem. Eng. Asp. 646 (2022) 128969, https://doi. org/10.1016/j.colsurfa.2022.128969. [17] N. Rahman, A. Raheem, Adsorption of Cd(II) ions on magnetic graphene oxide/ cellulose modified with β-cyclodextrin: analytical interpretation via statistical physics modeling and fractal like kinetic approach, Environ. Res. 243 (2024) 117868, https://doi.org/10.1016/j.envres.2023.117868. [18] N. Rahman, I. Ahmad, Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid, J. Hazard. Mater. 457 (2023) 131783, https://doi.org/10.1016/j.jhazmat.2023.131783. [19] T. da R. Salles, H. de B. Rodrigues, F. da S. Bruckmann, L.C.S. Alves, S.R. Mortari, C.R.B. Rhoden,, Graphene oxide optimization synthesis for application on laboratory of universidade Franciscana, discip, Sci. Nat. E Tecnologicas ´ 21 (2020) 15–26, https://doi.org/10.37779/nt.v21i3.3632. [20] E. Boccaleri, C. Marzetti, G. Celoria, C. Cassino, G. Paul, I. Miletto, E. Gianotti, Adsorption features of Various inorganic materials for the drug removal from water and synthetic urine medium: a multi-technique time-resolved in situ investigation, Materials 14 (2021) 6196, https://doi.org/10.3390/ma14206196. [21] X. Xu, Z. He, H. Tang, Y. Sun, S. Zhang, D. Shi, F. Ji, Removal of diclofenac and oxytetracycline from synthetic urine by furfuryl alcohol-derived mesoporous carbon, Chemosphere 288 (2022) 132317, https://doi.org/10.1016/j. chemosphere.2021.132317. [22] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A., Ben lamine, application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilibria 387 (2015) 103–110, https://doi.org/10.1016/j.fluid.2014.12.018. [23] Y. Ben Torkia, G.L. Dotto, A., Ben lamine, statistical physics modeling of synthetic dyes adsorption onto Spirulina platensis nanoparticles, Environ. Sci. Pollut. Res. 25 (2018) 28973–28984, https://doi.org/10.1007/s11356-018-2898-x. [24] M. Atrous, L. Sellaoui, M. Bouzid, E.C. Lima, P.S. Thue, A. Bonilla-Petriciolet, A., Ben lamine, adsorption of dyes acid red 1 and acid green 25 on grafted clay: modeling and statistical physics interpretation, J. Mol. Liq. 294 (2019) 111610, https://doi.org/10.1016/j.molliq.2019.111610. [25] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm, Evol. Comput. 1 (2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001. [26] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: an overview, Swarm Intell. 1 (2007) 33–57, https://doi.org/10.1007/s11721-007-0002-0. [27] D.W. Marquardt, An algorithm for least-Squares estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441, https://doi.org/10.1137/ 0111030. [28] D. Kowalczuk, M. Miazga-Karska, A. Gładysz, P. Warda, A. Baranska, ´ B. Drop, Characterization of ciprofloxacin-bismuth-loaded antibacterial wound dressing, Molecules 25 (2020) 5096, https://doi.org/10.3390/molecules25215096. [29] D. Kowalczuk, A. Gładysz, M. Pitucha, D.M. Kaminski, ´ A. Baranska, ´ B. Drop, Spectroscopic study of the Molecular structure of the new hybrid with a potential two-way antibacterial effect, Molecules 26 (2021) 1442, https://doi.org/10.3390/ molecules26051442. [30] S. Sivaselvam, P. Premasudha, C. Viswanathan, N. Ponpandian, Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures, J. Environ. Chem. Eng. 8 (2020) 104256, https://doi.org/10.1016/j.jece.2020.104256. [31] S. Zainab, M. Azeem, S.U. Awan, S. Rizwan, N. Iqbal, J. Rashid, Optimization of bandgap reduction in 2-dimensional GO nanosheets and nanocomposites of GO/ iron-oxide for electronic device applications, Sci. Rep. 13 (2023) 6954, https://doi. org/10.1038/s41598-023-33200-4. [32] G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Exploring the nickel-graphene nanocomposite coatings for Superior corrosion resistance: manipulating the effect of deposition current density on its morphology, mechanical properties, and erosion-corrosion performance, Adv. Eng. Mater. 20 (2018) 1701166, https://doi.org/10.1002/adem.201701166. [33] T.K. Shruthi, M.S. Kumar, M. Arjunan, A. Pratap, N. Chandrasekaran, Graphene oxide aided structural tailoring of 3-D N-doped amorphous carbon network for enhanced energy storage, RSC Adv. 5 (2015) 93423–93432, https://doi.org/ 10.1039/C5RA18494K. [34] E.S.M. Al-Mashhadani, M.K.H. Al-Mashhadani, Utilization of Chlorella vulgaris after the Extraction process in wastewater treatment as a biosorption material for ciprofloxacin removal, J. Ecol. Eng. 24 (2023) 1–15, https://doi.org/10.12911/ 22998993/159336. [35] A. Salma, S. Thoroe-Boveleth, ¨ T.C. Schmidt, J. Tuerk, Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin, J. Hazard. Mater. 313 (2016) 49–59, https://doi.org/ 10.1016/j.jhazmat.2016.03.010. [36] X. Zheng, C. Shen, Y. Guo, H. Zheng, Optimal preparation of a core–shell structural magnetic nanoadsorbent for efficient tetracycline removal, RSC Adv. 13 (2023) 7413–7424, https://doi.org/10.1039/D2RA08331K. [37] J.-T. Chen, Y.-J. Fu, Q.-F. An, S.-C. Lo, S.-H. Huang, W.-S. Hung, C.-C. Hu, K.- R. Lee, J.-Y. Lai, Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films, Nanoscale 5 (2013) 9081–9088, https://doi.org/10.1039/ C3NR02845C. [38] N. Sharifpour, F.M. Moghaddam, G. Mardani, M. Malakootian, Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions, Appl. Water Sci. 10 (2020) 140, https://doi. org/10.1007/s13201-020-01229-9. [39] K. Rajalakshmi, S. Gunasekaran, S. Kumaresan, Vibrational spectra, electronic and quantum mechanical investigations on ciprofloxacin, Indian J. Phys. 88 (2014) 733–744, https://doi.org/10.1007/s12648-014-0468-8. [40] A. Omar, A.M. Bayoumy, A.A. Aly, Functionalized graphene oxide with chitosan for dopamine biosensing, J. Funct. Biomater. 13 (2022) 48, https://doi.org/ 10.3390/jfb13020048. [41] J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater. 390 (2020) 122156, https://doi.org/10.1016/j. jhazmat.2020.122156. [42] G.L. Dotto, J.A.V. Costa, L.A.A. Pinto, Kinetic studies on the biosorption of phenol by nanoparticles from Spirulina sp. LEB 18, J. Environ Chem. Eng. 1 (2013) 1137–1143, https://doi.org/10.1016/j.jece.2013.08.029. [43] G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of methylene blue by ultrasonic surface modified chitin, J. Colloid Interface Sci. 446 (2015) 133–140, https://doi.org/10.1016/j.jcis.2015.01.046. [44] A.C.F.P. Fuhr, Y. Vieira, M.L.S. Oliveira, L.F.O. Silva, S. Manoharadas, A. Nawaz, G. L. Dotto, A detailed study on the selection of borderline features for accurate mechanism description of the adsorption of different pesticide molecules under different temperature ranges, J. Mol. Liq. 390 (2023) 123107, https://doi.org/ 10.1016/j.molliq.2023.123107. [45] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Frohlich, ¨ A.B. Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101. [46] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022) 119639, https://doi.org/10.1016/j. molliq.2022.119639. [47] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der waals equation, Sep. Purif. Technol. 224 (2019) 290–294, https:// doi.org/10.1016/j.seppur.2019.05.042. [48] L. Sellaoui, H. Guedidi, S. SarraWjihi, L. Reinert, S. Knani, L. Duclaux, A., Ben lamine, Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: new physicochemical interpretations, RSC Adv. 6 (2016) 12363–12373, https://doi.org/10.1039/C5RA22302D. [49] M. Li, Y. Liu, S. Liu, D. Shu, G. Zeng, X. Hu, X. Tan, L. Jiang, Z. Yan, X. Cai, Cu(II)- influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms, Chem. Eng. J. 319 (2017) 219–228, https://doi.org/10.1016/j. cej.2017.03.016. [50] H. Mao, S. Wang, J.-Y. Lin, Z. Wang, J. Ren, Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci. 49 (2016) 179–188, https://doi.org/10.1016/j.jes.2016.05.048. [51] R. Huang, Q. Zhu, W. Wang, Y. Hu, Adsorptive removal of ciprofloxacin by a chitosan modified fe pretreatment biochar composite from aqueous solution, New J. Chem. 47 (2023) 7910–7921, https://doi.org/10.1039/D3NJ00403A. [52] A. Maged, S. Kharbish, I.S. Ismael, A. Bhatnagar, Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution, Environ. Sci. Pollut. Res. 27 (2020) 32980–32997, https://doi.org/10.1007/s11356-020-09267-1. |
dc.relation.citationendpage.spa.fl_str_mv |
12 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
487 |
dc.rights.eng.fl_str_mv |
/© 2024 Elsevier B.V. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) /© 2024 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1385894724019715?pes=vor |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b55302e2-8c84-42c9-8401-9b90665c9396/download https://repositorio.cuc.edu.co/bitstreams/9f48fcff-88de-4075-9c75-9c7032fcaeae/download https://repositorio.cuc.edu.co/bitstreams/c8367b12-eb21-48be-8895-f54c1ea24c80/download https://repositorio.cuc.edu.co/bitstreams/76873862-408b-4d8b-aa80-33189f52c433/download |
bitstream.checksum.fl_str_mv |
845d3512af6ca4b9bbabe1d2bf63c94e 2f9959eaf5b71fae44bbf9ec84150c7a 4d70d8673d5711301a033d359b5bbabe 7a92a9b5f3f88c051ecf3095cf4069c8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166827664998400 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)/© 2024 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfda Silva Bruckmann, FrancielePiazzi Fuhr, Ana Carolina FerreiraZibetti, LetíciaBender, Caroline RaquelOliveira Silva, Luis FelipeDA BOIT MARTINELLO, KATIAAhmad, NaushadMohandoss, SonaimuthuDotto, Guilherme Luiz2024-09-09T15:34:44Z2026-05-012024-09-09T15:34:44Z2024-05-01Franciele da Silva Bruckmann, Ana Carolina Ferreira Piazzi Fuhr, Letícia Zibetti, Caroline Raquel Bender, Luis Felipe Oliveira Silva, Kátia da Boit Martinello, Naushad Ahmad, Sonaimuthu Mohandoss, Guilherme Luiz Dotto, Adsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: Conventional and statistical physics modeling approaches, Chemical Engineering Journal, Volume 487, 2024, 150484, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2024.1504841385-8947https://hdl.handle.net/11323/1330310.1016/j.cej.2024.1504841873-3212Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work uses conventional and statistical physics modeling approaches to address ciprofloxacin (CIP) adsorption by graphene oxide (GO) from aqueous solution and fresh synthetic urine. Instrumental techniques such as FTIR, XRD, SEM, TGA, BET, and EDS were employed to characterize the adsorbent material. The adsorption experiments were performed in a typical batch using different initial concentrations of CIP, adsorbent dosage, pH, and temperatures. Besides, the statistical physics approach was employed to investigate the CIP adsorption onto GO. Five models based on mono, double, and multilayers were used to describe the equilibrium isotherms. Steric and energetic parameters such as the number of adsorbed molecules per site, receptor site density, and half-saturation were considered. The kinetic data were adjusted using three conventional models (pseudo 1st order, pseudo 2nd order, and general order). The pH effect and influence of adsorbent dosage on adsorption performance were also investigated and discussed. In addition, adsorption mechanisms hypotheses were proposed based on experimental data and adsorption modeling using a statistical physics approach. Furthermore, the current work reports the removal of CIP at concentrations commonly found in urine considering factors such as fraction excreted in unmetabolized form, daily defined dose, and average daily urine volume excreted. The adsorption capacity values in aqueous medium and fresh synthetic urine were were 354.24 and 291.39 mg g−1, respectively.12 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S1385894724019715?pes=vorAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide: conventional and statistical physics modeling approachesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Chemical Engineering Journal[1] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, E. I. Müller, L.F.O. Silva, G.L. Dotto, C.R. Bohn Rhoden, Highly efficient adsorption of Tetracycline using chitosan-based magnetic adsorbent, Polymers 14 (2022) 4854, https://doi.org/10.3390/polym14224854.[2] J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, K.M.Y. Leung, R.W.S. Lai, C. Galb´ anMalagon, ´ A.D. Adell, J. Mondon, M. Metian, R.A. Marchant, A. Bouzas-Monroy, A. Cuni-Sanchez, A. Coors, P. Carriquiriborde, M. Rojo, C. Gordon, M. Cara, M. Moermond, T. Luarte, V. Petrosyan, Y. Perikhanyan, C.S. Mahon, C.J. McGurk, T. Hofmann, T. Kormoker, V. Iniguez, J. Guzman-Otazo, J.L. Tavares, F. Gildasio De Figueiredo, M.T.P. Razzolini, V. Dougnon, G. Gbaguidi, O. Traor´e, J.M. Blais, L. E. Kimpe, M. Wong, D. Wong, R. Ntchantcho, J. Pizarro, G.-G. Ying, C.-E. Chen, M. Paez, ´ J. Martínez-Lara, J.-P. Otamonga, J. Pot´e, S.A. Ifo, P. Wilson, S. Echeverría-S´ aenz, N. Udikovic-Kolic, M. Milakovic, D. Fatta-Kassinos, L. Ioannou-Ttofa, V. Beluˇsova, ´ J. Vymazal, M. Cardenas-Bustamante, ´ B.A. Kassa, J. Garric, A. Chaumot, P. Gibba, I. Kunchulia, S. Seidensticker, G. Lyberatos, H. P. Halldorsson, ´ M. Melling, T. Shashidhar, M. Lamba, A. Nastiti, A. Supriatin, N. Pourang, A. Abedini, O. Abdullah, S.S. Gharbia, F. Pilla, B. Chefetz, T. Topaz, K. M. Yao, B. Aubakirova, R. Beisenova, L. Olaka, J.K. Mulu, P. Chatanga, V. Ntuli, N. T. Blama, S. Sherif, A.Z. Aris, L.J. Looi, M. Niang, S.T. Traore, R. Oldenkamp, O. Ogunbanwo, M. Ashfaq, M. Iqbal, Z. Abdeen, A. O’Dea, J.M. Morales-Saldana, ˜ M. Custodio, H. de la Cruz, I. Navarrete, F. Carvalho, A.B. Gogra, B.M. Koroma, V. Cerkvenik-Flajs, M. Gombaˇc, M. Thwala, K. Choi, H. Kang, J.L.C. Ladu, A. Rico, P. Amerasinghe, A. Sobek, G. Horlitz, A.K. Zenker, A.C. King, J.-J. Jiang, R. Kariuki, M. Tumbo, U. Tezel, T.T. Onay, J.B. Lejju, Y. Vystavna, Y. Vergeles, H. Heinzen, A. P´erez-Parada, D.B. Sims, M. Figy, D. Good, C. Teta, Pharmaceutical pollution of the world’s rivers, e2113947119, Proc. Natl. Acad. Sci. 119 (2022), https://doi.org/10.1073/pnas.2113947119.[3] O. Hettithanthri, A.U. Rajapaksha, S. Keerthanan, S. Ramanayaka, M. Vithanage, Colloidal biochar for enhanced adsorption of antibiotic ciprofloxacin in aqueous and synthetic hydrolyzed human urine matrices, Chemosphere 297 (2022) 133984, https://doi.org/10.1016/j.chemosphere.2022.133984.[4] B. Nouaille-Degorce, C. Veau, S. Dautrey, M. Tod, D. Laouari, C. Carbon, R. Farinotti, Influence of renal failure on ciprofloxacin Pharmacokinetics in rats, Antimicrob. Agents Chemother. 42 (1998) 289–292, https://doi.org/10.1128/ aac.42.2.289.[5] D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater. 148 (2007) 751–755, https://doi.org/10.1016/j.jhazmat.2007.07.008.[6] F.H. Borba, A. Schmitz, L. Pellenz, F. Bueno, N. Kasper, B.M. Wenzel, S. Baroni, I. C. Dall’Oglio, A.N. Modenes, ´ Genotoxicity and by-products assessment in degradation and mineralization of ciprofloxacin by UV/H2O2 process, J. Environ. Chem. Eng. 6 (2018) 6979–6988, https://doi.org/10.1016/j.jece.2018.10.068.[7] R. Dionísio, D. Daniel, G.D. de Alkimin, B. Nunes, Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: short- and long-term effects on Daphnia magna, Environ. Toxicol. Pharmacol. 74 (2020) 103295, https://doi.org/ 10.1016/j.etap.2019.103295.[8] S. Badawy, Y. Yang, Y. Liu, M.A. Marawan, I. Ares, M.-A. Martinez, M.-R. MartínezLarranaga, ˜ X. Wang, A. Anadon, ´ M. Martínez, Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism, Crit. Rev. Toxicol. 51 (2021) 754–787, https://doi.org/10.1080/10408444.2021.2024496.[9] H. Zhang, S.K. Khanal, Y. Jia, S. Song, H. Lu, Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: mechanisms and thermodynamics, Chem. Eng. J. 378 (2019) 122103, https://doi.org/10.1016/j. cej.2019.122103.[10] M. Ajdukovi´c, G. Stevanovi´c, S. Marinovi´c, Z. Mojovi´c, P. Bankovi´c, K. Radulovi´c, N. Jovi´c-Joviˇci´c, Ciprofloxacin adsorption onto a smectite–chitosan-derived nanocomposite obtained by hydrothermal synthesis, Water 15 (2023) 2608, https://doi.org/10.3390/w15142608.[11] N. Rahman, P. Varshney, Facile synthesis and Characterization of Zn(II)- impregnated chitosan/graphene oxide: evaluation of its efficiency for removal of ciprofloxacin from aqueous solution, J. Inorg. Organomet. Polym. Mater. 31 (2021) 3595–3612, https://doi.org/10.1007/s10904-021-01981-8.[12] F. da Silva Bruckmann, C. Mafra Ledur, I. Zanella da Silva, G. Luiz Dotto, C. Rodrigo Bohn Rhoden,, A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide, J. Mol. Liq. 353 (2022) 118837, https://doi.org/10.1016/j.molliq.2022.118837.[13] G. Moussavi, Z. Hossaini, M. Pourakbar, High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide, Chem. Eng. J. 287 (2016) 665–673, https://doi.org/10.1016/j.cej.2015.11.025.[14] O. Amrhar, L. El Gana, M. Mobarak, Calculation of adsorption isotherms by statistical physics models: a review, Environ. Chem. Lett. 19 (2021) 4519–4547, https://doi.org/10.1007/s10311-021-01279-8.[15] J.C. Diel, K. da Boit Martinello, C.L. da Silveira, H.A. Pereira, D.S.P. Franco, L.F. O. Silva, G.L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations, Chem. Eng. J. 431 (2022) 134095, https://doi.org/ 10.1016/j.cej.2021.134095.[16] K. Oueslati, A. Naifar, A. Sakly, G.Z. Kyzas, A.B. Lamine, Statistical and physical interpretation of dye adsorption onto low-cost biomass by using simulation methods, Colloids Surf. Physicochem. Eng. Asp. 646 (2022) 128969, https://doi. org/10.1016/j.colsurfa.2022.128969.[17] N. Rahman, A. Raheem, Adsorption of Cd(II) ions on magnetic graphene oxide/ cellulose modified with β-cyclodextrin: analytical interpretation via statistical physics modeling and fractal like kinetic approach, Environ. Res. 243 (2024) 117868, https://doi.org/10.1016/j.envres.2023.117868.[18] N. Rahman, I. Ahmad, Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid, J. Hazard. Mater. 457 (2023) 131783, https://doi.org/10.1016/j.jhazmat.2023.131783.[19] T. da R. Salles, H. de B. Rodrigues, F. da S. Bruckmann, L.C.S. Alves, S.R. Mortari, C.R.B. Rhoden,, Graphene oxide optimization synthesis for application on laboratory of universidade Franciscana, discip, Sci. Nat. E Tecnologicas ´ 21 (2020) 15–26, https://doi.org/10.37779/nt.v21i3.3632.[20] E. Boccaleri, C. Marzetti, G. Celoria, C. Cassino, G. Paul, I. Miletto, E. Gianotti, Adsorption features of Various inorganic materials for the drug removal from water and synthetic urine medium: a multi-technique time-resolved in situ investigation, Materials 14 (2021) 6196, https://doi.org/10.3390/ma14206196.[21] X. Xu, Z. He, H. Tang, Y. Sun, S. Zhang, D. Shi, F. Ji, Removal of diclofenac and oxytetracycline from synthetic urine by furfuryl alcohol-derived mesoporous carbon, Chemosphere 288 (2022) 132317, https://doi.org/10.1016/j. chemosphere.2021.132317.[22] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A., Ben lamine, application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilibria 387 (2015) 103–110, https://doi.org/10.1016/j.fluid.2014.12.018.[23] Y. Ben Torkia, G.L. Dotto, A., Ben lamine, statistical physics modeling of synthetic dyes adsorption onto Spirulina platensis nanoparticles, Environ. Sci. Pollut. Res. 25 (2018) 28973–28984, https://doi.org/10.1007/s11356-018-2898-x.[24] M. Atrous, L. Sellaoui, M. Bouzid, E.C. Lima, P.S. Thue, A. Bonilla-Petriciolet, A., Ben lamine, adsorption of dyes acid red 1 and acid green 25 on grafted clay: modeling and statistical physics interpretation, J. Mol. Liq. 294 (2019) 111610, https://doi.org/10.1016/j.molliq.2019.111610.[25] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm, Evol. Comput. 1 (2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001.[26] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: an overview, Swarm Intell. 1 (2007) 33–57, https://doi.org/10.1007/s11721-007-0002-0.[27] D.W. Marquardt, An algorithm for least-Squares estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441, https://doi.org/10.1137/ 0111030.[28] D. Kowalczuk, M. Miazga-Karska, A. Gładysz, P. Warda, A. Baranska, ´ B. Drop, Characterization of ciprofloxacin-bismuth-loaded antibacterial wound dressing, Molecules 25 (2020) 5096, https://doi.org/10.3390/molecules25215096.[29] D. Kowalczuk, A. Gładysz, M. Pitucha, D.M. Kaminski, ´ A. Baranska, ´ B. Drop, Spectroscopic study of the Molecular structure of the new hybrid with a potential two-way antibacterial effect, Molecules 26 (2021) 1442, https://doi.org/10.3390/ molecules26051442.[30] S. Sivaselvam, P. Premasudha, C. Viswanathan, N. Ponpandian, Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures, J. Environ. Chem. Eng. 8 (2020) 104256, https://doi.org/10.1016/j.jece.2020.104256.[31] S. Zainab, M. Azeem, S.U. Awan, S. Rizwan, N. Iqbal, J. Rashid, Optimization of bandgap reduction in 2-dimensional GO nanosheets and nanocomposites of GO/ iron-oxide for electronic device applications, Sci. Rep. 13 (2023) 6954, https://doi. org/10.1038/s41598-023-33200-4.[32] G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Exploring the nickel-graphene nanocomposite coatings for Superior corrosion resistance: manipulating the effect of deposition current density on its morphology, mechanical properties, and erosion-corrosion performance, Adv. Eng. Mater. 20 (2018) 1701166, https://doi.org/10.1002/adem.201701166.[33] T.K. Shruthi, M.S. Kumar, M. Arjunan, A. Pratap, N. Chandrasekaran, Graphene oxide aided structural tailoring of 3-D N-doped amorphous carbon network for enhanced energy storage, RSC Adv. 5 (2015) 93423–93432, https://doi.org/ 10.1039/C5RA18494K.[34] E.S.M. Al-Mashhadani, M.K.H. Al-Mashhadani, Utilization of Chlorella vulgaris after the Extraction process in wastewater treatment as a biosorption material for ciprofloxacin removal, J. Ecol. Eng. 24 (2023) 1–15, https://doi.org/10.12911/ 22998993/159336.[35] A. Salma, S. Thoroe-Boveleth, ¨ T.C. Schmidt, J. Tuerk, Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin, J. Hazard. Mater. 313 (2016) 49–59, https://doi.org/ 10.1016/j.jhazmat.2016.03.010.[36] X. Zheng, C. Shen, Y. Guo, H. Zheng, Optimal preparation of a core–shell structural magnetic nanoadsorbent for efficient tetracycline removal, RSC Adv. 13 (2023) 7413–7424, https://doi.org/10.1039/D2RA08331K.[37] J.-T. Chen, Y.-J. Fu, Q.-F. An, S.-C. Lo, S.-H. Huang, W.-S. Hung, C.-C. Hu, K.- R. Lee, J.-Y. Lai, Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films, Nanoscale 5 (2013) 9081–9088, https://doi.org/10.1039/ C3NR02845C.[38] N. Sharifpour, F.M. Moghaddam, G. Mardani, M. Malakootian, Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions, Appl. Water Sci. 10 (2020) 140, https://doi. org/10.1007/s13201-020-01229-9.[39] K. Rajalakshmi, S. Gunasekaran, S. Kumaresan, Vibrational spectra, electronic and quantum mechanical investigations on ciprofloxacin, Indian J. Phys. 88 (2014) 733–744, https://doi.org/10.1007/s12648-014-0468-8.[40] A. Omar, A.M. Bayoumy, A.A. Aly, Functionalized graphene oxide with chitosan for dopamine biosensing, J. Funct. Biomater. 13 (2022) 48, https://doi.org/ 10.3390/jfb13020048.[41] J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater. 390 (2020) 122156, https://doi.org/10.1016/j. jhazmat.2020.122156.[42] G.L. Dotto, J.A.V. Costa, L.A.A. Pinto, Kinetic studies on the biosorption of phenol by nanoparticles from Spirulina sp. LEB 18, J. Environ Chem. Eng. 1 (2013) 1137–1143, https://doi.org/10.1016/j.jece.2013.08.029.[43] G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of methylene blue by ultrasonic surface modified chitin, J. Colloid Interface Sci. 446 (2015) 133–140, https://doi.org/10.1016/j.jcis.2015.01.046.[44] A.C.F.P. Fuhr, Y. Vieira, M.L.S. Oliveira, L.F.O. Silva, S. Manoharadas, A. Nawaz, G. L. Dotto, A detailed study on the selection of borderline features for accurate mechanism description of the adsorption of different pesticide molecules under different temperature ranges, J. Mol. Liq. 390 (2023) 123107, https://doi.org/ 10.1016/j.molliq.2023.123107.[45] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Frohlich, ¨ A.B. Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101.[46] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022) 119639, https://doi.org/10.1016/j. molliq.2022.119639.[47] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der waals equation, Sep. Purif. Technol. 224 (2019) 290–294, https:// doi.org/10.1016/j.seppur.2019.05.042.[48] L. Sellaoui, H. Guedidi, S. SarraWjihi, L. Reinert, S. Knani, L. Duclaux, A., Ben lamine, Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: new physicochemical interpretations, RSC Adv. 6 (2016) 12363–12373, https://doi.org/10.1039/C5RA22302D.[49] M. Li, Y. Liu, S. Liu, D. Shu, G. Zeng, X. Hu, X. Tan, L. Jiang, Z. Yan, X. Cai, Cu(II)- influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms, Chem. Eng. J. 319 (2017) 219–228, https://doi.org/10.1016/j. cej.2017.03.016.[50] H. Mao, S. Wang, J.-Y. Lin, Z. Wang, J. Ren, Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci. 49 (2016) 179–188, https://doi.org/10.1016/j.jes.2016.05.048.[51] R. Huang, Q. Zhu, W. Wang, Y. Hu, Adsorptive removal of ciprofloxacin by a chitosan modified fe pretreatment biochar composite from aqueous solution, New J. Chem. 47 (2023) 7910–7921, https://doi.org/10.1039/D3NJ00403A.[52] A. Maged, S. Kharbish, I.S. Ismael, A. Bhatnagar, Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution, Environ. Sci. Pollut. Res. 27 (2020) 32980–32997, https://doi.org/10.1007/s11356-020-09267-1.121487AntibioticCarbon nanomaterialsFresh synthetic urineStatistical physics modelingPublicationORIGINALAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdfAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdfArtículoapplication/pdf2765992https://repositorio.cuc.edu.co/bitstreams/b55302e2-8c84-42c9-8401-9b90665c9396/download845d3512af6ca4b9bbabe1d2bf63c94eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/9f48fcff-88de-4075-9c75-9c7032fcaeae/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdf.txtAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdf.txtExtracted texttext/plain66295https://repositorio.cuc.edu.co/bitstreams/c8367b12-eb21-48be-8895-f54c1ea24c80/download4d70d8673d5711301a033d359b5bbabeMD53THUMBNAILAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdf.jpgAdsorption of ciprofloxacin from aqueous solution and fresh synthetic urine by graphene oxide.pdf.jpgGenerated Thumbnailimage/jpeg14279https://repositorio.cuc.edu.co/bitstreams/76873862-408b-4d8b-aa80-33189f52c433/download7a92a9b5f3f88c051ecf3095cf4069c8MD5411323/13303oai:repositorio.cuc.edu.co:11323/133032024-09-17 14:14:47.93https://creativecommons.org/licenses/by-nc-nd/4.0//© 2024 Elsevier B.V. All rights reserved.embargo2026-12-18https://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |