Potencial energético aprovechable de la biomasa en el departamento de la Guajira

Los residuos agrícolas pueden ayudar a solucionar la escasez de combustible en las zonas rurales. Esta investigación definió el inventario de residuos de biomasa agrícola en el departamento de La Guajira (Colombia) e identificó su disponibilidad para la valorización energética como combustible para...

Full description

Autores:
Rodríguez Romero, Tomas Enrique
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14343
Acceso en línea:
https://hdl.handle.net/11323/14343
https://repositorio.cuc.edu.co/
Palabra clave:
Briquetas
Biomasa
Digestión anaeróbica
Leña
Residuos agrícolas
Briquettes
Biomass
Anaerobic digestion
Firewood
Agricultural wastes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_d3b34b398ffff404239680e1c43a451a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/14343
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Potencial energético aprovechable de la biomasa en el departamento de la Guajira
title Potencial energético aprovechable de la biomasa en el departamento de la Guajira
spellingShingle Potencial energético aprovechable de la biomasa en el departamento de la Guajira
Briquetas
Biomasa
Digestión anaeróbica
Leña
Residuos agrícolas
Briquettes
Biomass
Anaerobic digestion
Firewood
Agricultural wastes
title_short Potencial energético aprovechable de la biomasa en el departamento de la Guajira
title_full Potencial energético aprovechable de la biomasa en el departamento de la Guajira
title_fullStr Potencial energético aprovechable de la biomasa en el departamento de la Guajira
title_full_unstemmed Potencial energético aprovechable de la biomasa en el departamento de la Guajira
title_sort Potencial energético aprovechable de la biomasa en el departamento de la Guajira
dc.creator.fl_str_mv Rodríguez Romero, Tomas Enrique
dc.contributor.advisor.none.fl_str_mv Cabello Eras, Juan José
Sagastume Gutiérrez, Alexis
dc.contributor.author.none.fl_str_mv Rodríguez Romero, Tomas Enrique
dc.contributor.jury.none.fl_str_mv Ospino Castro, Adalberto
Mendoza Fandiño, Jorge Mario
Sousa Santos, Vladimir
dc.subject.proposal.spa.fl_str_mv Briquetas
Biomasa
Digestión anaeróbica
Leña
Residuos agrícolas
topic Briquetas
Biomasa
Digestión anaeróbica
Leña
Residuos agrícolas
Briquettes
Biomass
Anaerobic digestion
Firewood
Agricultural wastes
dc.subject.proposal.eng.fl_str_mv Briquettes
Biomass
Anaerobic digestion
Firewood
Agricultural wastes
description Los residuos agrícolas pueden ayudar a solucionar la escasez de combustible en las zonas rurales. Esta investigación definió el inventario de residuos de biomasa agrícola en el departamento de La Guajira (Colombia) e identificó su disponibilidad para la valorización energética como combustible para cocinar o generar electricidad a escala doméstica. Se geolocalizaron tanto los residuos agrícolas como las poblaciones rurales, permitiendo cruzar la disponibilidad de biomasa residual con la demanda de leña. Se evaluaron tres tecnologías para la valorización: briquetado, digestión anaerobia y combustión directa. Se estimaron entre 292,760 y 522,696 toneladas anuales de residuos agrícolas, con un potencial energético de 381 a 521 TJ/año mediante combustión directa, lo que equivale al 20.6%–28.1% de la demanda eléctrica del departamento en 2022. Los datos muestran que el 70% de los hogares rurales aún dependen de la leña para cocinar. En comunidades indígenas, solo el 6% accede al gas natural y el 22% a la electricidad. El potencial energético podría cubrir entre el 57% y el 78% de la demanda de leña mediante estufas eléctricas. La digestión anaerobia permitiría producir entre 8.6 y 10 millones de m³/año de biogás, equivalente al 16%–18% de esa demanda. El uso de briquetas con estufas mejoradas podría cubrir entre el 28% y el 49%. Entre las opciones analizadas, el briquetado surgió como el planteamiento más viable para aprovechar los residuos agrícolas.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-01T18:20:41Z
dc.date.available.none.fl_str_mv 2025-08-01T18:20:41Z
dc.date.issued.none.fl_str_mv 2025-05-28
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/14343
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/14343
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abdou Alio, M., Tugui, O. C., Rusu, L., Pons, A., & Vial, C. (2020). Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 310, 123412. https://doi.org/10.1016/J.BIORTECH.2020.123412
Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Hussain, M., Hossain, N., Abu Bakar, M. S., Khurram, S., Majeed, K., & Park, Y. K. (2021). Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. Journal of Cleaner Production, 287, 125047. https://doi.org/10.1016/J.JCLEPRO.2020.125047
Abdullah, N., Sulaiman, F., & Taib, R. M. (2013). Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. AIP Conference Proceedings, 1528(1), 325–330. https://doi.org/10.1063/1.4803618
Abdullah, N., Sulaiman, F., & Taib, R. M. (2014). Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. International Scholarly and Scientific Research & Innovation, 8(8), 815–819.
Adams, P. W., Hammond, G. P., McManus, M. C., & Mezzullo, W. G. (2011). Barriers to and drivers for UK bioenergy development. Renewable and Sustainable Energy Reviews, 15(2), 1217–1227. https://doi.org/10.1016/J.RSER.2010.09.039
Admasie, A., Kumie, A., Worku, A., & Tsehayu, W. (2019). Household fine particulate matter (PM2.5) concentrations from cooking fuels: the case in an urban setting, Wolaita Sodo, Ethiopia. Air Quality, Atmosphere and Health, 12(6), 755–763. https://doi.org/10.1007/S11869-019-00700-0/METRICS
Agronet. (2023). En la “baba” del café crecen bacterias importantes para la salud y la industria. https://www.agronet.gov.co/Noticias/Paginas/En-la- %E2%80%9Cbaba%E2%80%9D-del-caf%C3%A9-crecen-bacterias-importantes-para-la salud-y-la-industria.aspx
Akhator, P. E., Bazuaye, L., Ewere, A., & Oshiokhai, O. (2023). Production and characterisation of solid waste-derived fuel briquettes from mixed wood wastes and waste pet bottles. Heliyon, 9(11), e21432. https://doi.org/10.1016/J.HELIYON.2023.E21432
Akinbomi, J., Brandberg, T., Sanni, S. A., & Taherzadeh, M. J. (2014). Development and dissemination strategies for accelerating biogas production in Nigeria. BioResources, 9(3), 5707–5737. https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-1982
Akter, M. M., Surovy, I. Z., Sultana, N., Faruk, M. O., Gilroyed, B. H., Tijing, L., Arman, Didar ul-Alam, M., Shon, H. K., Nam, S. Y., & Kabir, M. M. (2024). Techno-economics and environmental sustainability of agricultural biomass-based energy potential. Applied Energy, 359, 122662. https://doi.org/10.1016/J.APENERGY.2024.122662
Al Afif, R., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250–2258. https://doi.org/10.1016/J.RENENE.2019.09.146
Al Afif, R., Tondl, G., & Pfeifer, C. (2023). Experimental and simulation study of hydrochar production from cotton stalks. Energy, 276, 127573. https://doi.org/10.1016/J.ENERGY.2023.127573
Alfaro, K. A., Alfaro, K. A., & García, L. A. (2023). Análisis del abordaje social en la incorporación de proyectos de energías renovables: una revisión documental. Revista Nuevo Humanismo, 11(1), 107–135. https://doi.org/10.15359/rnh.11-1.5
Alia Najihah Md Noh, N., Karim, L., & Radhiah Omar, S. (2022). Value-Added Products from Pumpkin Wastes: A Review. 8(1). https://doi.org/10.33102/2022231
Allende, S., Brodie, G., & Jacob, M. V. (2022). Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions. Bioresource Technology Reports, 20, 101283. https://doi.org/10.1016/J.BITEB.2022.101283
Alves, J. L. F., da Silva, J. C. G., Sellin, N., Prá, F. de B., Sapelini, C., Souza, O., & Marangoni, C. (2022). Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions. Environmental Science and Pollution Research, 29(17), 25733–25747. https://doi.org/10.1007/S11356-021-17381-X/TABLES/4
Alves, R. C., Rodrigues, F., Antónia Nunes, M., Vinha, A. F., & Oliveira, M. B. P. P. (2017). State of the art in coffee processing by-products. Handbook of Coffee Processing By Products: Sustainable Applications, 1–26. https://doi.org/10.1016/B978-0-12-811290- 8.00001-3
Ansari, S. A., Shakeel, A., Sawarkar, R., Maddalwar, S., Khan, D., & Singh, L. (2023). Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. Environmental Research, 224, 115529. https://doi.org/10.1016/J.ENVRES.2023.115529
Anuchi, S. O., Campbell, K. L. S., & Hallett, J. P. (2022). Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-022-09629-4
Arenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8), e10195. https://doi.org/10.1016/J.HELIYON.2022.E10195
Arias Félix, R. (2022). Proyecciones de las emisiones por la quema de leña en base a un modelo energético de una casa chilena.
Aristizábal-Marulanda, V., Chacón-Perez, Y., & Cardona Alzate, C. A. (2017). The biorefinery concept for the industrial valorization of coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications, 63–92. https://doi.org/10.1016/B978-0-12-811290-8.00003-7
ASBAMA. (2019). Asociación de Bananeros del Magdalena y La Guajira. https://www.asbama.com/home/detallesnoticias/2205
Ayala, A., Acosta, J., & Reyes Luis. (2021). El Cultivo del Frijol Presente y Futuro para México.
Azasi, V. D., Offei, F., Kemausuor, F., & Akpalu, L. (2020). Bioenergy from crop residues: A regional analysis for heat and electricity applications in Ghana. Biomass and Bioenergy, 140, 105640. https://doi.org/10.1016/J.BIOMBIOE.2020.105640
Azeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 13, e00909. https://doi.org/10.1016/J.SCIAF.2021.E00909
Baêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & Fdz Polanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/J.BIORTECH.2017.08.110
Bain, R., Amos, W., Downing, M., Perlack, R., & Ridge, O. (2003). Highlights of Biopower Technical Assessment: State of the Industry and the Technology. http://www.osti.gov/bridge
BANCO DE LA REPÚBLICA. (2022). Boletín de Indicadores Económicos (BIE) | Banco de la República. https://www.banrep.gov.co/es/bie
BANCO MUNDIAL. (2022). Energía. https://www.bancomundial.org/es/topic/energy/overview
BANCO MUNDIAL; (2022). What a Waste 2.0: Una instantánea global de la gestión de residuos sólidos hasta 2050. https://www.bancomundial.org/es/news/press release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is taken-world-bank-repor
BANCO MUNDIAL. (2023). Energía. https://www.bancomundial.org/es/topic/energy/overview
Bapfakurera, E. N., Kilawe, C. J., Uwizeyimana, V., Uwihirwe, J., Nyagatare, G., Nduwamungu, J., & Nyberg, G. (2024). The challenges associated with firewood supply and analysis of fuel quality parameters of the tree species used as firewood in Rwanda. Biomass and Bioenergy, 190, 107408. https://doi.org/10.1016/J.BIOMBIOE.2024.107408
Barrera Hernandez, J. C., Sagastume Gutierrez, A., Ramírez-Contreras, N. E., Cabello Eras, J. J., García-Nunez, J. A., Barrera Agudelo, O. R., & Silva Lora, E. E. (2024). Biomass-based energy potential from the oil palm agroindustry in Colombia: A path to low carbon energy transition. Journal of Cleaner Production, 449, 141808. https://doi.org/10.1016/J.JCLEPRO.2024.141808
Barría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007
Barry, F., Sawadogo, M., Ouédraogo, I. W. K., Traoré/Bologo, M., & Dogot, T. (2022). Geographical and economic assessment of feedstock availability for biomass gasification in Burkina Faso. Energy Conversion and Management: X, 13, 100163. https://doi.org/10.1016/J.ECMX.2021.100163
Baruah, J., Bardhan, P., Mukherjee, A. K., Deka, R. C., Mandal, M., & Kalita, E. (2022). Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. International Journal of Biological Macromolecules, 201, 298–307. https://doi.org/10.1016/J.IJBIOMAC.2021.12.179
Bastidas-Barranco, M., Valera-Restrepo, R., Serrano-Florez, D., Bastidas-Barranco, M., Valera Restrepo, R., & Serrano-Florez, D. (2022). Producción de briquetas a partir de raquis residual de la palma africana para las comunidades alfareras del norte del Cesar (Colombia). Información Tecnológica, 33(1), 193–202. https://doi.org/10.4067/S0718- 07642022000100193
Bello, R. S., Olorunnisola, A. O., Omoniyi, T. E., Onilude, M. A., Bello, R. S., Olorunnisola, A. O., Omoniyi, T. E., & Onilude, M. A. (2024). Technoeconomic Review of Briquette Production in a Screw Press [SP] and Hydraulic Piston Press [HPP]. Biomass Based Products. https://doi.org/10.5772/INTECHOPEN.1007809
Betina, C. M., Atlanxochitl, M. G. M., Victor, B., & Omar, M. (2022). Longitudinal analysis and expected evolution of household fuel and stove stacking patterns in rural Mexico. Energy for Sustainable Development, 70, 1–9. https://doi.org/10.1016/J.ESD.2022.06.011
Bhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7, 100212. https://doi.org/10.1016/J.BITEB.2019.100212
Blair, J., Gagnon, B., & Klain, A. (2021). Biomass Supply and the Sustainable Development Goals International Case Studies xxxx: xx IEA Bioenergy: Task XX Month Year xxxx: xx Biomass Supply and the Sustainable Development Goals International case studies Title of publication Subtitle of publication.
Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022a). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430
Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022b). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430
Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022c). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321. https://doi.org/10.1016/J.APENERGY.2022.119430
Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022d). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430
Bot, B. V., Tamba, J. G., & Sosso, O. T. (2024). Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Conversion and Biorefinery, 14(2), 1905–1917. https://doi.org/10.1007/S13399-022-02388-2
Boundy, R. G., Diegel, S. W., Wright, L. L., & Davis, S. C. (2011). Biomass Energy Data Book: Edition 4. https://doi.org/10.2172/1050890
Brachi, P., Miccio, F., Miccio, M., & Ruoppolo, G. (2016). Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Processing Technology, 154, 243–250. https://doi.org/10.1016/J.FUPROC.2016.09.001
Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024a). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624
Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024b). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.14062
Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024c). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624
Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024d). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624
Buckley, P. (2019). IEA BIOENERGY TECHNOLOGY COLLABORATION PROGRAMME. IEA Bioenergy.
Buelvas Puello, L. I. P. M. D. F. A. G. C. R. (2015). DIAGNÓSTICO DE LOS PRINCIPALES RESIDUOS AGRÍCOLAS GENERADOS EN EL DEPARTAMENTO DE BOLÍVAR DIAGNOSTIC OF THE MAIN AGRICULTURAL RESIDUES PRODUCED IN THE BOLIVAR REGION. Scientia Agroalimentaria. https://www.researchgate.net/publication/287241017_DIAGNOSTICO_DE_LOS_PRIN CIPALES_RESIDUOS_AGRICOLAS_GENERADOS_EN_EL_DEPARTAMENTO_D E_BOLIVAR_DIAGNOSTIC_OF_THE_MAIN_AGRICULTURAL_RESIDUES_PRO DUCED_IN_THE_BOLIVAR_REGION
CAEM. (2015). INVENTARIO NACIONAL DEL SECTOR LADRILLERO COLOMBIANO.
CAF. (2024). Hacia una transición energética justa en América Latina y el Caribe. https://www.caf.com/es/blog/hacia-una-transicion-energetica-justa-en-america-latina-y el-caribe/
Calle Mendoza, I. J., Gorritty Portillo, M. A., Ruiz Mayta, J. G., Alanoca Limachi, J. L., Torretta, V., & Ferronato, N. (2024a). Social acceptance, emissions analysis and potential applications of paper-waste briquettes in Andean areas. Environmental Research, 241, 117609. https://doi.org/10.1016/J.ENVRES.2023.117609
Calle Mendoza, I. J., Gorritty Portillo, M. A., Ruiz Mayta, J. G., Alanoca Limachi, J. L., Torretta, V., & Ferronato, N. (2024b). Social acceptance, emissions analysis and potential applications of paper-waste briquettes in Andean areas. Environmental Research, 241, 117609. https://doi.org/10.1016/J.ENVRES.2023.117609
Cámara de comercio de La Guajira. (2023a). CÁMARA DE COMERCIO DE LA GUAJIRA INFORME SOCIOECONÓMICO DEL DEPARTAMENTO DE LA GUAJIRA 2022 LA GUAJIRA POS PANDEMIA: ACTIVIDAD REGISTRAL-SITUACIÓN SOCIOECONÓMICA Riohacha, enero 2023. www.camaraguajira.org
Cámara de comercio de La Guajira. (2023b). Informe Socioeconómico Departamento de La Guajira – Cámara de Comercio de La Guajira. https://camaraguajira.org/informe socioeconomico-departamento-de-la-gu
Cameron, J. B., Kumar, A., & Flynn, P. C. (2007). The impact of feedstock cost on technology selection and optimum size. Biomass and Bioenergy, 31(2), 137–144. https://doi.org/10.1016/j.biombioe.2006.07.005
Caputo, A. C., Palumbo, M., Pelagagge, P. M., & Scacchia, F. (2005). Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass and Bioenergy, 28(1), 35–51. https://doi.org/10.1016/j.biombioe.2004.04.009
Cardona, S., Orozco, L. M., Gómez, C. L., Solís, W. A., Velásquez, J. A., & Rios, L. A. (2021). Valorization of banana residues via gasification coupled with electricity generation. Sustainable Energy Technologies and Assessments, 44, 101072. https://doi.org/10.1016/J.SETA.2021.101072
Carlos Urueta, J., Urbina, J., Alex Weber, I., Antonio Bula Silvera, Q., Enrique Sanjuán, M., Verdeza Alvarez, A., Natalia Hernandez, I., & David Pérez, J. (2021). Valoración energética de los residuos del proceso de extracción de aceite de palma africana mediante gasificación. https://web.fedepalma.org/sites/default/files/files/Cenipalma/Presentaciones RT_/30_Valoracion_energetica_de_los_residuos_del_proceso_de_extraccion_de_aceite_ de_palma_africana_mediante_gasificacion.pdf
Carvalho, D. J., Veiga, J. P. S., & Bizzo, W. A. (2017). Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation. Energy, 119, 178– 187. https://doi.org/10.1016/J.ENERGY.2016.12.067
Castro, L., Escalante, H., Jaimes-Estévez, J., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035
Causil Villalba, R. D., & Guzmán Mestra, V. A. (2018). Caracterización de las fibras de capacho de maíz (Zea Mays) como material de refuerzo alternativo para el concreto mediante ensayos mecánicos. https://repositorio.unicordoba.edu.co/handle/ucordoba/670
Chakravarty, K. H., Sadi, M., Chakravarty, H., Andersen, J., Choudhury, B., Howard, T. J., & Arabkoohsar, A. (2024). Pyrolysis kinetics and potential utilization analysis of cereal biomass by-products; an experimental analysis for cleaner energy productions in India. Chemosphere, 353, 141420. https://doi.org/10.1016/J.CHEMOSPHERE.2024.14142
Chávez Porras, Á., & Rodríguez González, A. (2016). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y Virtualidad, 9(2), 90–107. https://doi.org/10.18359/RAVI.2004
Chen, C., Qu, B., Wang, W., Wang, W., Ji, G., & Li, A. (2021). Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass.Environmental Technology & Innovation, 24, 101872. https://doi.org/10.1016/J.ETI.2021.101872
Chen, C., Yang, R., Wang, X., Qu, B., Zhang, M., Ji, G., & Li, A. (2022). Effect of in-situ torrefaction and densification on the properties of pellets from rice husk and rice straw. Chemosphere, 289, 133009. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133009
Chen, L., Xing, L., & Han, L. (2009). Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, 13(9), 2689–2695. https://doi.org/10.1016/J.RSER.2009.06.025
Cheng, W., Zhang, Y., & Wang, P. (2020). Effect of spatial distribution and number of raw material collection locations on the transportation costs of biomass thermal power plants. Sustainable Cities and Society, 55, 102040. https://doi.org/10.1016/J.SCS.2020.102040
Chiang, K. Y., Lin, Y. X., Lu, C. H., Chien, K. L., Lin, M. H., Wu, C. C., Ton, S. S., & Chen, J. L. (2013). Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. International Journal of Hydrogen Energy, 38(28), 12318–12324. https://doi.org/10.1016/J.IJHYDENE.2013.07.041
Chiang, L. E., Castro, F. A., & Molina, F. A. (2023). Socioeconomic and environmental benefits of substituting firewood with charcoal briquettes produced from biomass residues in the Forestry Belt in Chile. Energy for Sustainable Development, 77, 101341. https://doi.org/10.1016/J.ESD.2023.101341
Ciro Castro, E., & Vidalia Virgüez Garzón, N. (2019). Evaluación del mucílago del café (Coffea arabica L. Caturra) como potencial prebiótico en una bebida de arroz. https://ciencia.lasalle.edu.co/
CML - Department of Industrial Ecology. (2016). CML-IA Characterisation Factors. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia characterisation-factor
Cobo Barrera, D. F., Gómez P., A. L. , D., & Gil, N. J. , C. (2015). Pirólisis de residuos de cosecha de caña de azúcar (RAC) como alternativa de aprovechamiento en procesos de cogeneración [recurso electrónico]. https://bibliotecadigital.univalle.edu.co/handle/10893/8696
Consorcio Estrategia Rural Sostenible, & UPME. (2019). Realizar un estudio que permita formular un programa actualizado de sustitución progresiva de leña como energético en el sector residencial en Colombia, con los componentes necesarios para su ejecución. In Unidad de Planeación Minero Energética, Ministerio de Minas y Energia.
CORPOGUAJIRA. (2021). Predicción climática para la guajira . https://corpoguajira.gov.co/wp/wp-content/uploads/2021/12/Prediccion-climatica-La Guajira-diciembre21.pdf
CORPOGUAJIRA. (2023). Corporación Autónoma Regional de La Guajira Corporación Autónoma Regional de La Guajira. https://corpoguajira.gov.co/wp/
CORPOGUAJIRA, UPME, USAID, I. (2016). Plan de energización rural del departamento de La Guajira. https://sig.upme.gov.co/SIPERS
Corro, G., Pal, U., & Cebada, S. (2014). Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment. Energy Science & Engineering, 2(4), 177–187. https://doi.org/10.1002/ESE3.44
Cortez, L. A. B., Baldassin, R., & De Almeida, E. (2020). Energy from sugarcane. Sugarcane Biorefinery, Technology and Perspectives, 117–139. https://doi.org/10.1016/B978-0-12- 814236-3.00007-X
Costa, M. A. M., Schiavon, N. C. B., Felizardo, M. P., Souza, A. J. D., & Dussán, K. J. (2023). Emission analysis of sugarcane bagasse combustion in a burner pilot. Sustainable Chemistry and Pharmacy, 32, 101028. https://doi.org/10.1016/J.SCP.2023.101028
Cruz, G., Rodrigues, A. da L. P., da Silva, D. F., & Gomes, W. C. (2021). Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. Journal of Thermal Analysis and Calorimetry, 143(5), 3611– 3622. https://doi.org/10.1007/S10973-020-09330-6
Dagnachew, A. G., Hof, A. F., Lucas, P. L., & van Vuuren, D. P. (2020). Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 192. https://doi.org/10.1016/J.ENERGY.2019.116641
Dai, J., Cui, H., & Grace, J. R. (2012). Biomass feeding for thermochemical reactors. Progress in Energy and Combustion Science, 38(5), 716–736. https://doi.org/10.1016/J.PECS.2012.04.002
DANE. (2018). Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo nacional-de-poblacion-y-vivenda-2
DANE. (2019a). DANE - Medida de pobreza multidimensional de fuente censal. https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de vida/pobreza-y-desigualdad/medida-de-pobreza-multidimensional-de-fuente-censa
DANE. (2019b). Encuesta nacional agropecuaria (ENA). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta nacional-agropecuaria-ena
DANE. (2022a). DANE - Encuesta nacional de calidad de vida (ECV) 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida ecv/encuesta-nacional-de-calidad-de-vida-ecv 2022?highlight=WyJlbmN1ZXN0YSIsImVuY3Vlc3RhcyIsImVuY3Vlc3RhZG9zIiwiZ W5jdWVzdGFkb3JhIiwiZW5jdWVzdGFkb3IiLCJlbmN1ZXN0YWRvcmVzIiwiZW5jd
DANE. (2022b). DANE - Encuesta nacional de calidad de vida (ECV) 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida ecv/encuesta-nacional-de-calidad-de-vida-ecv-2022?highlight=WyJlY3YiXQ
Danlami, U. D. (2018). Assessing the impacts of fuel wood harvesting activities on forest degradation in Kwata area, Mutum-Biyu, Gassol local Government area, Taraba State, Nigeria. http://hdl.handle.net/20.500.12306/1265
Dassanayake, G. D. M., & Kumar, A. (2012). Techno-economic assessment of triticale straw for power generation. Applied Energy, 98, 236–245. https://doi.org/10.1016/J.APENERGY.2012.03.030
De Doctorado, P., Derecho, E. N., Perna, M., & Directora, H. (2022). Régimen jurídico de la inversión extranjera en América Latina, con especial referencia a la inversión de las empresas españolas en Bolivia. https://ddd.uab.cat/record/265513
Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183–188. https://doi.org/10.1016/S0196- 8904(00)00050-9
Démurger, S., & Fournier, M. (2011). Poverty and firewood consumption: A case study of rural households in northern China. China Economic Review, 22(4), 512–523. https://doi.org/10.1016/J.CHIECO.2010.09.009
Deneke, F. (2020). Woody Biomass Feedstock Yard Business Development Guide A resource and business guide to developing a woody biomass collection yard. http://www.forestsandrangelands.gov/Woody_Biomass/contact.shtml
Deng, M., Li, P., Ma, R., Shan, M., & Yang, X. (2020). Air pollutant emission factors of solid fuel stoves and estimated emission amounts in rural Beijing. Environment International, 138, 105608. https://doi.org/10.1016/J.ENVINT.2020.105608
Dewi, P., Millati, R., Indrati, R., & Sardjono. (2018). Effect of Lime Pretreatment on Microstructure of Cassava Stalk Fibers and Growth of Aspergillus niger. Biosaintifika, 10(1), 205–212. https://doi.org/10.15294/BIOSAINTIFIKA.V10I1.13802
Dilkushi, H. A. S., Jayarathna, S., Manipura, A., Chamara, H. K. B. S., Edirisinghe, D., Vidanarachchi, J. K., & Priyashantha, H. (2024). Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative. Carbohydrate Polymer Technologies and Applications, 7, 100472. https://doi.org/10.1016/J.CARPTA.2024.100472
Djomo, S. N., Staritsky, I., Elbersen, B., Annevelink, B. (E )., & Gabrielle, B. (2023). Supply costs, energy use, and GHG emissions of biomass from marginal lands in Brittany, France. Renewable and Sustainable Energy Reviews, 181, 113244. https://doi.org/10.1016/J.RSER.2023.113244
Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., & Ni, M. (2018a). Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of The Total Environment, 626, 744–753. https://doi.org/10.1016/J.SCITOTENV.2018.01.151
Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., & Ni, M. (2018b). Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of The Total Environment, 626, 744–753. https://doi.org/10.1016/J.SCITOTENV.2018.01.151
EL TIEMPO. (2021). Viche, chirrinchi y otras bebidas ancestrales en el top 5 de nuestra comida. https://www.eltiempo.com/cultura/gastronomia/viche-chirrinchi-y-otras-bebidas ancestrales-en-el-top-5-de-nuestra-comida-5679
Elehinafe, F. B., & Okedere, O. B. (2023). Fuel-Briquetting for Sustainable Development in Developing Countries-A Review. Advances in Environmental and Engineering Research, 04(03), 1–13. https://doi.org/10.21926/AEER.2303040
Eliasson, J., & Carlsson, V. (2020). Agricultural waste and wood waste for pyrolysis and biochar : An assessment for Rwanda. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva 28361
Energy | Missouri Department of Natural Resources. (2023). https://dnr.mo.gov/energy
Epa, & CHP. (2007). Biomass Combined Heat and Power Catalog of Technologies. www.epa.gov/chp.
Escobar, L. M. A., Álvarez, U. S., & Peñuela, M. (2012). Inmovilización de levaduras en residuos lignocelulósicos para la producción de etanol en biorreactor de lecho empacado. Revista Facultad de Ingeniería Universidad de Antioquia, 62, 66–76. https://doi.org/10.17533/UDEA.REDIN.12459
Fajola, A., Fakunle, B., Aguwa, E. N., Ogbonna, C., & Ozioma-Amechi, A. (2014). Effect of an improved cookstove on indoor particulate matter, lung function and fuel efficiency of firewood users. 2(8), 189. www.usa-journals.com
FAO. (2009). Small-Scale Bioenergy Initiatives. https://www.fao.org/4/aj991e/aj991e00.htm
FAO. (2011). Manual de biogás.
FAO. (2014a). BIOENERGÍA Y SEGURIDAD ALIMENTARIA ÉVALUACIÓN RÁPIDA (BEFS RA) Manual de Usuario BRIQUETAS.
FAO. (2014b). BIOENERGÍA Y SEGURIDAD ALIMENTARIA ÉVALUACIÓN RÁPIDA (BEFS RA) Manual de Usuario BRIQUETAS.
FAO. (2014c). CROP RESIDUES AND LIVESTOCK RESIDUES - User Manual. https://www.fao.org/energy/bioenergy/bioenergy-and-food-security/assessment/befs ra/natural-resources/en
FAO. (2023a). FAOSTAT. https://www.fao.org/faostat/en/#data/GT/visualize
FAO. (2023b). Proyecciones sobre la alimentación y la agricultura hasta el año 2050 | Estudios de perspectivas mundiales | Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/global-perspectives-studies/food-agriculture projections-to-2050/e
Felipe, A., González, R., & Montes, C. F. (2019). Valorización de residuos de frutas para combustión y pirólisis. Revista Politécnica, 15(28), 42–53. https://doi.org/10.33571/RPOLITEC.V15N28A4
Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/J.ENCONMAN.2013.08.008
Ferreira, S., Monteiro, E., Brito, P., & Vilarinho, C. (2017). Biomass resources in Portugal: Current status and prospects. Renewable and Sustainable Energy Reviews, 78, 1221– 1235. https://doi.org/10.1016/J.RSER.2017.03.140
Ferrer Martí, I., Poggio, D., Mas, A., Batet Miracle, L., & Velo García, E. (2008). Implementación de biodigestores familiares en el Perú. Experiencias de Yanaoca (Cusco) y Ventanilla (Lima). https://recercat.cat//handle/2072/247577
Ferrer-Martí, L., Ferrer, I., Sánchez, E., & Garfí, M. (2018). A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renewable and Sustainable Energy Reviews, 95, 74–83. https://doi.org/10.1016/J.RSER.2018.06.064
Figueroa Cuello, A. N. (2019). Determinantes de la aceptación social de las tecnologías energéticas renovables desde la perspectiva del usuario líder en La Guajira – Colombia. https://repository.upb.edu.co/handle/20.500.11912/4924
Fleta-Asín, J., & Muñoz, F. (2021). Renewable energy public–private partnerships in developing countries: Determinants of private investment. Sustainable Development, 29(4), 653–670. https://doi.org/10.1002/SD.2165
Flores, W. C., Bustamante, B., Pino, H. N., Al-Sumaiti, A., & Rivera, S. (2020). A National Strategy Proposal for Improved Cooking Stove Adoption in Honduras: Energy Consumption and Cost-Benefit Analysis. Energies 2020, Vol. 13, Page 921, 13(4), 921. https://doi.org/10.3390/EN13040921
Food and Agriculture Organization. (2020). For Food, Agriculture, And the environment 2 0 2 0 enFoQue INSTITUTO INTERNACIONAL DE INVESTIGACIÓN SOBRE POLÍTICAS ALIMENTARIAS soluciones sostenibles para acabar con el hambre y la pobreza BioenergíA y AgriculturA: PromesAs y retos. http://www.fao.org/sd/EGdirect/EGre0055.htm
Food and Agriculture Organization of the United Nations (FAO). (2014). Bioenergía y seguridad alimentaria évaluación rápida (BEFs RA). Manual de usuario briquetas. Food and Agriculture Organization of the United Nations (FAO).
Fuentes-Cortés, L. F., Rodríguez-Gutiérrez, J. E., López-Ramírez, M. D., & Martínez-Gutiérrez, N. (2023). Involving energy security and a Water–Energy-Environment nexus framework in the optimal integration of rural water–energy supply systems. Energy Conversion and Management, 293, 117452. https://doi.org/10.1016/J.ENCONMAN.2023.117452
Gallego-Schmid, A., López-Eccher, C., Muñoz, E., Salvador, R., Londono, N. A. C., Barros, M. V., Bernal, D. C., Mendoza, J. M. F., Nadal, A., & Guerrero, A. B. (2024). Circular economy in Latin America and the Caribbean: Drivers, opportunities, barriers and strategies. Sustainable Production and Consumption. https://doi.org/10.1016/J.SPC.2024.09.006
Gandam, P. K., Chinta, M. L., Gandham, A. P., Pabbathi, N. P. P., Konakanchi, S., Bhavanam, A., Atchuta, S. R., Baadhe, R. R., & Bhatia, R. K. (2022). A New Insight into the Composition and Physical Characteristics of Corncob—Substantiating Its Potential for Tailored Biorefinery Objectives. Fermentation, 8(12), 704. https://doi.org/10.3390/FERMENTATION8120704/S1
Gani, A. (2020). Food Research 4 (Suppl. 1) : 78-84 Physicochemical composition of different parts of cassava (Manihot esculenta Crantz) plant. https://doi.org/10.26656/fr.2017.4(S1).S33
García, D., Zegarra, R., Cordova-Ramos, J. S., Pilco-Quesada, S., Jave, J., & Ruiz, ; Alfonso. (2021). Caracterización morfológica por microscopía electrónica de barrido de nanocelulosas de cáscara de sandía (Citrullus lanatus). Agroindustrial Science, ISSN-e 2226-2989, Vol. 11, No . 2 (Mayo-Agosto), 2021, Págs. 149-157, 11(2), 149–157. https://doi.org/10.17268/agroind.sci.2021.02.03
Garfí, M., Castro, L., Montero, N., Escalante, H., & Ferrer, I. (2019). Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274(October 2018), 541–548. https://doi.org/10.1016/j.biortech.2018.12.007
Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/J.RSER.2016.01.071
Gesase, L. E., King’ondu, C. K., & Jande, Y. A. C. (2020). Manihot glaziovii-Bonded and Bioethanol-Infused Charcoal Dust Briquettes: A New Route of Addressing Sustainability, Ignition, and Food Security Issues in Briquette Production. Bioenergy Research, 13(1), 378–386. https://doi.org/10.1007/S12155-019-10076-9
Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of The Royal Society Interface, 9(76), 2749–2766. https://doi.org/10.1098/rsif.2012.0341
Giwa, A. S., Sheng, M., Maurice, N. J., Liu, X., Wang, Z., Chang, F., Huang, B., & Wang, K. (2023). Biofuel Recovery from Plantain and Banana Plant Wastes: Integration of Biochemical and Thermochemical Approach. Journal of Renewable Materials, 11(6), 2593–2629. https://doi.org/10.32604/JRM.2023.026314
Global Forest Watch. (2022). BIOMASA MADERERA VIVA POR ENCIMA DEL SUELO EN LA GUAJIRA, COLOMBIA. https://www.globalforestwatch.org/dashboards/country/COL/18/?category=climate&dash boardPrompts=eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6WyJkYX NoYm9hcmRBbmFseXNlcyIsImRvd25sb2FkRGFzaGJvYXJkU3RhdHMiLCJzaGFyZV dpZGdldCJdLCJzZXR0aW5ncyI6eyJzaG93UHJvbXB0
Gómez, J. A., Matallana, L. G., Teixeira, J. A., & Sánchez, Ó. J. (2023). A framework for the design of sustainable multi-input second-generation biorefineries through process simulation: A case study for the valorization of lignocellulosic and starchy waste from the plantain agro-industry. Chemical Engineering Research and Design, 195, 551–571. https://doi.org/10.1016/J.CHERD.2023.06.004
Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141. https://doi.org/10.1016/J.RSER.2018.03.015
Gómez-Vásquez, R. D., Castiblanco, E. A., Zapata Benabithe, Z., Bula Silvera, A. J., & Camargo-Trillos, D. A. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen performance of corn cob as received: Application in the Colombian Caribbean region. Biomass and Bioenergy, 153, 106207. https://doi.org/10.1016/J.BIOMBIOE.2021.106207
Gonçalves, F. A., Ruiz, H. A., Silvino, E., Santos, D., Teixeira, J. A., Gorete, ·, & De Macedo, R. (2019). Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO 2-C 2 H 4 O 2 and Sequential NaClO 2-C 2 H 4 O 2 /Autohydrolysis Pretreatment. 10, 2249–2262. https://doi.org/10.1007/s12649- 018-0229-6
Gong, J., & Zhang, M. (2022). Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation. Renewable Energy, 182, 946–957. https://doi.org/10.1016/J.RENENE.2021.11.032
González, J. A. G. (2016). Residuos sólidos: problema, conceptos básicos y algunas estrategias de solución. Revista Gestión y Región, 22, 101–119. https://revistas.ucp.edu.co/index.php/gestionyregion/article/view/149
Gonzalez-Salazar, M. A., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., Finkenrath, M., & Poganietz, W. R. (2014). Methodology for estimating biomass energy potential and its application to Colombia. Applied Energy, 136, 781–796. https://doi.org/10.1016/J.APENERGY.2014.07.004
Goodman, B. A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143–162. https://doi.org/10.1016/J.JOBAB.2020.07.001
Gregorio Rodríguez, M. de. (2015). Valorización energética de biomasas en el marco de la política energética española. Incentivos económico-financieros y políticos, aportación de valor añadido y prospectiva estratégica de desarrollo. https://doi.org/10.20868/UPM.THESIS.39586
Guerrero, A. B., Aguado, P. L., Sánchez, J., & Curt, M. D. (2016). GIS-Based Assessment of Banana Residual Biomass Potential for Ethanol Production and Power Generation: A Case Study. Waste and Biomass Valorization, 7(2), 405–415. https://doi.org/10.1007/S12649-015-9455-3
Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213, 176–185. https://doi.org/10.1016/J.FUEL.2017.10.105
Guo, X., Xu, Z., Zheng, X., Jin, X., & Cai, J. (2022). Understanding pyrolysis mechanisms of corn and cotton stalks via kinetics and thermodynamics. Journal of Analytical and Applied Pyrolysis, 164, 105521. https://doi.org/10.1016/J.JAAP.2022.105521
Guzmán-Bello, H., López-Díaz, I., Aybar-Mejía, M., Domínguez-Garabitos, M., & de Frias, J. A. (2023). Biomass Energy Potential of Agricultural Residues in the Dominican Republic. Sustainability 2023, Vol. 15, Page 15847, 15(22), 15847. https://doi.org/10.3390/SU15221584
Han, M., Kim, Y., Kim, Y., Chung, B., & Choi, G. W. (2011). Bioethanol production from optimized pretreatment of cassava stem. Korean Journal of Chemical Engineering, 28(1), 119–125. https://doi.org/10.1007/S11814-010-0330-4/METRICS
Hays, M. D., Kinsey, J., George, I., Preston, W., Singer, C., & Patel, B. (2019). Carbonaceous Particulate Matter Emitted from a Pellet-Fired Biomass Boiler. Atmosphere 2019, Vol. 10, Page 536, 10(9), 536. https://doi.org/10.3390/ATMOS10090536
Hendroko Setyobudi, R., Krido Wahono, S., Gamawati Adinurani, P., Wahyudi, A., Widodo, W., Mel, M., Adhi Nugroho, Y., Prabowo, B., & Liwang, T. (2018). Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks. MATEC Web of Conferences, 164, 01039. https://doi.org/10.1051/MATECCONF/201816401039
Herguedas, A., Taranco, C., Rodrígez, E., & Paniagua, P. (2012). Biomasa, Biocombustibles Y Sostenibilidad. In Transbioma (Vol. 13, Issue 2).
Hernández Hernández, Humberto. 50556., Orduz Prada, J. 37906., Zapata Lesmes, H. J. 37907., 37908., C. R. M. C., & Duarte Ortega, M. 37909. (2010). Atlas del potencial energético de la biomasa residual en Colombia /. Comput Graphics (ACM), 14(3), 71–77.
Hikichi, S. E., Andrade, R. P., Dias, E. S., & Duarte, W. F. (2017). Biotechnological applications of coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications, 221–244. https://doi.org/10.1016/B978-0-12-811290-8.00008-6
Hite, L. (2022). Biomass Fuel Briquettes from Banana Plant Waste. www.leehite.org
Hochschild, F., Herrera Araújo Coordinador Área Pobreza Desarrollo Sostenible Oliverio Huertas Rodríguez, F., García Estévez, J., Pardo Rueda, R., Carlos Cortés González, J., Arbeláez, L., Perfetti, L., Romero Guerrero Presidente Ejecutivo Belsy Maria Munive Herrera, Á., & Soto Iguarán Director Eduardo Romero, C. (2023). Coordinador Nacional-Proyecto Red ORMET MINISTERIO DEL TRABAJO. www.pnud.org.co
Honorato-Salazar, J. A., & Sadhukhan, J. (2020). Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Bioproducts Processing, 119, 1–19. https://doi.org/10.1016/J.FBP.2019.10.005
Hu, M., Chen, J., Yu, Y., & Liu, Y. (2022). Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery. Molecules, 27(19). https://doi.org/10.3390/MOLECULES27196359/S1
Huang, Y., Wei, X., Zhou, S., Liu, M., Tu, Y., Li, A., Chen, P., Wang, Y., Zhang, X., Tai, H., Peng, L., & Xia, T. (2015). Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology, 181, 224–230. https://doi.org/10.1016/J.BIORTECH.2015.01.020
Hupa, M., Karlström, O., & Vainio, E. (2017). Biomass combustion technology development - It is all about chemical details. Proceedings of the Combustion Institute, 36(1), 113–134. https://doi.org/10.1016/J.PROCI.2016.06.152
Hurskainen, M., & Vainikka, P. (2016). Technology options for large-scale solid-fuel combustion. Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 177– 199. https://doi.org/10.1016/B978-1-78242-378-2.00007-9
ICA. (2022). Protección Vegetal.
ICA. (2023). Instituto Colombiano Agropecuario - ICA. https://www.ica.gov.co/el ica/directorio/guajira.asp
IDEAM. (2016). Inventario nacional y departamental de gases efecto invernadero. Colombia.
IDEAM. (2022). LA GUAJIRA - Atlas Interactivo - IDEAM.
IEA. (2017). Technology Roadmap: Delivering Sustainable Bioenergy | Bioenergy. https://www.ieabioenergy.com/blog/publications/technology-roadmap-delivering sustainable-bioenergy
IEA. (2023). World Energy Outlook 2023 – Analysis - IEA. https://www.iea.org/reports/world energy-outlook-2023
IEA; IRENA; UNSD; World Bank; WHO. (2023). Tracking SDG 7 | Progress Towards Sustainable Energy. https://trackingsdg7.esmap.org/
Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., & Adegoke, K. A. (2023a). Biochar from coconut residues: An overview of production, properties, and applications. Industrial Crops and Products, 204, 117300. https://doi.org/10.1016/J.INDCROP.2023.117300
Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., & Adegoke, K. A. (2023b). Biochar from coconut residues: An overview of production, properties, and applications. Industrial Crops and Products, 204, 117300. https://doi.org/10.1016/J.INDCROP.2023.11730
Inna, S. (2015). Energy Potential of Waste Derived from Some Food Crop Products in the Northern Part of Cameroon. International Journal of Energy and Power Engineering, 4(6), 342. https://doi.org/10.11648/J.IJEPE.20150406.13
International Finance Corporation. (2017). Converting Biomass to Energy. Converting Biomass to Energy. https://doi.org/10.1596/28305
International Renewable Energy Agency, T. (2019). SOLID BIOMASS SUPPLY FOR HEAT AND POWER TECHNOLOGY BRIEF SOLID BIOMASS SUPPLY FOR HEAT AND POWER 2. www.irena.org
IRENA. (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES Biomass for Power Generation Acknowledgement. www.irena.org/Publications
IRENA. (2015). Renewable Power Generation Costs in 2014. https://www.irena.org/publications/2015/Jan/Renewable-Power-Generation-Costs-in 201
IRENA. (2020). Costos de generación de energía renovable en 2020: Resumen ejecutivo.
IRENA. (2022). Perspectivas de Transiciones Energéticas Mundiales. https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022
IRENA. (2023). Un nuevo informe revela retrasos en el acceso a energías básicas y la necesidad de invertir en renovables. https://www.irena.org/News/pressreleases/2023/Jun/Basic Energy-Access-Lags-Amid-Renewable-Opportunities-New-Report-Shows-E
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263J
Islam, M. A., Akber, M. A., Limon, S. H., Akbor, M. A., & Islam, M. A. (2019). Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization. Biomass Conversion and Biorefinery, 9(4), 651–658. https://doi.org/10.1007/S13399-019-00405-5
James, A., & Yadav, D. (2021). Valorization of coconut waste for facile treatment of contaminated water: A comprehensive review (2010-2021). Environmental Technology & Innovation, 24, 102075. https://doi.org/10.1016/j.eti.2021.102075
Jekayinfa, S. O., Orisaleye, J. I., & Pecenka, R. (2020). An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources 2020, Vol. 9, Page 92, 9(8), 92. https://doi.org/10.3390/RESOURCES9080092
Jerzak, W., & Kuźnia, M. (2021). Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions. Renewable Energy, 167, 497–507. https://doi.org/10.1016/J.RENENE.2020.11.105
José, V., Campo, I., Naidee, N., Riveira, M., José, A., & Moscote, P. (2021). Sistema híbrido de energías alternativas y su percepción social en la Alta Guajira. Aglala, ISSN-e 2215-7360, Vol. 12, No . 1, 2021 (Ejemplar Dedicado a: Revista Aglala), Págs. 173-191, 12(1), 173–191. https://dialnet.unirioja.es/servlet/articulo?codigo=8458746&info=resumen&idioma=ENG
Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Journal of Sustainable Development, 11(2), 14. https://doi.org/10.5539/JSD.V11N2P14
Kanchanasuta, S., Sillaparassamee, O., Champreda, V., Singhakant, C., & Pisutpaisal, N. (2022). Optimization of pretreatment process of cassava rhizome for bio-succinic fermentation by Actinobacillus succinogenes. Biomass Conversion and Biorefinery, 12(11), 4917–4924. https://doi.org/10.1007/S13399-020-00954-0
Karatas, H., Olgun, H., & Akgun, F. (2013). Experimental results of gasification of cotton stalk and hazelnut shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 112, 494–501. https://doi.org/10.1016/J.FUEL.2013.04.025
Kashyap, S. R., Pramanik, S., & Ravikrishna, R. V. (2024). A review of energy-efficient domestic cookstoves. Applied Thermal Engineering, 236, 121510. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121510
Katuwal, H. (2022). Biogas adoption in Nepal: empirical evidence from a nationwide survey. Heliyon, 8(8), e10106. https://doi.org/10.1016/J.HELIYON.2022.E10106
Khan, A. A., de Jong, W., Jansens, P. J., & Spliethoff, H. (2009). Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Processing Technology, 90(1), 21–50. https://doi.org/10.1016/J.FUPROC.2008.07.012
Khan, M. T., Brulé, M., Maurer, C., Argyropoulos, D., Müller, J., & Oechsner, H. (2016). Batch anaerobic digestion of banana waste-energy potential and modelling of methane production kinetics. Agricultural Engineering International: The CIGR Journal.
Kim, K. H., Jahan, S. A., & Kabir, E. (2011). A review of diseases associated with household air pollution due to the use of biomass fuels. Journal of Hazardous Materials, 192(2), 425– 431. https://doi.org/10.1016/J.JHAZMAT.2011.05.087
Kouteu Nanssou, P. A., Jiokap Nono, Y., & Kapseu, C. (2016). Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renewable Energy, 97, 252–265. https://doi.org/10.1016/J.RENENE.2016.05.050
Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020a). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, Vol. 12, Page 4609, 12(11), 4609. https://doi.org/10.3390/SU12114609
Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020b). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, Vol. 12, Page 4609, 12(11), 4609. https://doi.org/10.3390/SU12114609
Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2021). Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. Journal of Cleaner Production, 284, 124745. https://doi.org/10.1016/J.JCLEPRO.2020.124745
Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., Roslan, A. M., & Nik Ab Rahim, N. N. R. (2022). Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria. Sustainability 2022, Vol. 14, Page 9399, 14(15), 9399. https://doi.org/10.3390/SU14159399
Krishania, M., Kumar, V., & Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1, 89–93. https://doi.org/10.1016/J.BITEB.2018.01.001
Kumar, A., Cameron, J. B., & Flynn, P. C. (2003). Biomass power cost and optimum plant size in western Canada. Biomass and Bioenergy, 24(6), 445–464. https://doi.org/10.1016/S0961-9534(02)00149-6
Kumar, A., Mylapilli, S. V. P., & Reddy, S. N. (2019). Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate). Bioresource Technology, 285, 121318. https://doi.org/10.1016/J.BIORTECH.2019.121318
Kumar, R., Kumar, A., & Saikia, P. (2022). Deforestation and Forests Degradation Impacts on the Environment. 19–46. https://doi.org/10.1007/978-3-030-95542-7_2
Kumar, R., Kumar, V., & Nagpure, A. S. (2023). Bio-energy potential of available livestock waste and surplus agriculture crop residue: An analysis of 602 rural districts of India. Science of The Total Environment, 889, 163974. https://doi.org/10.1016/J.SCITOTENV.2023.163974
Lachowicz, J. I., Milia, S., Jaremko, M., Oddone, E., Cannizzaro, E., Cirrincione, L., Malta, G., Campagna, M., & Lecca, L. I. (2023). Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere, 14(1), 12. https://doi.org/10.3390/ATMOS14010012/S1
Lara-Flores, A. A., Araújo, R. G., Rodríguez-Jasso, R. M., Aguedo, M., Aguilar, C. N., Trajano, H. L., & Ruiz, H. A. (2018). Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a PromisingResource of Bioproducts. Energy, Environment, and Sustainability, 141–170. https://doi.org/10.1007/978-981-10-7431-8_8/FIGURES/7
LARENAS, C. (2022). Banana rachis as a potential source of second generation ethanol. https://sfera.unife.it/handle/11392/2488182
Lecksiwilai, N., Gheewala, S. H., Sagisaka, M., & Yamaguchi, K. (2016). Net Energy Ratio and Life cycle greenhouse gases (GHG) assessment of bio-dimethyl ether (DME) produced from various agricultural residues in Thailand. Journal of Cleaner Production, 134(Part B), 523–531. https://doi.org/10.1016/J.JCLEPRO.2015.10.085
Li, J., Chen, Z., Chen, C., Wang, Y., Song, F., & Yu, X. (2020). Research and Outlook on Global Energy Interconnection. E3S Web of Conferences, 209, 01002. https://doi.org/10.1051/E3SCONF/202020901002
Li, S., Song, H., Hu, J., Yang, H., Zou, J., Zhu, Y., Tang, Z., & Chen, H. (2021). CO 2 gasification of straw biomass and its correlation with the feedstock characteristics. https://doi.org/10.1016/j.fuel.2021.120780
Liang, J., Li, Z., Dai, S., Tian, G., & Wang, Z. (2023). Production of hemicelluloses sugars, cellulose pulp, and lignosulfonate surfactant using corn stalk by prehydrolysis and alkaline sulfite cooking. Industrial Crops and Products, 192, 115880. https://doi.org/10.1016/J.INDCROP.2022.115880
Liao, K., Han, L., Yang, Z., Huang, Y., Du, S., Lyu, Q., Shi, Z., & Shi, S. (2022). A novel in-situ quantitative profiling approach for visualizing changes in lignin and cellulose by stained micrographs. Carbohydrate Polymers, 297, 119997. https://doi.org/10.1016/J.CARBPOL.2022.119997
Londoño-Hernandez, L., Ruiz, H. A., Cristina Ramírez, T., Ascacio, J. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2020). Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 23, 101467. https://doi.org/10.1016/J.BCAB.2019.101467
Longaresi, R. H., de Menezes, A. J., Pereira-da-Silva, M. A., Baron, D., & Mathias, S. L. (2019). The maize stem as a potential source of cellulose nanocrystal: Cellulose characterization from its phenological growth stage dependence. Industrial Crops and Products, 133, 232–240. https://doi.org/10.1016/J.INDCROP.2019.02.046
Longdong, I. A. ; T. D. (2014). Technical Study of a Downdraft Reactor In the Gasification Process of Coconut Husks. https://doi.org/10.15242/IICBE.C614528
Louis, A. C. F., & Venkatachalam, S. (2020). Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. International Journal of Biological Macromolecules, 163, 260–269. https://doi.org/10.1016/j.ijbiomac.2020.06.276
Lu, C., Zhang, X., Gao, Y., Lin, Y., Xu, J., Zhu, C., & Zhu, Y. (2021). Parametric study of catalytic co-gasification of cotton stalk and aqueous phase from wheat straw using hydrothermal carbonation. Energy, 216, 119266. https://doi.org/10.1016/J.ENERGY.2020.119266
Lucas Herguedas, A. I. de. (2012). Biomasa, combustibles y sostenibilidad. https://www.researchgate.net/publication/260383181_Biomasa_biocombustibles_y_soste nibilidad
Luis, A., Gamarra, R., & Zamorano, H. (2010). Fabricación y evaluación de eficiencia y emisiones de briquetas a base de residuos agrícolas como alternativa energética al uso de leña. https://bdigital.zamorano.edu/handle/11036/537
Ma, C., Zhang, Y., & Ma, K. (2022). The effect of biomass raw material collection distance on energy surplus factor. Journal of Environmental Management, 317, 115461. https://doi.org/10.1016/J.JENVMAN.2022.115461
Macedo, W. N., Monteiro, L. G., Corgozinho, I. M., Macêdo, E. N., Rendeiro, G., Braga, W., & Bacha, L. (2016). Biomass based microturbine system for electricity generation for isolated communities in amazon region. Renewable Energy, 91, 323–333. https://doi.org/10.1016/J.RENENE.2016.01.063
Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. V, … (2023) .ح ,فاطمی. Revisión bibliográfica sistemática de briquetas de carbón para cocinar, elaboradas a partir de residuos agrícolas y forestales. Uniwersytet Śląski, 7(1), 343–354. https://doi.org/10.2/JQUERY.MIN.JS
Mamdouh, M. N., & MacKay, G. D. M. (1984). Mechanism of Thermal Decomposition of Lignin. Wood And Fiber Science, 16(3), 441–453.
Marcos Martín, F. (2022). Pélets y briquetas.https://infomadera.net/uploads/articulos/archivo_2293_9990.pdf
Marelli, Luisa., Edwards, Robert., Agostini, Alessandro., & Giuntoli, Jacopo. (2017). Solid and gaseous bioenergy pathways: input values and GHG emissions: Calculated according to methodology set in COM(2016) 767: Version 2. 222. https://doi.org/10.2790/98297
María, D., Arroyo, A. M., Claudia, D., Octaviano Villasana, A., Roberto, I., & Saucedo, U. R. (2017). CATÁLOGO DE TECNOLOGÍA DE BIOMASA A ENERGÍA 3 DIRECTORIO. http://www.gob.mx/inec
Martí H., J. (2019). Biodigestores Tubulares: Guía de Diseño y Manual de Instalación. 37.
Martí-Herrero, J., Chipana, M., Cuevas, C., Paco, G., Serrano, V., Zymla, B., Heising, K., Sologuren, J., & Gamarra, A. (2014). Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia. Renewable Energy, 71, 156–165. https://doi.org/10.1016/j.renene.2014.05.036
Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/10.1016/J.RENENE.2020.10.053
Martínez-Bravo, R. D., & Masera, O. (2020). Perspectivas de disminución de emisiones de carbono en México por el uso de la bioenergía: panorama actual. Elementos Para Políticas Públicas, 4(1), 27–42. https://www.elementospolipub.org/ojs/index.php/epp/article/view/28
Martins-Vieira, J. C., Lachos-Perez, D., Draszewski, C. P., Celante, D., & Castilhos, F. (2023). Sugar, hydrochar and bio-oil production by sequential hydrothermal processing of corn cob. The Journal of Supercritical Fluids, 194, 105838. https://doi.org/10.1016/J.SUPFLU.2023.105838
Matin, A. (2022). Usability of Pumpkin for Nutritional Purposes and Green Energy Production. Tehnički Vjesnik, 29, 775–780. https://doi.org/10.17559/TV-20210513103418
Mayer, F., Bhandari, R., & Gäth, S. (2019a). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708–721. https://doi.org/10.1016/J.SCITOTENV.2019.03.449
Mayer, F., Bhandari, R., & Gäth, S. (2019b). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of The Total Environment, 672, 708–721. https://doi.org/10.1016/J.SCITOTENV.2019.03.449
Mboumboue, E., & Njomo, D. (2018). Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass and Bioenergy, 118, 16– 23. https://doi.org/10.1016/J.BIOMBIOE.2018.08.002
Mehta Uday R Badegaonkar, C. R., Asia, S.-W., & Tanaka, M. (2023). SUSTAINABLE MANAGEMENT OF CROP RESIDUES IN BANGLADESH, INDIA, NEPAL AND PAKISTAN: CHALLENGES AND SOLUTIONS South and South-West Asia Office Sustainable Management of Crop Residues in.
Mesa Puyo, D. (2021). Transición energética: un legado para el presente y el futuro de Colombia Iván Duque Márquez Presidente de la República. www.laimprentaeditores.com
MINAGRICULTURA. (2021). Evaluaciones Agropecuarias Municipales - EVA.
MinAmbiente. (2022). Plan de Acción para la Gestión Sostenible de la Biomasa Residual.
MINCIENCIAS. (2021). IDEAS PARA EL CAMBIO-CONSTRUCCIÓN SOCIAL DEL CONOCIMIENTO PARA LA GESTIÓN DEL CAMBIO CLIMÁTICO.
Ministerio de Ambiente y Desarrollo Sostenible. (2015). ESTUFAS EFICIENTES PARA COCCIÓN CON LEÑA L I N E A M I E N T O S P A R A U N P R O G R A M A N A C I O N A L D E Presidente de la República Lineamientos para un programa nacional de estufas eficientes para cocción con leña.
Ministerio De Minas Y Energía. (2022). PLAN NACIONAL DE SUSTITUCIÓN DE LEÑA Y OTROS COMBUSTIBLES DE USO INEFICIENTE Y ALTAMENTE CONTAMINANTE PARA LA COCCIÓN DOMÉSTICA DE ALIMENTOS Tomo I: Documento de Formulación del Plan Documento de consulta REPÚBLICA DE COLOMBIA. www.upme.gov.co
Mirmohamadsadeghi, S., & Karimi, K. (2020). Recovery of silica from rice straw and husk. Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes, 411–433. https://doi.org/10.1016/B978-0-444-64321-6.00021-5
Mitchell, E. J. S., Gudka, B., Whittaker, C., Shield, I., Price-Allison, A., Maxwell, D., Jones, J. M., & Williams, A. (2020). The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel Processing Technology, 210, 106552. https://doi.org/10.1016/J.FUPROC.2020.106552
Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/J.FOODCHEM.2022.132406
Mohamad Aziz, N. S., Shariff, A., Abdullah, N., & Mohamed Noor, N. (2018). Characteristics of coconut frond as a potential feedstock for biochar via slow pyrolysis. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 408–413. https://doi.org/10.11113/MJFAS.V14N4.1014
Mohammad Firman, L. O., Adji, R. B., Ismail, & Rahman, R. A. (2023). Increasing the feasibility and storage property of cellulose-based biomass by forming shape-stabilized briquette with hydrophobic compound. Case Studies in Chemical and Environmental Engineering, 8, 100443. https://doi.org/10.1016/J.CSCEE.2023.100443
Mohd Dom, Z., Mujianto, L., Azhar, A., Masaudin, S., & Samsudin, R. (2021). Physicochemical properties of banana peel powder in functional food products. Food Research, 5, 209– 215. https://doi.org/10.26656/FR.2017.5(S1).037
Montoya Arbeláez, J. I., Chejne Janna, F., & Garcia-Pérez, M. (2015). Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. Dyna, 82(192), 239–248.
Moragues, J., & Rapallini, A. (2023). Conservación del medio ambiente a través del empleo de fuentes nuevas y renovables y del uso racional de la energía. Avances En Energías Renovables y Medio Ambiente - AVERMA, 1, 83–102. https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/3570
Mothe, S., Muramreddy Jugal, S., Rao, P. V., & Sridhar, P. (2024). Rice straw anaerobic co digestion: Comparing various pre-treatment techniques to enhance biogas production. Bioresource Technology Reports, 25, 101788. https://doi.org/10.1016/J.BITEB.2024.101788
Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2019). Sugarcane bagasse gasification: Simulation and analysis of different operating parameters, fluidizing media, and gasifier types. Biomass and Bioenergy, 122, 433–445. https://doi.org/10.1016/J.BIOMBIOE.2019.01.051
Moura, P., Henriques, J., Alexandre, J., Oliveira, A. C., Abreu, M., Gírio, F., & Catarino, J. (2022). Sustainable value methodology to compare the performance of conversion technologies for the production of electricity and heat, energy vectors and biofuels from waste biomass. Cleaner Waste Systems, 3, 100029. https://doi.org/10.1016/J.CLWAS.2022.100029
Munjeri, K., Ziuku, S., Maganga, H., Siachingoma, B., & Ndlovu, S. (2016). On the potential of water hyacinth as a biomass briquette for heating applications. International Journal of Energy and Environmental Engineering, 7(1), 37–43. https://doi.org/10.1007/S40095- 015-0195-8/TABLES/3
Mwampamba, T. H., Owen, M., & Pigaht, M. (2013). Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy for Sustainable Development, 17(2), 158–170. https://doi.org/10.1016/J.ESD.2012.10.006
Naciones Unidas. (2016). Objetivos de Desarrollo Sostenible | Naciones Unidas. https://www.un.org/es/impacto-académico/page/objetivos-de-desarrollo-sostenible
Nakason, K., Khemthong, P., Mahasandana, S., Panyapinyopol, B., Mai Sci, C. J., & Kraithong, W. (2021). Effect of Alkaline Pretreatment on the Properties of Cassava Rhizome. Article in Chiang Mai Journal of Science, 48(6), 1511–1523. http://epg.science.cmu.ac.th/ejournal/
Nathalíe, S., & Rincón, R. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv.
National Renewable Energy Laboratory. (2012). ETM Library | COST AND PERFORMANCE DATA FOR POWER GENERATION TECHNOLOGIES. https://refman.energytransitionmodel.com/publications/1921
Nations, U. (2022). Objetivo 7—Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | Naciones Unidas. https://www.un.org/es/chronicle/article/objetivo-7-garantizar-el-acceso-una-energia asequible-fiable-sostenible-y-moderna-para-todo
Negrão, D. R., Grandis, A., Buckeridge, M. S., Rocha, G. J. M., Leal, M. R. L. V., & Driemeier, C. (2021). Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renewable and Sustainable Energy Reviews, 148, 111268. https://doi.org/10.1016/J.RSER.2021.111268
Nerini, F. F., Ray, C., & Boulkaid, Y. (2017). The cost of cooking a meal. The case of Nyeri County, Kenya. Environmental Research Letters, 12(6), 065007. https://doi.org/10.1088/1748-9326/AA6FD0
Nguyen, T. H., Doan, Q. Van, Khan, A., Derdouri, A., Anand, P., & Niyogi, D. (2024). The potential of agricultural and livestock wastes as a source of biogas in Vietnam: Energetic, economic and environmental evaluation. Renewable and Sustainable Energy Reviews, 199, 114440. https://doi.org/10.1016/J.RSER.2024.114440
Nielsen, O.-K., Nielsen, M., & Plejdrup, M. S. (2021). AU Scientific Report from DCE-Danish Centre for Environment and Energy No. 442 UPDATING THE EMISSION MODEL FOR RESIDENTIAL WOOD COMBUSTION
Njenga, M., Gitau, J. K., & Mendum, R. (2021). Women’s work is never done: Lifting the gendered burden of firewood collection and household energy use in Kenya. Energy Research & Social Science, 77, 102071. https://doi.org/10.1016/J.ERSS.2021.102071
Nunes, L. J. R., Casau, M., Dias, M. F., Matias, J. C. O., & Teixeira, L. C. (2023). Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results in Engineering, 17, 101010. https://doi.org/10.1016/J.RINENG.2023.101010
Nurfaezzah, A. J., Nurashikin, S., & Salwani, A. A. D. (2023). Enhancement of glucose recovery from banana stem by 4-cycle enzymatic hydrolysis. Research Journal of Biotechnology, 18(11), 192–199. https://doi.org/10.25303/1811RJBT01920199
Nzila, C., Dewulf, J., Spanjers, H., Tuigong, D., Kiriamiti, H., & van Langenhove, H. (2012). Multi criteria sustainability assessment of biogas production in Kenya. Applied Energy, 93, 496–506. https://doi.org/10.1016/j.apenergy.2011.12.020
Oberoi, H. S., Sandhu, S. K., & Vadlani, P. V. (2012). Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food and Bioproducts Processing, 90(2), 257–265. https://doi.org/10.1016/J.FBP.2011.05.002
Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7). https://doi.org/10.3390/EN15072426
Observatorio de Ambiente y Salud. (2022). Observatorio de Ambiente y Salud.
Ochs, A. (2021). Proyecto De la práctica a la política: análisis de las barreras a la inversión en biogás en Colombia y las medidas para abordarlas, a partir de la experiencia de los desarrolladores y otros actores relevantes.
Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013a). Bioenergy potential of agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515–525. https://doi.org/10.1016/J.BIOMBIOE.2013.06.003
Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013b). Bioenergy potential of agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515–525. https://doi.org/10.1016/J.BIOMBIOE.2013.06.003
Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2019). Briquetting characteristics of bean straw maize cob blend. Biomass and Bioenergy, 126, 150–158. https://doi.org/10.1016/J.BIOMBIOE.2019.05.009
Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2022). Thermo-chemical behaviour of maize cob and bean straw briquettes. Energy Conversion and Management: X, 16, 100313. https://doi.org/10.1016/J.ECMX.2022.100313
Okot, D. K., Bilsborrow, P. E., Phan, A. N., & Manning, D. A. C. (2023). Kinetics of maize cob and bean straw pyrolysis and combustion. Heliyon, 9(6), e17236. https://doi.org/10.1016/J.HELIYON.2023.E17236
OLADE. (2023). Uso racional y sostenible de la leña en los países de SICA.
Olaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2016). How capacity mechanisms drive technology choice in power generation: The case of Colombia. Renewable and Sustainable Energy Reviews, 56, 563–571. https://doi.org/10.1016/J.RSER.2015.11.065
OMS. (2021). La Organización Mundial de la Salud publica nuevos datos sobre la contaminación del aire a nivel mundial | Coalición Clima y Aire Limpio. https://www.ccacoalition.org/es/news/world-health-organization-releases-new-global-air pollution-dat
OMS. (2024). Contaminación del aire doméstico. https://www.who.int/es/news-room/fact sheets/detail/household-air-pollution-and-he
Onchieku, J. (2018). Cost Benefit Analysis of Making Charcoal Briquettes Using Screw Press Machine Locally Designed and Fabricated. https://www.researchgate.net/publication/375824813
ONU. (2021). La panela, una dulce apuesta para que los indígenas sigan viviendo en la Sierra de Colombia | Noticias ONU. https://news.un.org/es/story/2021/11/1500632
ONU. (2022). Datos y cifras | Naciones Unidas. https://www.un.org/es/actnow/facts-and-figures
Organización Mundial de la Salud (OMS). (2023). Household air pollution. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
Orhorhoro, E. K., Chukudi, O. M., Oghenekevwe, O., & Onogbotsere, M. E. (2017). Design and Fabrication of an Improved Low Cost Biomass Briquetting Machine Suitable for use in Nigeria. International Journal of Engineering Technology and Sciences, 4(2), 128–138. https://doi.org/10.15282/IJETS.8.2017.1.11.1086
Ortiz Motta, D. C., Sabogal Aguilar, J., & Hurtado Aguirre, E. (2012). Una revisión a la reglamentación e incentivos de las energías renovables en Colombia. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, ISSN-e 0121-6805, Vol. 20, No . 2, 2012, Págs. 55-67, 20(2), 55–67. https://dialnet.unirioja.es/servlet/articulo?codigo=4242132&info=resumen&idioma=SPA
Osaki, M. R. (2022). An energy optimization model comparing the use of sugarcane bagasse for power or ethanol production. Industrial Crops and Products, 187, 115284. https://doi.org/10.1016/J.INDCROP.2022.115284
Osat, M., Shojaati, F., & Osat, M. (2023). A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and environmental assessments. Applied Energy, 340, 120999. https://doi.org/10.1016/J.APENERGY.2023.120999
Paczkowski, S., Sarquah, K., Yankyera, J., Sarfo Agyemang Derkyi, N., Empl, F., Jaeger, D., & Pelz, S. (2023). Hydrothermal treatment (HTT) improves the combustion properties of regional biomass waste to face the increasing sustainable energy demand in Africa. Fuel, 351, 128928. https://doi.org/10.1016/J.FUEL.2023.128928
Pan, Z., Li, X., Fu, L., Li, Q., & Li, X. (2023). Environmental sustainability by a comprehensive environmental and energy comparison analysis in a wood chip and rice straw biomass fueled multi-generation energy system. Process Safety and Environmental Protection, 177, 868–879. https://doi.org/10.1016/J.PSEP.2023.07.027
Parascanu, M. M., Sandoval-Salas, F., Soreanu, G., Valverde, J. L., & Sanchez-Silva, L. (2017). Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renewable and Sustainable Energy Reviews, 71, 509–522. https://doi.org/10.1016/J.RSER.2016.12.079
Paredes, J., Pretell, V., Pilco, A., Ramos, W., & Ubillas, C. (2022). Characterization of Two Lignocellulosic Biomasses Coffea Arabica L. for the production of Biochar. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2022-July. https://doi.org/10.18687/LACCEI2022.1.1.344
Parvez, A. M., Afzal, M. T., Jiang, P., & Wu, T. (2020). Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: Product characterization, thermodynamic assessment and bio-hydrogen production. Biomass and Bioenergy, 139, 105651. https://doi.org/10.1016/J.BIOMBIOE.2020.105651
Pati, S., De, S., & Chowdhury, R. (2023). Exploring the hybrid route of bio-ethanol production via biomass co-gasification and syngas fermentation from wheat straw and sugarcane bagasse: Model development and multi-objective optimization. Journal of Cleaner Production, 395, 136441. https://doi.org/10.1016/J.JCLEPRO.2023.136441
Pattiya, A. (2011). Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology, 102(2), 1959–1967. https://doi.org/10.1016/J.BIORTECH.2010.08.117
Pattiya, A., Sukkasi, S., & Goodwin, V. (2012). Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy, 44(1), 1067–1077. https://doi.org/10.1016/J.ENERGY.2012.04.035
Pattiya, A., & Suttibak, S. (2017). Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter. Journal of the Energy Institute, 90(1), 110–119. https://doi.org/10.1016/J.JOEI.2015.10.001
Pattiya, A., Titiloye, J. O., & Bridgwater, A. V. (2010). Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel, 89(1), 244–253. https://doi.org/10.1016/J.FUEL.2009.07.003
Perea-Moreno, A. J., Aguilera-Ureña, M. J., & Manzano-Agugliaro, F. (2016). Fuel properties of avocado stone. Fuel, 186, 358–364. https://doi.org/10.1016/J.FUEL.2016.08.101
Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555–565. https://doi.org/10.1016/J.RENENE.2008.05.047
pers, G. (2016). PLAN DE ENERGIZACIÓN RURAL SOSTENIBLE PARA EL DEPARTAMENTO DE LA GUAJIRA. https://sig.upme.gov.co/SIPERS/Files/Index/1037
Phichai, K., Pragrobpondee, P., Khumpart, T., & Hirunpraditkoon, S. (2013). Prediction Heating Values of Lignocellulosics from Biomass Characteristics. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering.
Phyllis2. (2022). Phyllis2 - Clasificación ECN Phyllis. https://phyllis.nl/Browse/Standard/ECN Phyllis#tomato
Pixabay. (2024). Imágenes Gratis Para Descargar. https://pixabay.com/es/
Poddar, P., Asadulah Asad, M., Saiful Islam, M., Sultana, S., Parvin Nur, H., & Chowdhury, A. M. S. (2016). Mechanical and Morphological Study of Arecanut Leaf Sheath (ALS), Coconut Leaf Sheath (CLS) and Coconut Stem Fiber (CSF). Advanced Material Science, 1(2). https://doi.org/10.15761/AMS.1000112
Poggio, D., Ferrer, I., Batet, L., & Velo, E. (2009). Adaptación de biodigestores tubulares de plástico a climas fríos.
Posada Ochoa, S. L., & Rosero Noguera, J. R. (2017). Efecto del método de secado sobre la digestibilidad in situ de la pulpa de café (Coffea arabica). https://bibliotecadigital.udea.edu.co/handle/10495/31335
Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305–3321. https://doi.org/10.1016/J.APENERGY.2010.05.011
Prado-Martínez, M., Anzaldo-Hernández, J., Becerra-Aguilar, B., Palacios-Juárez, H., Vargas Radillo, J. de J., & Rentería-Urquiza, M. (2012). Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera Bosques, 18(3), 37–51. https://doi.org/10.21829/MYB.2012.183357
Preston, K. M. (2012). Fuelwood collection and consumption: a case study in Lupeta Fuelwood collection and consumption: a case study in Lupeta Tanzania Tanzania. https://doi.org/10.37099/mtu.dc.etds/164
Priyadarsini, A., Swain, B., Mishra, A., Nanda, S., Dash, M., Swain, N., Jena, P. K., & Mohanty, M. K. (2023). Study on biofuel efficiency of tropical banana leaf biomass using spectroscopy, kinetic and thermodynamic parameters. Bioresource Technology Reports, 23, 101522. https://doi.org/10.1016/J.BITEB.2023.101522
Promigas. (2023). IMPE - Fundación Promigas. https://fundacionpromigas.org.co/impe/
Public utility information systems (SUI). (2023). Reportes del sector | Portal SUI | Superintendencia de Servicios Públicos Domiciliarios. https://sui.superservicios.gov.co/Reportes/Filtro?q=Reportes/Filtro&field_sspd_sui_repor te_entidad_value=4&field_sspd_sui_reporte_categoria_value=All&page=1
Puzzolo, E., Zerriffi, H., Carter, E., Clemens, H., Stokes, H., Jagger, P., Rosenthal, J., & Petach, H. (2019). Supply Considerations for Scaling Up Clean Cooking Fuels for Household Energy in Low- and Middle-Income Countries. GeoHealth, 3(12), 370–390. https://doi.org/10.1029/2019GH000208
Rabea, K., Bakry, A. I., Khalil, A., El-Fakharany, M. K., & Kadous, M. (2021a). Real-time performance investigation of a downdraft gasifier fueled by cotton stalks in a batch-mode operation. Fuel, 300, 120976. https://doi.org/10.1016/J.FUEL.2021.120976
Rabea, K., Bakry, A. I., Khalil, A., El-Fakharany, M. K., & Kadous, M. (2021b). Real-time performance investigation of a downdraft gasifier fueled by cotton stalks in a batch-mode operation. Fuel, 300, 120976. https://doi.org/10.1016/J.FUEL.2021.120976
Rajendra, I. M., Winaya, I. N. S., Ghurri, A., & Wirawan, I. K. G. (2019). Pyrolysis study of coconut leaf’s biomass using thermogravimetric analysis. IOP Conference Series: Materials Science and Engineering, 539(1). https://doi.org/10.1088/1757- 899X/539/1/012017
Rajendran, K., Aslanzadeh, S., & Taherzadeh, M. J. (2012). Household biogas digesters-A review. Energies, 5(8), 2911–2942. https://doi.org/10.3390/en5082911
Redondo-Gómez, C., Quesada, M. R., Astúa, S. V., Zamora, J. P. M., Lopretti, M., & Vega Baudrit, J. R. (2020). Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules, 25(17). https://doi.org/10.3390/MOLECULES25173829
Reith, H., De Wild, P., & Heeres, E. (2011). Biomass pyrolysis for chemicals. Biofuels, 2(2), 185–208.
REN21. (2024). INFORME SOBRE LA SITUACIÓN GLOBAL DE LAS ENERGÍAS RENOVABLES 2024. https://www.ren21.net/gsr-2024/
Renewable Energy Agency, I. (2022). World Energy Transitions Outlook 2022: 1.5°C Pathway - Executive Summary. www.irena.org
Renewable Energy Sources and Climate Change Mitigation. (2023). Renewable Energy Sources and Climate Change Mitigation — IPCC. https://www.ipcc.ch/report/renewable-energy sources-and-climate-change-mitigatio
Reza Rizkiansyah, R., Mardiyati, Y., Hariyanto, A., Steven, S., & Dirgantara, T. (2024). Non Wood paper from coffee pulp Waste: How its performance as coffee filter. Cleaner Materials, 12, 100241. https://doi.org/10.1016/J.CLEMA.2024.100241
Rhenals Julio, J. D., & Torres Montes, M. L. (2018). Análisis exergoeconómico de la gasificación de tusa de maíz empleando vapor de agua como agente gasificante, integrado a un sistema de generación de potencia. https://repositorio.unicordoba.edu.co/handle/ucordoba/669
Rodríguez Arias, A. D., Carrasco García, S. Y., Julio López Bastida, E., Jiménez Borges, R., Arias, R., García, C., & Bastida, L. (2019). Metodología para la evaluación del proceso de co/combustión de biomasas a partir de diferentes tecnologías en una caldera retal. Revista Universidad y Sociedad, 11(1), 295–302. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218- 36202019000100295&lng=es&nrm=iso&tlng=es
Rodríguez Frómeta, R. A., Sánchez, J. L., & Ros García, J. M. (2020). Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates Journal of Food and Agriculture, 32(2), 117–124. https://doi.org/10.9755/EJFA.2020.V32.I2.2068
Rodríguez Imán, Y. M. (2022). Fermentación aeróbica y anaeróbica de aguas mieles de cacao en control de malezas en campo de cafeto, caserío Tunal, distrito Lalaquiz, Huancabamba, Piura-Perú - 2020. Universidad Nacional de Piura. https://renati.sunedu.gob.pe/handle/sunedu/3204642
Rodríguez, N., Diego, V. ;, Zambrano, A., César, F. ;, & Ramírez Gómez, A. (2013). Manejo y disposición de los subproductos y de las aguas residuales del beneficio del café. https://doi.org/10.38141/CENBOOK-0026_31
Rojas, E. R., David, M., Ruiz, F., Universidad, M., Francisco, D., De Caldas, J., & Tecnológica, F. (2019). DETERMINACIÓN DEL NIVEL DE MADUREZ Y LAS CAPACIDADES DE LAS TECNOLOGÍAS EXISTENTES PARA LA TRANSFORMACIÓN DE BIOMASA RESIDUAL EN ENERGÍA ELÉCTRICA.
Roma. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina.
Romallosa, A. R. D. (2014). Technical and economic evaluation of the jack-driven briquetting machine. Patubas, 9(1), 45–86. https://repository.cpu.edu.ph/handle/20.500.12852/62
Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Foppa Pedretti, E., & Riva, G. (2013). Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass and Bioenergy, 51, 177–182. https://doi.org/10.1016/J.BIOMBIOE.2013.01.018
Rueda-Ordóñez, Y. J., & Tannous, K. (2015). Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresource Technology, 196, 136–144. https://doi.org/10.1016/J.BIORTECH.2015.07.062
Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, 174–183. https://doi.org/10.1016/J.RSER.2012.10.021
Sagastume, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/j.jclepro.2020.122317
Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021a). The available waste-to energy potential from agricultural wastes in the department of Córdoba, Colombia. International Journal of Energy Economics and Policy, 11(3), 44–50. https://doi.org/10.32479/IJEEP.10705
Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021b). The available waste-to energy potential from agricultural wastes in the department of Córdoba, Colombia. International Journal of Energy Economics and Policy, 11(3), 44–50. https://doi.org/10.32479/IJEEP.10705
Sagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020a). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/J.JCLEPRO.2020.122317
Sagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020b). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/J.JCLEPRO.2020.122317
Sagastume Gutiérrez, A., Mendoza Fandiño, J. M., Cabello Eras, J. J., & Sofan German, S. J. (2022). Potential of livestock manure and agricultural wastes to mitigate the use offirewood for cooking in rural areas. The case of the department of Cordoba (Colombia). Development Engineering, 7, 100093. https://doi.org/10.1016/J.DEVENG.2022.100093
Saini, R., M Mahajani, S., Deb Barma, S., & Srinivas Rao, D. (2024). Valorization of coconut and banana wastes with petcoke and coal via steam gasification in a fluidized bed reactor. Journal of Cleaner Production, 434, 139955. https://doi.org/10.1016/J.JCLEPRO.2023.139955
Sakhiya, A. K., Anand, A., Aier, I., Vijay, V. K., & Kaushal, P. (2021). Suitability of rice straw for biochar production through slow pyrolysis: Product characterization and thermodynamic analysis. Bioresource Technology Reports, 15, 100818. https://doi.org/10.1016/J.BITEB.2021.100818
San José, M. J., Alvarez, S., & López, R. (2023). Conical spouted bed combustor to obtain clean energy from avocado waste. Fuel Processing Technology, 239, 107543. https://doi.org/10.1016/J.FUPROC.2022.107543
Sánchez, E. A., Pasache, M., & García, M. E. (2014). Development of Briquettes from Waste Wood (Sawdust) for Use in Low-income Households in Piura, Peru.
Sánchez Pisco, L. A. H. O. W. A. , & V. C. P. J. (2024). Análisis de casos para el desarrollo de Electrificación Rural por medio del uso de Energías Renovables. Dominio de Las Ciencias, 10(2), 1710–1725. https://doi.org/10.23857/DC.V10I2.3903
Sander, B., Energy, D., & Skøtt, T. (2007). Bioenergy for electricity and heat 2007 Bioenergy for electricity and heat-experiences from biomass-fired CHP plants in Denmark.
Santa-Maria, M., Ruiz-Colorado, A. A., Cruz, G., & Jeoh, T. (2013). Assessing the Feasibility of Biofuel Production from Lignocellulosic Banana Waste in Rural Agricultural Communities in Peru and Colombia. Bioenergy Research, 6(3), 1000–1011. https://doi.org/10.1007/S12155-013-9333-4
Santangelo, E., Carnevale, M., Migliori, C. A., Picarella, M. E., Dono, G., Mazzucato, A., & Gallucci, F. (2020). Evaluation of tomato introgression lines diversified for peel color as a source of functional biocompounds and biomass for energy recovery. Biomass and Bioenergy, 141, 105735. https://doi.org/10.1016/J.BIOMBIOE.2020.105735
Sattar, A., Arslan, C., Ji, C., Sattar, S., Umair, M., Sattar, S., & Bakht, M. Z. (2016). Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. International Journal of Hydrogen Energy, 41(26), 11050–11061. https://doi.org/10.1016/J.IJHYDENE.2016.04.087
Saura-Calixto, F., Cañellas, J., & Garcia-Raso, J. (1983). Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data comparison. Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 177(3), 200– 202. https://doi.org/10.1007/BF01146796/METRICS
Schaffer, S., Pröll, T., Al Afif, R., & Pfeifer, C. (2019). A mass- and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass and Bioenergy, 120, 281–290. https://doi.org/10.1016/J.BIOMBIOE.2018.11.019
Schilmann, A., Ruiz-García, V., Serrano-Medrano, M., De La Sierra De La Vega, L. A., Olaya García, B., Estevez-García, J. A., Berrueta, V., Riojas-Rodríguez, H., & Masera, O. (2021). Just and fair household energy transition in rural Latin American households: are we moving forward? Environmental Research Letters, 16(10), 105012. https://doi.org/10.1088/1748-9326/AC28B2
Secretariat of Environment. (2019). Energías Limpias Renovables Biomasa. https://old.sma.gob.mx/SGA-CC-EL-CLAS-ER-BIOMASA.php
Seglah, P. A., Neglo, K. A. W., Wang, H., Cudjoe, D., Kemausuor, F., Gao, C., Bi, Y., & Wang, Y. (2023). Electricity generation in Ghana: Evaluation of crop residues and the associated greenhouse gas mitigation potential. Journal of Cleaner Production, 395, 136340. https://doi.org/10.1016/J.JCLEPRO.2023.136340
Seljeskog, M., Goile, F., & Skreiberg, O. (2017). Recommended Revisions of Norwegian Emission Factors for Wood Stoves. Energy Procedia, 105, 1022–1028. https://doi.org/10.1016/J.EGYPRO.2017.03.447
Sellin, N., Krohl, D. R., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/J.RENENE.2016.04.032
Semana. (2023). Impresionante, en Colombia hay millones de hogares que tienen el tubo del gas, pero no han podido pagar la conexión interna para recibir el servicio - Semana. https://www.semana.com/economia/empresas/articulo/impresionante-en-colombia-hay millones-de-hogares-que-tienen-el-tubo-del-gas-pero-no-han-podido-pagar-la-conexion interna-para-recibir-el-servicio/202318/?utm_source=chatgpt.com
Serna-Jiménez, J. A., Torres-Valenzuela, L. S., Sanín Villarreal, A., Roldan, C., Martín, M. A., Siles, J. A., & Chica, A. F. (2023). Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods. LWT, 177, 114571. https://doi.org/10.1016/J.LWT.2023.114571
Shahzad, K., Sohail, M., & Hamid, A. (2019). Green ethanol production from cotton stalk. IOP Conference Series: Earth and Environmental Science, 257(1). https://doi.org/10.1088/1755-1315/257/1/012025
Shankar, K., Kulkarni, N. S., Sajjanshetty, R., Jayalakshmi, S. K., & Sreeramulu, K. (2020). Co production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Industrial Crops and Products, 155, 112809. https://doi.org/10.1016/J.INDCROP.2020.112809
Shariff, A. and A. S. and M. S. N. and R. N. (2016, December). (PDF) The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes. https://www.researchgate.net/publication/311349228_The_Effect_of_Feedstock_Type_a nd_Slow_Pyrolysis_Temperature_on_Biochar_Yield_from_Coconut_Wastes
Shen, G., Hays, M. D., Smith, K. R., Williams, C., Faircloth, J. W., & Jetter, J. J. (2018). Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves. Environmental Science and Technology, 52(2), 904–915. https://doi.org/10.1021/ACS.EST.7B05155
Shimizu, F. L., Monteiro, P. Q., Ghiraldi, P. H. C., Melati, R. B., Pagnocca, F. C., Souza, W. de, Sant’Anna, C., & Brienzo, M. (2018). Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115, 62–68. https://doi.org/10.1016/J.INDCROP.2018.02.024
Silva, J. C. da, Oliveira, R. C. de, Neto, A. da S., Pimentel, V. C., & Santos, A. de A. dos. (2015). Extraction, Addition and Characterization of Hemicelluloses from Corn Cobs to Development of Paper Properties. Procedia Materials Science, 8, 793–801. https://doi.org/10.1016/J.MSPRO.2015.04.137
Silva-González, J. A., Chandel, A. K., da Silva, S. S., & Balagurusamy, N. (2020). Biogas in Circular Bio-Economy: Sustainable Practice for Rural Farm Waste Management and Techno-economic Analyses. Biogas Production, 389–414. https://doi.org/10.1007/978-3- 030-58827-4_17
Simeone, B. R., Peña, F., Andrea, B., Rosario, D., & Franco, V. (2022). UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA AGROINDUSTRIAL TESIS “EFECTOS DEL PRETRATAMIENTO DE BIOMASA SOBRE PODER CALORÍFICO Y NIVEL DE EMISIONES DE BRIQUETAS DE RESIDUOS DEL OLIVAR Y ORÉGANO” PARA OPTAR: TÍTULO PROFESIONAL DE INGENIERO AGROINDUSTRIAL PRESENTADO POR.
Singh, K. J., & Sooch, S. S. (2004). Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Conversion and Management, 45(9), 1329–1341. https://doi.org/10.1016/j.enconman.2003.09.018
Singh, R., & Patel, M. (2022). Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass and Bioenergy, 159, 106411. https://doi.org/10.1016/J.BIOMBIOE.2022.106411
Sirijanusorn, S., Sriprateep, K., & Pattiya, A. (2013). Pyrolysis of cassava rhizome in a counter rotating twin screw reactor unit. Bioresource Technology, 139, 343–348. https://doi.org/10.1016/J.BIORTECH.2013.04.024
Sirinwaranon, P., Sricharoenchaikul, V., & Atong, D. (2021). Catalytic performance of Co, Fe on MCM-41 synthesized from illite waste for gasification of torrefied cassava rhizome. Energy Reports, 7, 149–162. https://doi.org/10.1016/J.EGYR.2021.08.100
Sivamani, S., Chandrasekaran, A. P., Balajii, M., Shanmugaprakash, M., Hosseini-Bandegharaei, A., & Baskar, R. (2018). Evaluation of the potential of cassava-based residues for biofuels production. Reviews in Environmental Science and Biotechnology, 17(3), 553– 570. https://doi.org/10.1007/S11157-018-9475-0/TABLES/3
Skreiberg, Ø., Seljeskog, M., & Kausch, F. (2022). A Critical Review and Discussion on Emission Factors for Wood Stoves. Chemical Engineering Transactions, 92, 235–240. https://doi.org/10.3303/CET2292040
Sombatpraiwan, S., Junyusen, T., Treeamnak, T., & Junyusen, P. (2019). Optimization of microwave-assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food and Energy Security, 8(4), e00174. https://doi.org/10.1002/FES3.174
Sornkade, P., Atong, D., & Sricharoenchaikul, V. (2015). Conversion of cassava rhizome using an in-situ catalytic drop tube reactor for fuel gas generation. Renewable Energy, 79(1), 38–44. https://doi.org/10.1016/J.RENENE.2014.07.043
Sousa, D., Rodrigues, D., Castro, P. M., & Matos, H. A. (2024). Equation-Oriented Modeling and Optimization of a Biorefinery Based on Avocado Waste. Processes, 12(1). https://doi.org/10.3390/PR12010091
Stojilovska, A., Thomson, H., & Mejía-Montero, A. (2023). Making a case for centring energy poverty in social policy in light of the climate emergency: A global integrative review. Social Policy and Society, 22(4), 715–729. https://doi.org/10.1017/S1474746423000209
Sui, H., Shao, J., Agblevor, F. A., Zhang, Y., Wang, X., Yang, H., & Chen, H. (2023). Fractional condensation and aging of pyrolysis oil from cotton stalk. Biomass and Bioenergy, 174, 106837. https://doi.org/10.1016/J.BIOMBIOE.2023.106837
Sulaiman, S. M., Nugroho, G., Saputra, H. M., Djaenudin, Permana, D., Fitria, N., & Putra, H. E. (2023). Valorization of Banana Bunch Waste as a Feedstock via Hydrothermal Carbonization for Energy Purposes. Journal of Ecological Engineering, 24(7), 61–74. https://doi.org/10.12911/22998993/163350
Sultana, A., & Kumar, A. (2012). Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94, 192–201. https://doi.org/10.1016/J.APENERGY.2012.01.052
Suman, S., & Gautam, S. (2017). Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(8), 761–767. https://doi.org/10.1080/15567036.2016.1263252
Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Wang, F., Wang, T., Chang, X., Lei, Y., Xu, H., Cao, J., Zhang, N., Liu, S., & Li, X. (2019). Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China. Fuel, 244, 379– 387. https://doi.org/10.1016/J.FUEL.2019.02.031
Sun, Y., Fan, S., Yang, T., Zhang, H., & Chen, Y. (2020). Study on the Characteristics of Pyrolysis Gas and Oil from Corn Stalk Pyrolysis. IOP Conference Series: Earth and Environmental Science, 446(3). https://doi.org/10.1088/1755-1315/446/3/032099
Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015
Surra, E., Bernardo, M., Lapa, N., Esteves, I. A. A. C., Fonseca, I., & Mota, J. P. B. (2019). Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management, 249, 109351. https://doi.org/10.1016/J.JENVMAN.2019.109351
Suttibak, S., Sriprateep, K., & Pattiya, A. (2012). Production of Bio-oil via Fast Pyrolysis of Cassava Rhizome in a Fluidised-Bed Reactor. Energy Procedia, 14, 668–673. https://doi.org/10.1016/J.EGYPRO.2011.12.993
Taib, R. M., Abdullah, N., & Aziz, N. S. M. (2021). Bio-oil derived from banana pseudo-stem via fast pyrolysis process. Biomass and Bioenergy, 148, 106034. https://doi.org/10.1016/J.BIOMBIOE.2021.106034
Tang, Z. H., Liang, C., & Zhang, R. C. (2023). Optimizing crop residues collection patterns in rural areas to reduce transportation costs and carbon emissions. Environmental Technology & Innovation, 32, 103367. https://doi.org/10.1016/J.ETI.2023.103367
Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173, 113097. https://doi.org/10.1016/J.RSER.2022.113097
Thakur, A. (2011). Power Generation from Forest Residues by.
The World Bank Group. (2007). Energy Sector Management Assistance Program Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies.
Tippayawong, N., Rerkkriangkrai, P., Aggarangsi, P., & Pattiya, A. (2017). Biochar Production from Cassava Rhizome in a Semi-continuous Carbonization System. Energy Procedia, 141, 109–113. https://doi.org/10.1016/J.EGYPRO.2017.11.021
Tolessa, A. (2023). Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon, 9(2), e13572. https://doi.org/10.1016/J.HELIYON.2023.E13572
Torres-Torres, J. J., Mena-Mosquera, V. E., & Álvarez-Dávila, E. (2017). Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacifíco, Chocó, Colombia. Entramado, 13(1), 200–209. https://doi.org/10.18041/ENTRAMADO.2017V13N1.25110
Tucho, G. T., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies 2015, Vol. 8, Pages 9565-9583, 8(9), 9565–9583. https://doi.org/10.3390/EN8099565
Tutus, A., Ezici, A. C., & Ates, S. (2010). Chemical, morphological and anatomical properties and evaluation of cotton stalks (Gossypium hirsutum l.) in pulp industry. Scientific Research and Essays, 5(12), 1553–1560. http://www.academicjournals.org/SRE
Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Ojapah, M. M., Owebor, K., Nwachukwu, C., Aminu, M. D., Okedu, K. E., Kalam, A., & Colak, I. (2023a). Optimal sites for agricultural and forest residues energy conversion plant using geographic information system. Heliyon, 9(9), e19660. https://doi.org/10.1016/J.HELIYON.2023.E19660
Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Ojapah, M. M., Owebor, K., Nwachukwu, C., Aminu, M. D., Okedu, K. E., Kalam, A., & Colak, I. (2023b). Optimal sites for agricultural and forest residues energy conversion plant using geographic information system. Heliyon, 9(9), e19660. https://doi.org/10.1016/J.HELIYON.2023.E19660
Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Owebor, K., & Nwachukwu, C. O. (2023). Geographic information systems (GIS) approach for assessing the biomass energy potential and identification of appropriate biomass conversion technologies in Nigeria. Biomass and Bioenergy, 170, 106726. https://doi.org/10.1016/J.BIOMBIOE.2023.106726
Uma, R., Lata, K., & Joshi, V. (2000). GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES: PHASE IIA Household Stoves in India
UNESCO. (2024). Educación para el Desarrollo Sostenible | UNESCO. https://www.unesco.org/es/sustainable-development/education
UPME. (2010a). Atlas del Potencial Energético de la Biomasa Residual en Colombia.
UPME. (2010b). Atlas del potencial energético de la Biomasa residual en Colombia. https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la biomasa.asp
UPME. (2011). Atlas del potencial energético de la Biomasa residual en Colombia. https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la biomasa.aspx
UPME. (2012). Cobertura de energía eléctrica base por municipio en Colombia. http://www.upme.gov.co/generadorconsultas/Consulta_Series.aspx?idModulo=2&tipoSer ie=206&grupo=558
UPME. (2019a). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU Residencial.pdf
UPME. (2019b). UPME a 2019-12-19 Informe Final - Plan de Sustitución Progresiva de Leña. www.corpoema.net
UPME, & Fecop. (2016). UPME Calculadora de Emisiones. https://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html
UPRA. (2022). Microanálisis Evaluaciones agropecuarias-EVAs.
Upra. (2023). Evaluaciones Agropecuarias Municipales - EVA. https://upra.gov.co/es-co
US EPA. (2024). Particulate Matter (PM) Pollution | US EPA. https://www.epa.gov/pm pollutio
Valle-Vargas, M. F., Durán-Barón, R., Quintero-Gamero, G., & Valera, R. (2020). Caracterización fisicoquímica, químico proximal, compuestos bioactivos y capacidad antioxidante Caracterización fisicoquímica, químico proximal, compuestos bioactivos y capacidad antioxidante de pulpa y corteza de sandía (Citrullus lanatus). Información Tecnológica, 31. https://doi.org/10.4067/S0718-07642020000100021
Vanegas Salazar, C. M. (2017). Manejo del bagazo en la agroindustria de la caña panelera en el nordeste antioqueño a partir de la gestión integral de residuos: estudio de caso municipio de Yolombó. https://ridum.umanizales.edu.co/handle/20.500.12746/2880
Vázquez Calvo, M. A., Cruz León, A., Santos Cervantes, C., Pérez Torres, M. Á., & Sangerman-Jarquín, D. Ma. (2016). Lorena stoves: firewood use and vegetation conservation. Revista Mexicana de Ciencias Agrícolas, 7(SPE16), 3159–3172. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 09342016001203159&lng=es&nrm=iso&tlng=en
Vega, A., De León, J. A., Miranda, S., & Reyes, S. M. (2022). Agro-industrial waste improves the nutritional and antioxidant profile of Pleurotus djamor. Cleaner Waste Systems, 2, 100018. https://doi.org/10.1016/J.CLWAS.2022.100018
Vega-Araújo, J., & Heffron, R. J. (2022). Assessing elements of energy justice in Colombia: A case study on transmission infrastructure in La Guajira. Energy Research & Social Science, 91, 102688. https://doi.org/10.1016/J.ERSS.2022.102688
Velásquez-Arredondo, H. I., Ruiz-Colorado, A. A., & De Oliveira, S. (2010). Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis. Energy, 35(7), 3081–3087. https://doi.org/10.1016/J.ENERGY.2010.03.052
Venderbosch, R. H., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178–208.
Wang, M., Liu, P., Liu, L., Geng, M., Wang, Y., & Zhang, Z. (2022). The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling. Renewable Energy, 201, 1026–1037. https://doi.org/10.1016/J.RENENE.2022.11.015
Wang, M., Zhou, D., Wang, Y., Wei, S., Yang, W., Kuang, M., Ma, L., Fang, D., Xu, S., & Du, S. kui. (2016). Bioethanol production from cotton stalk: A comparative study of various pretreatments. Fuel, 184, 527–532. https://doi.org/10.1016/J.FUEL.2016.07.061
Wang, Q., & Tuohedi, N. (2020). Polyurethane foams and bio-polyols from liquefied cotton stalk agricultural waste. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/SU12104214
Wang, Y., Wei, W., Dai, X., & Ni, B.-J. (2021). Coconut shell ash enhances short-chain fatty acids production from anaerobic algae fermentation. Bioresource Technology, 338, 125494. https://doi.org/10.1016/j.biortech.2021.125494
Wang, Z., Wu, M., Chen, G., Zhang, M., Sun, T., Burra, K. G., Guo, S., Chen, Y., Yang, S., Li, Z., Lei, T., & Gupta, A. K. (2023). Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis. Fuel, 337, 127206. https://doi.org/10.1016/J.FUEL.2022.127206
Welfle, D. A., Chingaira, S., & Kassenov, A. (2020). Decarbonising Kenya’s domestic & industry Sectors through bioenergy: An assessment of biomass resource potential & GHG performances. Biomass and Bioenergy, 142, 105757. https://doi.org/10.1016/J.BIOMBIOE.2020.105757
Wenting, Z., Chuang, L., Kun, Y., Yinhong, X., Jie, L., Guangqing, L., Chunyu, X., Wenting, Z., Chuang, L., Kun, Y., Yinhong, X., Jie, L., Guangqing, L., & Chunyu, X. (2020). Field evaluation of pollutant emissions and reduction effects of biomass pellets burning in improved heating stoves in rural China. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, Vol. 36, Issue 12, Pages: 229-235, 36(12), 229–235. https://doi.org/10.11975/J.ISSN.1002-6819.2020.12.028
Weyant, C. L., Thompson, R., Lam, N. L., Upadhyay, B., Shrestha, P., Maharjan, S., Rai, K., Adhikari, C., Fox, M. C., & Pokhrel, A. K. (2019). In-Field Emission Measurements from Biogas and Liquified Petroleum Gas (LPG) Stoves. https://doi.org/10.3390/atmos10120729
Wiesberg, I. L., de Medeiros, J. L., Paes de Mello, R. V., Santos Maia, J. G. S., Bastos, J. B. V., & Araújo, O. de Q. F. (2021). Bioenergy production from sugarcane bagasse with carbon capture and storage: Surrogate models for techno-economic decisions. Renewable and Sustainable Energy Reviews, 150, 111486. https://doi.org/10.1016/J.RSER.2021.111486
Wiese, A. (2013). Biomass Combustion for Electricity Generation. Renewable Energy Systems, 290–327. https://doi.org/10.1007/978-1-4614-5820-3_254
Winijkul, E., & Bond, T. C. (2016). Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios. Atmospheric Environment, 124, 1–11. https://doi.org/10.1016/J.ATMOSENV.2015.10.011
Xing, R., Hanaoka, T., Kanamori, Y., & Masui, T. (2017). Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition. Sustainability 2017, Vol. 9, Page 614, 9(4), 614. https://doi.org/10.3390/SU9040614
Xu, X. L., & Chen, Y. J. (2020). A comprehensive model to analyze straw recycling logistics costs for sustainable development: Evidence from biomass power generation. Environmental Progress & Sustainable Energy, 39(4), e13394. https://doi.org/10.1002/EP.13394
Yang, W., Zhu, Y., Li, Y., Cheng, W., Zhang, W., Yang, H., Tan, Z., & Chen, H. (2022). Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk. Renewable Energy, 190, 893–902. https://doi.org/10.1016/J.RENENE.2022.03.157
Yepes-Quintero, A., Duque-Montoya, Á. J., Navarrete-Encinales, D., Phillips-Bernal, J., Cabrera-Montenegro, E., Corrales-Osorio, A., Álvarez-Dávila, E., Galindo-García, G., García-Dávila, M. C., Idárraga, Á., & Vargas-Galvis, D. (2017). Estimación de las reservas y pérdidas de carbono por deforestación en los bosques del departamento de Antioquia, Colombia. Actualidades Biológicas, 33(95), 193–208. https://doi.org/10.17533/udea.acbi.14306
Yirijor, J., & Bere, A. A. T. (2024). Production and characterization of coconut shell charcoal based bio-briquettes as an alternative energy source for rural communities. Heliyon, 10(16), e35717. https://doi.org/10.1016/J.HELIYON.2024.E35717
Young, P., & Khennas, S. (2003). FINAL DRAFT Feasibility and Impact Assessment of a Proposed Project to Briquette Municipal Solid Waste for Use as a Cooking Fuel in Rwanda Consultancy Report to the Business Linkages Challenge Fund (BLCF) 2 Feasibility Assessment of Proposed Briquetting p.
Yousefian, F., Babatabar, M. A., Eshaghi, M., Poor, S. M., & Tavasoli, A. (2023). Pyrolysis of Rice husk, Coconut shell, and Cladophora glomerata algae and application of the produced biochars as support for cobalt catalyst in Fischer–Tropsch synthesis. Fuel Processing Technology, 247, 107818. https://doi.org/10.1016/J.FUPROC.2023.107818
Zaini, H. M., Saallah, S., Roslan, J., Sulaiman, N. S., Munsu, E., Wahab, N. A., & Pindi, W. (2023). Banana biomass waste: A prospective nanocellulose source and its potential application in food industry – A review. Heliyon, 9(8), e18734. https://doi.org/10.1016/J.HELIYON.2023.E18734
Zheng, H., Ma, W., & Bahadur, D. (2025). Fuel choices for cooking and heating and gender empowerment: Implications for promoting gender equality and sustainable rural development. Energy Economics, 141(November 2024), 108104. https://doi.org/10.1016/J.ENECO.2024.108104
Zhu, X., Ho, K. F., Yang, T. T., Laiman, V., Sun, J., Shen, Z., & Chuang, H. C. (2024). Emission Factors of PAHs Components and Bioreactivity in PM2.5 from Biomass Burning. Aerosol and Air Quality Research, 24(1), 230068. https://doi.org/10.4209/AAQR.230068
Zulay, S., & Guillen, E. (2022a). EVALUACIÓN DE EMISIONES ATMOSFÉRICAS POR CONSUMO DE CARBÓN VEGETAL EN VIVIENDAS FAMILIARES DE LAS COMUNIDADES DE ISHOTSHIMANA Y PUJURU, CABO DE LA VELA, URIBIA-LA GUAJIRA, COLOMBIA.
Zulay, S., & Guillen, E. (2022b). Evaluación de emisiones atmosféricas por consumo de carbón vegetal en viviendas familiares de las comunidades de Ishotshimana y Pujuru, Cabo de la Vela, Uribia-La Guajira, Colombia. Universidad de La Guajira Riohacha-La.
Yazmín, I., & Muñoz, R. (2023). Fermentación del mucílago de café para la obtención de celulosa bacteriana con aislados nativos de Komagataeibacter spp.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 259 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Guajira
dc.publisher.none.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.none.fl_str_mv Energia
dc.publisher.place.none.fl_str_mv Barranquilla, Colombia
dc.publisher.program.none.fl_str_mv Doctorado en Ingenieria Energética
dc.publisher.branch.none.fl_str_mv Corporación Universidad de la Costa
publisher.none.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/aca97647-0f14-4f1c-abb6-f625999250a9/download
https://repositorio.cuc.edu.co/bitstreams/240f8ee0-d2b2-452b-826c-e99934a7c78c/download
https://repositorio.cuc.edu.co/bitstreams/f270bfb0-4f7e-48b9-a1f2-1d7afca3d8d3/download
https://repositorio.cuc.edu.co/bitstreams/ce77479c-1a62-4747-8759-2af1cb6fab32/download
bitstream.checksum.fl_str_mv ee49b9910f419e982db90b2590938335
73a5432e0b76442b22b026844140d683
dc9dd60e0548b25e284c8febfa808681
7ac12d7d5bd2469ab50f9f2d62e3942e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1841804669747200000
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cabello Eras, Juan JoséSagastume Gutiérrez, AlexisRodríguez Romero, Tomas EnriqueOspino Castro, AdalbertoMendoza Fandiño, Jorge MarioSousa Santos, Vladimir2025-08-01T18:20:41Z2025-08-01T18:20:41Z2025-05-28https://hdl.handle.net/11323/14343Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Los residuos agrícolas pueden ayudar a solucionar la escasez de combustible en las zonas rurales. Esta investigación definió el inventario de residuos de biomasa agrícola en el departamento de La Guajira (Colombia) e identificó su disponibilidad para la valorización energética como combustible para cocinar o generar electricidad a escala doméstica. Se geolocalizaron tanto los residuos agrícolas como las poblaciones rurales, permitiendo cruzar la disponibilidad de biomasa residual con la demanda de leña. Se evaluaron tres tecnologías para la valorización: briquetado, digestión anaerobia y combustión directa. Se estimaron entre 292,760 y 522,696 toneladas anuales de residuos agrícolas, con un potencial energético de 381 a 521 TJ/año mediante combustión directa, lo que equivale al 20.6%–28.1% de la demanda eléctrica del departamento en 2022. Los datos muestran que el 70% de los hogares rurales aún dependen de la leña para cocinar. En comunidades indígenas, solo el 6% accede al gas natural y el 22% a la electricidad. El potencial energético podría cubrir entre el 57% y el 78% de la demanda de leña mediante estufas eléctricas. La digestión anaerobia permitiría producir entre 8.6 y 10 millones de m³/año de biogás, equivalente al 16%–18% de esa demanda. El uso de briquetas con estufas mejoradas podría cubrir entre el 28% y el 49%. Entre las opciones analizadas, el briquetado surgió como el planteamiento más viable para aprovechar los residuos agrícolas.Agricultural residues can help address fuel shortages in rural areas. This research defined the inventory of agricultural biomass residues in the department of La Guajira (Colombia) and identified their availability for energy valorization as cooking fuel or for small-scale electricity generation. Both agricultural residues and rural populations were geolocated, allowing for the matching of residual biomass availability with firewood demand. Three technologies for energy valorization were evaluated: briquetting, anaerobic digestion, and direct combustion. An estimated 292,760 to 522,696 tons of agricultural residues are generated annually, with an energy potential of 381 to 521 TJ/year through direct combustion, equivalent to 20.6%–28.1% of the department's electricity demand in 2022. Data show that 70% of rural households still rely on firewood for cooking. In Indigenous communities, only 6% have access to natural gas and 22% to electricity. The energy potential could cover between 57% and 78% of firewood demand using electric stoves. Anaerobic digestion could produce 8.6 to 10 million m³/year of biogas, equivalent to 16%–18% of that demand. The use of briquettes with improved stoves could cover 28%–49% of the firewood demand. Among the options analyzed, briquetting emerged as the most viable approach for utilizing agricultural residues.Lista de Tablas y figuras 12 -- Introducción 16 -- Planteamiento del problema 19 – Hipótesis 21 -- Objetivos 22 -- Objetivo general 22 -- Objetivos específicos 22 -- Capítulo I. Marco teórico referencial 23 -- Estado del conocimiento y novedad del trabajo 23 -- Uso de biomasa tradicional y su impacto global 29 -- Procesos para la conversión energética de la biomasa residual agrícola 33 -- Digestión anaeróbica 35 -- Digestores de cúpula fija 36 -- Digestores de tambor flotante 37 -- Digestores tubulares 38 -- Inversión de capital y los costos de instalación para los digestores domésticos 40 -- Tecnologías de briquetado 42 -- Prensa extrusora de tornillo 42 -- Prensa de rodillos 43 -- Prensa de pistón (mecánica o hidráulica) 43 -- Prensa manual 43 -- Comparación de tecnología de briquetas 44 -- Combustión directa 46 -- Combustión de lecho fijo (horno con parrilla) 47 -- Combustión de lecho fluidizado 48 -- Combustión con combustible pulverizado 48 -- Ventajas y desventajas de las tecnologías de combustión directa 49 -- Capítulo II. Materiales y métodos 56 -- Zona de estudio: departamento de La Guajira 56 -- Matriz energética y acceso a la energía moderna 56 -- Demanda de leña 59 -- Agricultura en el Departamento de La Guajira 64 -- Disponibilidad y Uso de la Biomasa Residual Agrícola 67 -- Residuos Agrícolas de Banano o Plátano 67 -- Residuos Agrícolas de Yuca 69 -- residuos agrícolas de maíz 70 -- Residuos agrícolas de la cosecha de arroz 71 -- Residuos agrícolas del café 72 -- Residuos agrícolas del algodón 73 -- Residuos agrícolas de la cosecha de coco 74 -- Residuos agrícolas de la cosecha del frijol 75 -- Residuos agrícolas de la caña panelera 76 -- Biomasa residual agrícola disponible 77 -- Geolocalización de las fuentes residuales de biomasa agrícola 83 -- Caracterización de la biomasa residual agrícola del departamento de La Guajira -- 86 Materiales lignocelulósicos 89 -- Propiedades fisicoquímicas 91 -- Contenido de humedad 91-- Carbono fijo 91 -- Material volátil 91 -- Contenido de cenizas 92 -- Poder calorífico 92 -- Determinación del potencial energético de las tecnologías de conversión de la biomasa 93 -- Combustión directa 94 -- Digestión anaeróbica 95 -- Potencial eléctrico de la biomasa 96 – Briquetado 98 -- Capítulo III. Potencial Energético de la Biomasa Residual Agrícola 102 -- Potencial Energético con Tecnologías de Briquetado 102 -- Potencial Energético Para la aplicación de tecnologías de digestión anaerobia 106 -- Potencial energético para la aplicación de tecnologías de combustión directa 112 -- Evaluación de escenarios de implementación de sistemas de aprovechamiento energético de la biomasa en el departamento de La Guajira 117 -- Emisiones de gases de efecto invernadero (GEI) 127 -- Mitigación de las emisiones de PM 131 -- Desempeño económico 134 -- Evaluación del desempeño de las tecnologías 143 -- Escenario de estudio: Clúster EE29 147 -- Barreras y drivers a la implementación de los diferentes escenarios energéticos 150 -- Estrategias de implementación de los escenarios energéticos evaluados 153 -- Discusión de los resultados 157 – Conclusiones 162 – Recomendaciones 164 -- Referencias 166Doctor(a) en Ingenieria EnergéticaDoctorado259 páginasapplication/pdfspaCorporación Universidad de la CostaEnergiaBarranquilla, ColombiaDoctorado en Ingenieria EnergéticaCorporación Universidad de la CostaPotencial energético aprovechable de la biomasa en el departamento de la GuajiraTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionGuajiraAbdou Alio, M., Tugui, O. C., Rusu, L., Pons, A., & Vial, C. (2020). Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 310, 123412. https://doi.org/10.1016/J.BIORTECH.2020.123412Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Hussain, M., Hossain, N., Abu Bakar, M. S., Khurram, S., Majeed, K., & Park, Y. K. (2021). Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. Journal of Cleaner Production, 287, 125047. https://doi.org/10.1016/J.JCLEPRO.2020.125047Abdullah, N., Sulaiman, F., & Taib, R. M. (2013). Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. AIP Conference Proceedings, 1528(1), 325–330. https://doi.org/10.1063/1.4803618Abdullah, N., Sulaiman, F., & Taib, R. M. (2014). Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. International Scholarly and Scientific Research & Innovation, 8(8), 815–819.Adams, P. W., Hammond, G. P., McManus, M. C., & Mezzullo, W. G. (2011). Barriers to and drivers for UK bioenergy development. Renewable and Sustainable Energy Reviews, 15(2), 1217–1227. https://doi.org/10.1016/J.RSER.2010.09.039Admasie, A., Kumie, A., Worku, A., & Tsehayu, W. (2019). Household fine particulate matter (PM2.5) concentrations from cooking fuels: the case in an urban setting, Wolaita Sodo, Ethiopia. Air Quality, Atmosphere and Health, 12(6), 755–763. https://doi.org/10.1007/S11869-019-00700-0/METRICSAgronet. (2023). En la “baba” del café crecen bacterias importantes para la salud y la industria. https://www.agronet.gov.co/Noticias/Paginas/En-la- %E2%80%9Cbaba%E2%80%9D-del-caf%C3%A9-crecen-bacterias-importantes-para-la salud-y-la-industria.aspxAkhator, P. E., Bazuaye, L., Ewere, A., & Oshiokhai, O. (2023). Production and characterisation of solid waste-derived fuel briquettes from mixed wood wastes and waste pet bottles. Heliyon, 9(11), e21432. https://doi.org/10.1016/J.HELIYON.2023.E21432Akinbomi, J., Brandberg, T., Sanni, S. A., & Taherzadeh, M. J. (2014). Development and dissemination strategies for accelerating biogas production in Nigeria. BioResources, 9(3), 5707–5737. https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-1982Akter, M. M., Surovy, I. Z., Sultana, N., Faruk, M. O., Gilroyed, B. H., Tijing, L., Arman, Didar ul-Alam, M., Shon, H. K., Nam, S. Y., & Kabir, M. M. (2024). Techno-economics and environmental sustainability of agricultural biomass-based energy potential. Applied Energy, 359, 122662. https://doi.org/10.1016/J.APENERGY.2024.122662Al Afif, R., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250–2258. https://doi.org/10.1016/J.RENENE.2019.09.146Al Afif, R., Tondl, G., & Pfeifer, C. (2023). Experimental and simulation study of hydrochar production from cotton stalks. Energy, 276, 127573. https://doi.org/10.1016/J.ENERGY.2023.127573Alfaro, K. A., Alfaro, K. A., & García, L. A. (2023). Análisis del abordaje social en la incorporación de proyectos de energías renovables: una revisión documental. Revista Nuevo Humanismo, 11(1), 107–135. https://doi.org/10.15359/rnh.11-1.5Alia Najihah Md Noh, N., Karim, L., & Radhiah Omar, S. (2022). Value-Added Products from Pumpkin Wastes: A Review. 8(1). https://doi.org/10.33102/2022231Allende, S., Brodie, G., & Jacob, M. V. (2022). Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions. Bioresource Technology Reports, 20, 101283. https://doi.org/10.1016/J.BITEB.2022.101283Alves, J. L. F., da Silva, J. C. G., Sellin, N., Prá, F. de B., Sapelini, C., Souza, O., & Marangoni, C. (2022). Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions. Environmental Science and Pollution Research, 29(17), 25733–25747. https://doi.org/10.1007/S11356-021-17381-X/TABLES/4Alves, R. C., Rodrigues, F., Antónia Nunes, M., Vinha, A. F., & Oliveira, M. B. P. P. (2017). State of the art in coffee processing by-products. Handbook of Coffee Processing By Products: Sustainable Applications, 1–26. https://doi.org/10.1016/B978-0-12-811290- 8.00001-3Ansari, S. A., Shakeel, A., Sawarkar, R., Maddalwar, S., Khan, D., & Singh, L. (2023). Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. Environmental Research, 224, 115529. https://doi.org/10.1016/J.ENVRES.2023.115529Anuchi, S. O., Campbell, K. L. S., & Hallett, J. P. (2022). Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-022-09629-4Arenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8), e10195. https://doi.org/10.1016/J.HELIYON.2022.E10195Arias Félix, R. (2022). Proyecciones de las emisiones por la quema de leña en base a un modelo energético de una casa chilena.Aristizábal-Marulanda, V., Chacón-Perez, Y., & Cardona Alzate, C. A. (2017). The biorefinery concept for the industrial valorization of coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications, 63–92. https://doi.org/10.1016/B978-0-12-811290-8.00003-7ASBAMA. (2019). Asociación de Bananeros del Magdalena y La Guajira. https://www.asbama.com/home/detallesnoticias/2205Ayala, A., Acosta, J., & Reyes Luis. (2021). El Cultivo del Frijol Presente y Futuro para México.Azasi, V. D., Offei, F., Kemausuor, F., & Akpalu, L. (2020). Bioenergy from crop residues: A regional analysis for heat and electricity applications in Ghana. Biomass and Bioenergy, 140, 105640. https://doi.org/10.1016/J.BIOMBIOE.2020.105640Azeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 13, e00909. https://doi.org/10.1016/J.SCIAF.2021.E00909Baêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & Fdz Polanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/J.BIORTECH.2017.08.110Bain, R., Amos, W., Downing, M., Perlack, R., & Ridge, O. (2003). Highlights of Biopower Technical Assessment: State of the Industry and the Technology. http://www.osti.gov/bridgeBANCO DE LA REPÚBLICA. (2022). Boletín de Indicadores Económicos (BIE) | Banco de la República. https://www.banrep.gov.co/es/bieBANCO MUNDIAL. (2022). Energía. https://www.bancomundial.org/es/topic/energy/overviewBANCO MUNDIAL; (2022). What a Waste 2.0: Una instantánea global de la gestión de residuos sólidos hasta 2050. https://www.bancomundial.org/es/news/press release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is taken-world-bank-reporBANCO MUNDIAL. (2023). Energía. https://www.bancomundial.org/es/topic/energy/overviewBapfakurera, E. N., Kilawe, C. J., Uwizeyimana, V., Uwihirwe, J., Nyagatare, G., Nduwamungu, J., & Nyberg, G. (2024). The challenges associated with firewood supply and analysis of fuel quality parameters of the tree species used as firewood in Rwanda. Biomass and Bioenergy, 190, 107408. https://doi.org/10.1016/J.BIOMBIOE.2024.107408Barrera Hernandez, J. C., Sagastume Gutierrez, A., Ramírez-Contreras, N. E., Cabello Eras, J. J., García-Nunez, J. A., Barrera Agudelo, O. R., & Silva Lora, E. E. (2024). Biomass-based energy potential from the oil palm agroindustry in Colombia: A path to low carbon energy transition. Journal of Cleaner Production, 449, 141808. https://doi.org/10.1016/J.JCLEPRO.2024.141808Barría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007Barry, F., Sawadogo, M., Ouédraogo, I. W. K., Traoré/Bologo, M., & Dogot, T. (2022). Geographical and economic assessment of feedstock availability for biomass gasification in Burkina Faso. Energy Conversion and Management: X, 13, 100163. https://doi.org/10.1016/J.ECMX.2021.100163Baruah, J., Bardhan, P., Mukherjee, A. K., Deka, R. C., Mandal, M., & Kalita, E. (2022). Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. International Journal of Biological Macromolecules, 201, 298–307. https://doi.org/10.1016/J.IJBIOMAC.2021.12.179Bastidas-Barranco, M., Valera-Restrepo, R., Serrano-Florez, D., Bastidas-Barranco, M., Valera Restrepo, R., & Serrano-Florez, D. (2022). Producción de briquetas a partir de raquis residual de la palma africana para las comunidades alfareras del norte del Cesar (Colombia). Información Tecnológica, 33(1), 193–202. https://doi.org/10.4067/S0718- 07642022000100193Bello, R. S., Olorunnisola, A. O., Omoniyi, T. E., Onilude, M. A., Bello, R. S., Olorunnisola, A. O., Omoniyi, T. E., & Onilude, M. A. (2024). Technoeconomic Review of Briquette Production in a Screw Press [SP] and Hydraulic Piston Press [HPP]. Biomass Based Products. https://doi.org/10.5772/INTECHOPEN.1007809Betina, C. M., Atlanxochitl, M. G. M., Victor, B., & Omar, M. (2022). Longitudinal analysis and expected evolution of household fuel and stove stacking patterns in rural Mexico. Energy for Sustainable Development, 70, 1–9. https://doi.org/10.1016/J.ESD.2022.06.011Bhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7, 100212. https://doi.org/10.1016/J.BITEB.2019.100212Blair, J., Gagnon, B., & Klain, A. (2021). Biomass Supply and the Sustainable Development Goals International Case Studies xxxx: xx IEA Bioenergy: Task XX Month Year xxxx: xx Biomass Supply and the Sustainable Development Goals International case studies Title of publication Subtitle of publication.Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022a). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022b). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022c). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321. https://doi.org/10.1016/J.APENERGY.2022.119430Bot, B. V., Axaopoulos, P. J., Sakellariou, E. I., Sosso, O. T., & Tamba, J. G. (2022d). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430Bot, B. V., Tamba, J. G., & Sosso, O. T. (2024). Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Conversion and Biorefinery, 14(2), 1905–1917. https://doi.org/10.1007/S13399-022-02388-2Boundy, R. G., Diegel, S. W., Wright, L. L., & Davis, S. C. (2011). Biomass Energy Data Book: Edition 4. https://doi.org/10.2172/1050890Brachi, P., Miccio, F., Miccio, M., & Ruoppolo, G. (2016). Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Processing Technology, 154, 243–250. https://doi.org/10.1016/J.FUPROC.2016.09.001Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024a). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024b). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.14062Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024c). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624Brunerová, A., Brožek, M., Van Dung, D., Phung, L. D., Hasanudin, U., Iryani, D. A., Chaloupková, V., & Roubík, H. (2024d). Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. Journal of Cleaner Production, 436, 140624. https://doi.org/10.1016/J.JCLEPRO.2024.140624Buckley, P. (2019). IEA BIOENERGY TECHNOLOGY COLLABORATION PROGRAMME. IEA Bioenergy.Buelvas Puello, L. I. P. M. D. F. A. G. C. R. (2015). DIAGNÓSTICO DE LOS PRINCIPALES RESIDUOS AGRÍCOLAS GENERADOS EN EL DEPARTAMENTO DE BOLÍVAR DIAGNOSTIC OF THE MAIN AGRICULTURAL RESIDUES PRODUCED IN THE BOLIVAR REGION. Scientia Agroalimentaria. https://www.researchgate.net/publication/287241017_DIAGNOSTICO_DE_LOS_PRIN CIPALES_RESIDUOS_AGRICOLAS_GENERADOS_EN_EL_DEPARTAMENTO_D E_BOLIVAR_DIAGNOSTIC_OF_THE_MAIN_AGRICULTURAL_RESIDUES_PRO DUCED_IN_THE_BOLIVAR_REGIONCAEM. (2015). INVENTARIO NACIONAL DEL SECTOR LADRILLERO COLOMBIANO.CAF. (2024). Hacia una transición energética justa en América Latina y el Caribe. https://www.caf.com/es/blog/hacia-una-transicion-energetica-justa-en-america-latina-y el-caribe/Calle Mendoza, I. J., Gorritty Portillo, M. A., Ruiz Mayta, J. G., Alanoca Limachi, J. L., Torretta, V., & Ferronato, N. (2024a). Social acceptance, emissions analysis and potential applications of paper-waste briquettes in Andean areas. Environmental Research, 241, 117609. https://doi.org/10.1016/J.ENVRES.2023.117609Calle Mendoza, I. J., Gorritty Portillo, M. A., Ruiz Mayta, J. G., Alanoca Limachi, J. L., Torretta, V., & Ferronato, N. (2024b). Social acceptance, emissions analysis and potential applications of paper-waste briquettes in Andean areas. Environmental Research, 241, 117609. https://doi.org/10.1016/J.ENVRES.2023.117609Cámara de comercio de La Guajira. (2023a). CÁMARA DE COMERCIO DE LA GUAJIRA INFORME SOCIOECONÓMICO DEL DEPARTAMENTO DE LA GUAJIRA 2022 LA GUAJIRA POS PANDEMIA: ACTIVIDAD REGISTRAL-SITUACIÓN SOCIOECONÓMICA Riohacha, enero 2023. www.camaraguajira.orgCámara de comercio de La Guajira. (2023b). Informe Socioeconómico Departamento de La Guajira – Cámara de Comercio de La Guajira. https://camaraguajira.org/informe socioeconomico-departamento-de-la-guCameron, J. B., Kumar, A., & Flynn, P. C. (2007). The impact of feedstock cost on technology selection and optimum size. Biomass and Bioenergy, 31(2), 137–144. https://doi.org/10.1016/j.biombioe.2006.07.005Caputo, A. C., Palumbo, M., Pelagagge, P. M., & Scacchia, F. (2005). Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass and Bioenergy, 28(1), 35–51. https://doi.org/10.1016/j.biombioe.2004.04.009Cardona, S., Orozco, L. M., Gómez, C. L., Solís, W. A., Velásquez, J. A., & Rios, L. A. (2021). Valorization of banana residues via gasification coupled with electricity generation. Sustainable Energy Technologies and Assessments, 44, 101072. https://doi.org/10.1016/J.SETA.2021.101072Carlos Urueta, J., Urbina, J., Alex Weber, I., Antonio Bula Silvera, Q., Enrique Sanjuán, M., Verdeza Alvarez, A., Natalia Hernandez, I., & David Pérez, J. (2021). Valoración energética de los residuos del proceso de extracción de aceite de palma africana mediante gasificación. https://web.fedepalma.org/sites/default/files/files/Cenipalma/Presentaciones RT_/30_Valoracion_energetica_de_los_residuos_del_proceso_de_extraccion_de_aceite_ de_palma_africana_mediante_gasificacion.pdfCarvalho, D. J., Veiga, J. P. S., & Bizzo, W. A. (2017). Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation. Energy, 119, 178– 187. https://doi.org/10.1016/J.ENERGY.2016.12.067Castro, L., Escalante, H., Jaimes-Estévez, J., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035Causil Villalba, R. D., & Guzmán Mestra, V. A. (2018). Caracterización de las fibras de capacho de maíz (Zea Mays) como material de refuerzo alternativo para el concreto mediante ensayos mecánicos. https://repositorio.unicordoba.edu.co/handle/ucordoba/670Chakravarty, K. H., Sadi, M., Chakravarty, H., Andersen, J., Choudhury, B., Howard, T. J., & Arabkoohsar, A. (2024). Pyrolysis kinetics and potential utilization analysis of cereal biomass by-products; an experimental analysis for cleaner energy productions in India. Chemosphere, 353, 141420. https://doi.org/10.1016/J.CHEMOSPHERE.2024.14142Chávez Porras, Á., & Rodríguez González, A. (2016). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y Virtualidad, 9(2), 90–107. https://doi.org/10.18359/RAVI.2004Chen, C., Qu, B., Wang, W., Wang, W., Ji, G., & Li, A. (2021). Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass.Environmental Technology & Innovation, 24, 101872. https://doi.org/10.1016/J.ETI.2021.101872Chen, C., Yang, R., Wang, X., Qu, B., Zhang, M., Ji, G., & Li, A. (2022). Effect of in-situ torrefaction and densification on the properties of pellets from rice husk and rice straw. Chemosphere, 289, 133009. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133009Chen, L., Xing, L., & Han, L. (2009). Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, 13(9), 2689–2695. https://doi.org/10.1016/J.RSER.2009.06.025Cheng, W., Zhang, Y., & Wang, P. (2020). Effect of spatial distribution and number of raw material collection locations on the transportation costs of biomass thermal power plants. Sustainable Cities and Society, 55, 102040. https://doi.org/10.1016/J.SCS.2020.102040Chiang, K. Y., Lin, Y. X., Lu, C. H., Chien, K. L., Lin, M. H., Wu, C. C., Ton, S. S., & Chen, J. L. (2013). Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. International Journal of Hydrogen Energy, 38(28), 12318–12324. https://doi.org/10.1016/J.IJHYDENE.2013.07.041Chiang, L. E., Castro, F. A., & Molina, F. A. (2023). Socioeconomic and environmental benefits of substituting firewood with charcoal briquettes produced from biomass residues in the Forestry Belt in Chile. Energy for Sustainable Development, 77, 101341. https://doi.org/10.1016/J.ESD.2023.101341Ciro Castro, E., & Vidalia Virgüez Garzón, N. (2019). Evaluación del mucílago del café (Coffea arabica L. Caturra) como potencial prebiótico en una bebida de arroz. https://ciencia.lasalle.edu.co/CML - Department of Industrial Ecology. (2016). CML-IA Characterisation Factors. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia characterisation-factorCobo Barrera, D. F., Gómez P., A. L. , D., & Gil, N. J. , C. (2015). Pirólisis de residuos de cosecha de caña de azúcar (RAC) como alternativa de aprovechamiento en procesos de cogeneración [recurso electrónico]. https://bibliotecadigital.univalle.edu.co/handle/10893/8696Consorcio Estrategia Rural Sostenible, & UPME. (2019). Realizar un estudio que permita formular un programa actualizado de sustitución progresiva de leña como energético en el sector residencial en Colombia, con los componentes necesarios para su ejecución. In Unidad de Planeación Minero Energética, Ministerio de Minas y Energia.CORPOGUAJIRA. (2021). Predicción climática para la guajira . https://corpoguajira.gov.co/wp/wp-content/uploads/2021/12/Prediccion-climatica-La Guajira-diciembre21.pdfCORPOGUAJIRA. (2023). Corporación Autónoma Regional de La Guajira Corporación Autónoma Regional de La Guajira. https://corpoguajira.gov.co/wp/CORPOGUAJIRA, UPME, USAID, I. (2016). Plan de energización rural del departamento de La Guajira. https://sig.upme.gov.co/SIPERSCorro, G., Pal, U., & Cebada, S. (2014). Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment. Energy Science & Engineering, 2(4), 177–187. https://doi.org/10.1002/ESE3.44Cortez, L. A. B., Baldassin, R., & De Almeida, E. (2020). Energy from sugarcane. Sugarcane Biorefinery, Technology and Perspectives, 117–139. https://doi.org/10.1016/B978-0-12- 814236-3.00007-XCosta, M. A. M., Schiavon, N. C. B., Felizardo, M. P., Souza, A. J. D., & Dussán, K. J. (2023). Emission analysis of sugarcane bagasse combustion in a burner pilot. Sustainable Chemistry and Pharmacy, 32, 101028. https://doi.org/10.1016/J.SCP.2023.101028Cruz, G., Rodrigues, A. da L. P., da Silva, D. F., & Gomes, W. C. (2021). Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. Journal of Thermal Analysis and Calorimetry, 143(5), 3611– 3622. https://doi.org/10.1007/S10973-020-09330-6Dagnachew, A. G., Hof, A. F., Lucas, P. L., & van Vuuren, D. P. (2020). Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 192. https://doi.org/10.1016/J.ENERGY.2019.116641Dai, J., Cui, H., & Grace, J. R. (2012). Biomass feeding for thermochemical reactors. Progress in Energy and Combustion Science, 38(5), 716–736. https://doi.org/10.1016/J.PECS.2012.04.002DANE. (2018). Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo nacional-de-poblacion-y-vivenda-2DANE. (2019a). DANE - Medida de pobreza multidimensional de fuente censal. https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de vida/pobreza-y-desigualdad/medida-de-pobreza-multidimensional-de-fuente-censaDANE. (2019b). Encuesta nacional agropecuaria (ENA). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta nacional-agropecuaria-enaDANE. (2022a). DANE - Encuesta nacional de calidad de vida (ECV) 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida ecv/encuesta-nacional-de-calidad-de-vida-ecv 2022?highlight=WyJlbmN1ZXN0YSIsImVuY3Vlc3RhcyIsImVuY3Vlc3RhZG9zIiwiZ W5jdWVzdGFkb3JhIiwiZW5jdWVzdGFkb3IiLCJlbmN1ZXN0YWRvcmVzIiwiZW5jdDANE. (2022b). DANE - Encuesta nacional de calidad de vida (ECV) 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida ecv/encuesta-nacional-de-calidad-de-vida-ecv-2022?highlight=WyJlY3YiXQDanlami, U. D. (2018). Assessing the impacts of fuel wood harvesting activities on forest degradation in Kwata area, Mutum-Biyu, Gassol local Government area, Taraba State, Nigeria. http://hdl.handle.net/20.500.12306/1265Dassanayake, G. D. M., & Kumar, A. (2012). Techno-economic assessment of triticale straw for power generation. Applied Energy, 98, 236–245. https://doi.org/10.1016/J.APENERGY.2012.03.030De Doctorado, P., Derecho, E. N., Perna, M., & Directora, H. (2022). Régimen jurídico de la inversión extranjera en América Latina, con especial referencia a la inversión de las empresas españolas en Bolivia. https://ddd.uab.cat/record/265513Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183–188. https://doi.org/10.1016/S0196- 8904(00)00050-9Démurger, S., & Fournier, M. (2011). Poverty and firewood consumption: A case study of rural households in northern China. China Economic Review, 22(4), 512–523. https://doi.org/10.1016/J.CHIECO.2010.09.009Deneke, F. (2020). Woody Biomass Feedstock Yard Business Development Guide A resource and business guide to developing a woody biomass collection yard. http://www.forestsandrangelands.gov/Woody_Biomass/contact.shtmlDeng, M., Li, P., Ma, R., Shan, M., & Yang, X. (2020). Air pollutant emission factors of solid fuel stoves and estimated emission amounts in rural Beijing. Environment International, 138, 105608. https://doi.org/10.1016/J.ENVINT.2020.105608Dewi, P., Millati, R., Indrati, R., & Sardjono. (2018). Effect of Lime Pretreatment on Microstructure of Cassava Stalk Fibers and Growth of Aspergillus niger. Biosaintifika, 10(1), 205–212. https://doi.org/10.15294/BIOSAINTIFIKA.V10I1.13802Dilkushi, H. A. S., Jayarathna, S., Manipura, A., Chamara, H. K. B. S., Edirisinghe, D., Vidanarachchi, J. K., & Priyashantha, H. (2024). Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative. Carbohydrate Polymer Technologies and Applications, 7, 100472. https://doi.org/10.1016/J.CARPTA.2024.100472Djomo, S. N., Staritsky, I., Elbersen, B., Annevelink, B. (E )., & Gabrielle, B. (2023). Supply costs, energy use, and GHG emissions of biomass from marginal lands in Brittany, France. Renewable and Sustainable Energy Reviews, 181, 113244. https://doi.org/10.1016/J.RSER.2023.113244Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., & Ni, M. (2018a). Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of The Total Environment, 626, 744–753. https://doi.org/10.1016/J.SCITOTENV.2018.01.151Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., & Ni, M. (2018b). Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of The Total Environment, 626, 744–753. https://doi.org/10.1016/J.SCITOTENV.2018.01.151EL TIEMPO. (2021). Viche, chirrinchi y otras bebidas ancestrales en el top 5 de nuestra comida. https://www.eltiempo.com/cultura/gastronomia/viche-chirrinchi-y-otras-bebidas ancestrales-en-el-top-5-de-nuestra-comida-5679Elehinafe, F. B., & Okedere, O. B. (2023). Fuel-Briquetting for Sustainable Development in Developing Countries-A Review. Advances in Environmental and Engineering Research, 04(03), 1–13. https://doi.org/10.21926/AEER.2303040Eliasson, J., & Carlsson, V. (2020). Agricultural waste and wood waste for pyrolysis and biochar : An assessment for Rwanda. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva 28361Energy | Missouri Department of Natural Resources. (2023). https://dnr.mo.gov/energyEpa, & CHP. (2007). Biomass Combined Heat and Power Catalog of Technologies. www.epa.gov/chp.Escobar, L. M. A., Álvarez, U. S., & Peñuela, M. (2012). Inmovilización de levaduras en residuos lignocelulósicos para la producción de etanol en biorreactor de lecho empacado. Revista Facultad de Ingeniería Universidad de Antioquia, 62, 66–76. https://doi.org/10.17533/UDEA.REDIN.12459Fajola, A., Fakunle, B., Aguwa, E. N., Ogbonna, C., & Ozioma-Amechi, A. (2014). Effect of an improved cookstove on indoor particulate matter, lung function and fuel efficiency of firewood users. 2(8), 189. www.usa-journals.comFAO. (2009). Small-Scale Bioenergy Initiatives. https://www.fao.org/4/aj991e/aj991e00.htmFAO. (2011). Manual de biogás.FAO. (2014a). BIOENERGÍA Y SEGURIDAD ALIMENTARIA ÉVALUACIÓN RÁPIDA (BEFS RA) Manual de Usuario BRIQUETAS.FAO. (2014b). BIOENERGÍA Y SEGURIDAD ALIMENTARIA ÉVALUACIÓN RÁPIDA (BEFS RA) Manual de Usuario BRIQUETAS.FAO. (2014c). CROP RESIDUES AND LIVESTOCK RESIDUES - User Manual. https://www.fao.org/energy/bioenergy/bioenergy-and-food-security/assessment/befs ra/natural-resources/enFAO. (2023a). FAOSTAT. https://www.fao.org/faostat/en/#data/GT/visualizeFAO. (2023b). Proyecciones sobre la alimentación y la agricultura hasta el año 2050 | Estudios de perspectivas mundiales | Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/global-perspectives-studies/food-agriculture projections-to-2050/eFelipe, A., González, R., & Montes, C. F. (2019). Valorización de residuos de frutas para combustión y pirólisis. Revista Politécnica, 15(28), 42–53. https://doi.org/10.33571/RPOLITEC.V15N28A4Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/J.ENCONMAN.2013.08.008Ferreira, S., Monteiro, E., Brito, P., & Vilarinho, C. (2017). Biomass resources in Portugal: Current status and prospects. Renewable and Sustainable Energy Reviews, 78, 1221– 1235. https://doi.org/10.1016/J.RSER.2017.03.140Ferrer Martí, I., Poggio, D., Mas, A., Batet Miracle, L., & Velo García, E. (2008). Implementación de biodigestores familiares en el Perú. Experiencias de Yanaoca (Cusco) y Ventanilla (Lima). https://recercat.cat//handle/2072/247577Ferrer-Martí, L., Ferrer, I., Sánchez, E., & Garfí, M. (2018). A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renewable and Sustainable Energy Reviews, 95, 74–83. https://doi.org/10.1016/J.RSER.2018.06.064Figueroa Cuello, A. N. (2019). Determinantes de la aceptación social de las tecnologías energéticas renovables desde la perspectiva del usuario líder en La Guajira – Colombia. https://repository.upb.edu.co/handle/20.500.11912/4924Fleta-Asín, J., & Muñoz, F. (2021). Renewable energy public–private partnerships in developing countries: Determinants of private investment. Sustainable Development, 29(4), 653–670. https://doi.org/10.1002/SD.2165Flores, W. C., Bustamante, B., Pino, H. N., Al-Sumaiti, A., & Rivera, S. (2020). A National Strategy Proposal for Improved Cooking Stove Adoption in Honduras: Energy Consumption and Cost-Benefit Analysis. Energies 2020, Vol. 13, Page 921, 13(4), 921. https://doi.org/10.3390/EN13040921Food and Agriculture Organization. (2020). For Food, Agriculture, And the environment 2 0 2 0 enFoQue INSTITUTO INTERNACIONAL DE INVESTIGACIÓN SOBRE POLÍTICAS ALIMENTARIAS soluciones sostenibles para acabar con el hambre y la pobreza BioenergíA y AgriculturA: PromesAs y retos. http://www.fao.org/sd/EGdirect/EGre0055.htmFood and Agriculture Organization of the United Nations (FAO). (2014). Bioenergía y seguridad alimentaria évaluación rápida (BEFs RA). Manual de usuario briquetas. Food and Agriculture Organization of the United Nations (FAO).Fuentes-Cortés, L. F., Rodríguez-Gutiérrez, J. E., López-Ramírez, M. D., & Martínez-Gutiérrez, N. (2023). Involving energy security and a Water–Energy-Environment nexus framework in the optimal integration of rural water–energy supply systems. Energy Conversion and Management, 293, 117452. https://doi.org/10.1016/J.ENCONMAN.2023.117452Gallego-Schmid, A., López-Eccher, C., Muñoz, E., Salvador, R., Londono, N. A. C., Barros, M. V., Bernal, D. C., Mendoza, J. M. F., Nadal, A., & Guerrero, A. B. (2024). Circular economy in Latin America and the Caribbean: Drivers, opportunities, barriers and strategies. Sustainable Production and Consumption. https://doi.org/10.1016/J.SPC.2024.09.006Gandam, P. K., Chinta, M. L., Gandham, A. P., Pabbathi, N. P. P., Konakanchi, S., Bhavanam, A., Atchuta, S. R., Baadhe, R. R., & Bhatia, R. K. (2022). A New Insight into the Composition and Physical Characteristics of Corncob—Substantiating Its Potential for Tailored Biorefinery Objectives. Fermentation, 8(12), 704. https://doi.org/10.3390/FERMENTATION8120704/S1Gani, A. (2020). Food Research 4 (Suppl. 1) : 78-84 Physicochemical composition of different parts of cassava (Manihot esculenta Crantz) plant. https://doi.org/10.26656/fr.2017.4(S1).S33García, D., Zegarra, R., Cordova-Ramos, J. S., Pilco-Quesada, S., Jave, J., & Ruiz, ; Alfonso. (2021). Caracterización morfológica por microscopía electrónica de barrido de nanocelulosas de cáscara de sandía (Citrullus lanatus). Agroindustrial Science, ISSN-e 2226-2989, Vol. 11, No . 2 (Mayo-Agosto), 2021, Págs. 149-157, 11(2), 149–157. https://doi.org/10.17268/agroind.sci.2021.02.03Garfí, M., Castro, L., Montero, N., Escalante, H., & Ferrer, I. (2019). Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274(October 2018), 541–548. https://doi.org/10.1016/j.biortech.2018.12.007Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/J.RSER.2016.01.071Gesase, L. E., King’ondu, C. K., & Jande, Y. A. C. (2020). Manihot glaziovii-Bonded and Bioethanol-Infused Charcoal Dust Briquettes: A New Route of Addressing Sustainability, Ignition, and Food Security Issues in Briquette Production. Bioenergy Research, 13(1), 378–386. https://doi.org/10.1007/S12155-019-10076-9Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of The Royal Society Interface, 9(76), 2749–2766. https://doi.org/10.1098/rsif.2012.0341Giwa, A. S., Sheng, M., Maurice, N. J., Liu, X., Wang, Z., Chang, F., Huang, B., & Wang, K. (2023). Biofuel Recovery from Plantain and Banana Plant Wastes: Integration of Biochemical and Thermochemical Approach. Journal of Renewable Materials, 11(6), 2593–2629. https://doi.org/10.32604/JRM.2023.026314Global Forest Watch. (2022). BIOMASA MADERERA VIVA POR ENCIMA DEL SUELO EN LA GUAJIRA, COLOMBIA. https://www.globalforestwatch.org/dashboards/country/COL/18/?category=climate&dash boardPrompts=eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6WyJkYX NoYm9hcmRBbmFseXNlcyIsImRvd25sb2FkRGFzaGJvYXJkU3RhdHMiLCJzaGFyZV dpZGdldCJdLCJzZXR0aW5ncyI6eyJzaG93UHJvbXB0Gómez, J. A., Matallana, L. G., Teixeira, J. A., & Sánchez, Ó. J. (2023). A framework for the design of sustainable multi-input second-generation biorefineries through process simulation: A case study for the valorization of lignocellulosic and starchy waste from the plantain agro-industry. Chemical Engineering Research and Design, 195, 551–571. https://doi.org/10.1016/J.CHERD.2023.06.004Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141. https://doi.org/10.1016/J.RSER.2018.03.015Gómez-Vásquez, R. D., Castiblanco, E. A., Zapata Benabithe, Z., Bula Silvera, A. J., & Camargo-Trillos, D. A. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen performance of corn cob as received: Application in the Colombian Caribbean region. Biomass and Bioenergy, 153, 106207. https://doi.org/10.1016/J.BIOMBIOE.2021.106207Gonçalves, F. A., Ruiz, H. A., Silvino, E., Santos, D., Teixeira, J. A., Gorete, ·, & De Macedo, R. (2019). Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO 2-C 2 H 4 O 2 and Sequential NaClO 2-C 2 H 4 O 2 /Autohydrolysis Pretreatment. 10, 2249–2262. https://doi.org/10.1007/s12649- 018-0229-6Gong, J., & Zhang, M. (2022). Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation. Renewable Energy, 182, 946–957. https://doi.org/10.1016/J.RENENE.2021.11.032González, J. A. G. (2016). Residuos sólidos: problema, conceptos básicos y algunas estrategias de solución. Revista Gestión y Región, 22, 101–119. https://revistas.ucp.edu.co/index.php/gestionyregion/article/view/149Gonzalez-Salazar, M. A., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., Finkenrath, M., & Poganietz, W. R. (2014). Methodology for estimating biomass energy potential and its application to Colombia. Applied Energy, 136, 781–796. https://doi.org/10.1016/J.APENERGY.2014.07.004Goodman, B. A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143–162. https://doi.org/10.1016/J.JOBAB.2020.07.001Gregorio Rodríguez, M. de. (2015). Valorización energética de biomasas en el marco de la política energética española. Incentivos económico-financieros y políticos, aportación de valor añadido y prospectiva estratégica de desarrollo. https://doi.org/10.20868/UPM.THESIS.39586Guerrero, A. B., Aguado, P. L., Sánchez, J., & Curt, M. D. (2016). GIS-Based Assessment of Banana Residual Biomass Potential for Ethanol Production and Power Generation: A Case Study. Waste and Biomass Valorization, 7(2), 405–415. https://doi.org/10.1007/S12649-015-9455-3Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213, 176–185. https://doi.org/10.1016/J.FUEL.2017.10.105Guo, X., Xu, Z., Zheng, X., Jin, X., & Cai, J. (2022). Understanding pyrolysis mechanisms of corn and cotton stalks via kinetics and thermodynamics. Journal of Analytical and Applied Pyrolysis, 164, 105521. https://doi.org/10.1016/J.JAAP.2022.105521Guzmán-Bello, H., López-Díaz, I., Aybar-Mejía, M., Domínguez-Garabitos, M., & de Frias, J. A. (2023). Biomass Energy Potential of Agricultural Residues in the Dominican Republic. Sustainability 2023, Vol. 15, Page 15847, 15(22), 15847. https://doi.org/10.3390/SU15221584Han, M., Kim, Y., Kim, Y., Chung, B., & Choi, G. W. (2011). Bioethanol production from optimized pretreatment of cassava stem. Korean Journal of Chemical Engineering, 28(1), 119–125. https://doi.org/10.1007/S11814-010-0330-4/METRICSHays, M. D., Kinsey, J., George, I., Preston, W., Singer, C., & Patel, B. (2019). Carbonaceous Particulate Matter Emitted from a Pellet-Fired Biomass Boiler. Atmosphere 2019, Vol. 10, Page 536, 10(9), 536. https://doi.org/10.3390/ATMOS10090536Hendroko Setyobudi, R., Krido Wahono, S., Gamawati Adinurani, P., Wahyudi, A., Widodo, W., Mel, M., Adhi Nugroho, Y., Prabowo, B., & Liwang, T. (2018). Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks. MATEC Web of Conferences, 164, 01039. https://doi.org/10.1051/MATECCONF/201816401039Herguedas, A., Taranco, C., Rodrígez, E., & Paniagua, P. (2012). Biomasa, Biocombustibles Y Sostenibilidad. In Transbioma (Vol. 13, Issue 2).Hernández Hernández, Humberto. 50556., Orduz Prada, J. 37906., Zapata Lesmes, H. J. 37907., 37908., C. R. M. C., & Duarte Ortega, M. 37909. (2010). Atlas del potencial energético de la biomasa residual en Colombia /. Comput Graphics (ACM), 14(3), 71–77.Hikichi, S. E., Andrade, R. P., Dias, E. S., & Duarte, W. F. (2017). Biotechnological applications of coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications, 221–244. https://doi.org/10.1016/B978-0-12-811290-8.00008-6Hite, L. (2022). Biomass Fuel Briquettes from Banana Plant Waste. www.leehite.orgHochschild, F., Herrera Araújo Coordinador Área Pobreza Desarrollo Sostenible Oliverio Huertas Rodríguez, F., García Estévez, J., Pardo Rueda, R., Carlos Cortés González, J., Arbeláez, L., Perfetti, L., Romero Guerrero Presidente Ejecutivo Belsy Maria Munive Herrera, Á., & Soto Iguarán Director Eduardo Romero, C. (2023). Coordinador Nacional-Proyecto Red ORMET MINISTERIO DEL TRABAJO. www.pnud.org.coHonorato-Salazar, J. A., & Sadhukhan, J. (2020). Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Bioproducts Processing, 119, 1–19. https://doi.org/10.1016/J.FBP.2019.10.005Hu, M., Chen, J., Yu, Y., & Liu, Y. (2022). Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery. Molecules, 27(19). https://doi.org/10.3390/MOLECULES27196359/S1Huang, Y., Wei, X., Zhou, S., Liu, M., Tu, Y., Li, A., Chen, P., Wang, Y., Zhang, X., Tai, H., Peng, L., & Xia, T. (2015). Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology, 181, 224–230. https://doi.org/10.1016/J.BIORTECH.2015.01.020Hupa, M., Karlström, O., & Vainio, E. (2017). Biomass combustion technology development - It is all about chemical details. Proceedings of the Combustion Institute, 36(1), 113–134. https://doi.org/10.1016/J.PROCI.2016.06.152Hurskainen, M., & Vainikka, P. (2016). Technology options for large-scale solid-fuel combustion. Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 177– 199. https://doi.org/10.1016/B978-1-78242-378-2.00007-9ICA. (2022). Protección Vegetal.ICA. (2023). Instituto Colombiano Agropecuario - ICA. https://www.ica.gov.co/el ica/directorio/guajira.aspIDEAM. (2016). Inventario nacional y departamental de gases efecto invernadero. Colombia.IDEAM. (2022). LA GUAJIRA - Atlas Interactivo - IDEAM.IEA. (2017). Technology Roadmap: Delivering Sustainable Bioenergy | Bioenergy. https://www.ieabioenergy.com/blog/publications/technology-roadmap-delivering sustainable-bioenergyIEA. (2023). World Energy Outlook 2023 – Analysis - IEA. https://www.iea.org/reports/world energy-outlook-2023IEA; IRENA; UNSD; World Bank; WHO. (2023). Tracking SDG 7 | Progress Towards Sustainable Energy. https://trackingsdg7.esmap.org/Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., & Adegoke, K. A. (2023a). Biochar from coconut residues: An overview of production, properties, and applications. Industrial Crops and Products, 204, 117300. https://doi.org/10.1016/J.INDCROP.2023.117300Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., & Adegoke, K. A. (2023b). Biochar from coconut residues: An overview of production, properties, and applications. Industrial Crops and Products, 204, 117300. https://doi.org/10.1016/J.INDCROP.2023.11730Inna, S. (2015). Energy Potential of Waste Derived from Some Food Crop Products in the Northern Part of Cameroon. International Journal of Energy and Power Engineering, 4(6), 342. https://doi.org/10.11648/J.IJEPE.20150406.13International Finance Corporation. (2017). Converting Biomass to Energy. Converting Biomass to Energy. https://doi.org/10.1596/28305International Renewable Energy Agency, T. (2019). SOLID BIOMASS SUPPLY FOR HEAT AND POWER TECHNOLOGY BRIEF SOLID BIOMASS SUPPLY FOR HEAT AND POWER 2. www.irena.orgIRENA. (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES Biomass for Power Generation Acknowledgement. www.irena.org/PublicationsIRENA. (2015). Renewable Power Generation Costs in 2014. https://www.irena.org/publications/2015/Jan/Renewable-Power-Generation-Costs-in 201IRENA. (2020). Costos de generación de energía renovable en 2020: Resumen ejecutivo.IRENA. (2022). Perspectivas de Transiciones Energéticas Mundiales. https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022IRENA. (2023). Un nuevo informe revela retrasos en el acceso a energías básicas y la necesidad de invertir en renovables. https://www.irena.org/News/pressreleases/2023/Jun/Basic Energy-Access-Lags-Amid-Renewable-Opportunities-New-Report-Shows-EIsikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263JIslam, M. A., Akber, M. A., Limon, S. H., Akbor, M. A., & Islam, M. A. (2019). Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization. Biomass Conversion and Biorefinery, 9(4), 651–658. https://doi.org/10.1007/S13399-019-00405-5James, A., & Yadav, D. (2021). Valorization of coconut waste for facile treatment of contaminated water: A comprehensive review (2010-2021). Environmental Technology & Innovation, 24, 102075. https://doi.org/10.1016/j.eti.2021.102075Jekayinfa, S. O., Orisaleye, J. I., & Pecenka, R. (2020). An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources 2020, Vol. 9, Page 92, 9(8), 92. https://doi.org/10.3390/RESOURCES9080092Jerzak, W., & Kuźnia, M. (2021). Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions. Renewable Energy, 167, 497–507. https://doi.org/10.1016/J.RENENE.2020.11.105José, V., Campo, I., Naidee, N., Riveira, M., José, A., & Moscote, P. (2021). Sistema híbrido de energías alternativas y su percepción social en la Alta Guajira. Aglala, ISSN-e 2215-7360, Vol. 12, No . 1, 2021 (Ejemplar Dedicado a: Revista Aglala), Págs. 173-191, 12(1), 173–191. https://dialnet.unirioja.es/servlet/articulo?codigo=8458746&info=resumen&idioma=ENGKabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Journal of Sustainable Development, 11(2), 14. https://doi.org/10.5539/JSD.V11N2P14Kanchanasuta, S., Sillaparassamee, O., Champreda, V., Singhakant, C., & Pisutpaisal, N. (2022). Optimization of pretreatment process of cassava rhizome for bio-succinic fermentation by Actinobacillus succinogenes. Biomass Conversion and Biorefinery, 12(11), 4917–4924. https://doi.org/10.1007/S13399-020-00954-0Karatas, H., Olgun, H., & Akgun, F. (2013). Experimental results of gasification of cotton stalk and hazelnut shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 112, 494–501. https://doi.org/10.1016/J.FUEL.2013.04.025Kashyap, S. R., Pramanik, S., & Ravikrishna, R. V. (2024). A review of energy-efficient domestic cookstoves. Applied Thermal Engineering, 236, 121510. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121510Katuwal, H. (2022). Biogas adoption in Nepal: empirical evidence from a nationwide survey. Heliyon, 8(8), e10106. https://doi.org/10.1016/J.HELIYON.2022.E10106Khan, A. A., de Jong, W., Jansens, P. J., & Spliethoff, H. (2009). Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Processing Technology, 90(1), 21–50. https://doi.org/10.1016/J.FUPROC.2008.07.012Khan, M. T., Brulé, M., Maurer, C., Argyropoulos, D., Müller, J., & Oechsner, H. (2016). Batch anaerobic digestion of banana waste-energy potential and modelling of methane production kinetics. Agricultural Engineering International: The CIGR Journal.Kim, K. H., Jahan, S. A., & Kabir, E. (2011). A review of diseases associated with household air pollution due to the use of biomass fuels. Journal of Hazardous Materials, 192(2), 425– 431. https://doi.org/10.1016/J.JHAZMAT.2011.05.087Kouteu Nanssou, P. A., Jiokap Nono, Y., & Kapseu, C. (2016). Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renewable Energy, 97, 252–265. https://doi.org/10.1016/J.RENENE.2016.05.050Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020a). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, Vol. 12, Page 4609, 12(11), 4609. https://doi.org/10.3390/SU12114609Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020b). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, Vol. 12, Page 4609, 12(11), 4609. https://doi.org/10.3390/SU12114609Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2021). Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. Journal of Cleaner Production, 284, 124745. https://doi.org/10.1016/J.JCLEPRO.2020.124745Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., Roslan, A. M., & Nik Ab Rahim, N. N. R. (2022). Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria. Sustainability 2022, Vol. 14, Page 9399, 14(15), 9399. https://doi.org/10.3390/SU14159399Krishania, M., Kumar, V., & Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1, 89–93. https://doi.org/10.1016/J.BITEB.2018.01.001Kumar, A., Cameron, J. B., & Flynn, P. C. (2003). Biomass power cost and optimum plant size in western Canada. Biomass and Bioenergy, 24(6), 445–464. https://doi.org/10.1016/S0961-9534(02)00149-6Kumar, A., Mylapilli, S. V. P., & Reddy, S. N. (2019). Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate). Bioresource Technology, 285, 121318. https://doi.org/10.1016/J.BIORTECH.2019.121318Kumar, R., Kumar, A., & Saikia, P. (2022). Deforestation and Forests Degradation Impacts on the Environment. 19–46. https://doi.org/10.1007/978-3-030-95542-7_2Kumar, R., Kumar, V., & Nagpure, A. S. (2023). Bio-energy potential of available livestock waste and surplus agriculture crop residue: An analysis of 602 rural districts of India. Science of The Total Environment, 889, 163974. https://doi.org/10.1016/J.SCITOTENV.2023.163974Lachowicz, J. I., Milia, S., Jaremko, M., Oddone, E., Cannizzaro, E., Cirrincione, L., Malta, G., Campagna, M., & Lecca, L. I. (2023). Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere, 14(1), 12. https://doi.org/10.3390/ATMOS14010012/S1Lara-Flores, A. A., Araújo, R. G., Rodríguez-Jasso, R. M., Aguedo, M., Aguilar, C. N., Trajano, H. L., & Ruiz, H. A. (2018). Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a PromisingResource of Bioproducts. Energy, Environment, and Sustainability, 141–170. https://doi.org/10.1007/978-981-10-7431-8_8/FIGURES/7LARENAS, C. (2022). Banana rachis as a potential source of second generation ethanol. https://sfera.unife.it/handle/11392/2488182Lecksiwilai, N., Gheewala, S. H., Sagisaka, M., & Yamaguchi, K. (2016). Net Energy Ratio and Life cycle greenhouse gases (GHG) assessment of bio-dimethyl ether (DME) produced from various agricultural residues in Thailand. Journal of Cleaner Production, 134(Part B), 523–531. https://doi.org/10.1016/J.JCLEPRO.2015.10.085Li, J., Chen, Z., Chen, C., Wang, Y., Song, F., & Yu, X. (2020). Research and Outlook on Global Energy Interconnection. E3S Web of Conferences, 209, 01002. https://doi.org/10.1051/E3SCONF/202020901002Li, S., Song, H., Hu, J., Yang, H., Zou, J., Zhu, Y., Tang, Z., & Chen, H. (2021). CO 2 gasification of straw biomass and its correlation with the feedstock characteristics. https://doi.org/10.1016/j.fuel.2021.120780Liang, J., Li, Z., Dai, S., Tian, G., & Wang, Z. (2023). Production of hemicelluloses sugars, cellulose pulp, and lignosulfonate surfactant using corn stalk by prehydrolysis and alkaline sulfite cooking. Industrial Crops and Products, 192, 115880. https://doi.org/10.1016/J.INDCROP.2022.115880Liao, K., Han, L., Yang, Z., Huang, Y., Du, S., Lyu, Q., Shi, Z., & Shi, S. (2022). A novel in-situ quantitative profiling approach for visualizing changes in lignin and cellulose by stained micrographs. Carbohydrate Polymers, 297, 119997. https://doi.org/10.1016/J.CARBPOL.2022.119997Londoño-Hernandez, L., Ruiz, H. A., Cristina Ramírez, T., Ascacio, J. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2020). Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 23, 101467. https://doi.org/10.1016/J.BCAB.2019.101467Longaresi, R. H., de Menezes, A. J., Pereira-da-Silva, M. A., Baron, D., & Mathias, S. L. (2019). The maize stem as a potential source of cellulose nanocrystal: Cellulose characterization from its phenological growth stage dependence. Industrial Crops and Products, 133, 232–240. https://doi.org/10.1016/J.INDCROP.2019.02.046Longdong, I. A. ; T. D. (2014). Technical Study of a Downdraft Reactor In the Gasification Process of Coconut Husks. https://doi.org/10.15242/IICBE.C614528Louis, A. C. F., & Venkatachalam, S. (2020). Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. International Journal of Biological Macromolecules, 163, 260–269. https://doi.org/10.1016/j.ijbiomac.2020.06.276Lu, C., Zhang, X., Gao, Y., Lin, Y., Xu, J., Zhu, C., & Zhu, Y. (2021). Parametric study of catalytic co-gasification of cotton stalk and aqueous phase from wheat straw using hydrothermal carbonation. Energy, 216, 119266. https://doi.org/10.1016/J.ENERGY.2020.119266Lucas Herguedas, A. I. de. (2012). Biomasa, combustibles y sostenibilidad. https://www.researchgate.net/publication/260383181_Biomasa_biocombustibles_y_soste nibilidadLuis, A., Gamarra, R., & Zamorano, H. (2010). Fabricación y evaluación de eficiencia y emisiones de briquetas a base de residuos agrícolas como alternativa energética al uso de leña. https://bdigital.zamorano.edu/handle/11036/537Ma, C., Zhang, Y., & Ma, K. (2022). The effect of biomass raw material collection distance on energy surplus factor. Journal of Environmental Management, 317, 115461. https://doi.org/10.1016/J.JENVMAN.2022.115461Macedo, W. N., Monteiro, L. G., Corgozinho, I. M., Macêdo, E. N., Rendeiro, G., Braga, W., & Bacha, L. (2016). Biomass based microturbine system for electricity generation for isolated communities in amazon region. Renewable Energy, 91, 323–333. https://doi.org/10.1016/J.RENENE.2016.01.063Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. V, … (2023) .ح ,فاطمی. Revisión bibliográfica sistemática de briquetas de carbón para cocinar, elaboradas a partir de residuos agrícolas y forestales. Uniwersytet Śląski, 7(1), 343–354. https://doi.org/10.2/JQUERY.MIN.JSMamdouh, M. N., & MacKay, G. D. M. (1984). Mechanism of Thermal Decomposition of Lignin. Wood And Fiber Science, 16(3), 441–453.Marcos Martín, F. (2022). Pélets y briquetas.https://infomadera.net/uploads/articulos/archivo_2293_9990.pdfMarelli, Luisa., Edwards, Robert., Agostini, Alessandro., & Giuntoli, Jacopo. (2017). Solid and gaseous bioenergy pathways: input values and GHG emissions: Calculated according to methodology set in COM(2016) 767: Version 2. 222. https://doi.org/10.2790/98297María, D., Arroyo, A. M., Claudia, D., Octaviano Villasana, A., Roberto, I., & Saucedo, U. R. (2017). CATÁLOGO DE TECNOLOGÍA DE BIOMASA A ENERGÍA 3 DIRECTORIO. http://www.gob.mx/inecMartí H., J. (2019). Biodigestores Tubulares: Guía de Diseño y Manual de Instalación. 37.Martí-Herrero, J., Chipana, M., Cuevas, C., Paco, G., Serrano, V., Zymla, B., Heising, K., Sologuren, J., & Gamarra, A. (2014). Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia. Renewable Energy, 71, 156–165. https://doi.org/10.1016/j.renene.2014.05.036Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/10.1016/J.RENENE.2020.10.053Martínez-Bravo, R. D., & Masera, O. (2020). Perspectivas de disminución de emisiones de carbono en México por el uso de la bioenergía: panorama actual. Elementos Para Políticas Públicas, 4(1), 27–42. https://www.elementospolipub.org/ojs/index.php/epp/article/view/28Martins-Vieira, J. C., Lachos-Perez, D., Draszewski, C. P., Celante, D., & Castilhos, F. (2023). Sugar, hydrochar and bio-oil production by sequential hydrothermal processing of corn cob. The Journal of Supercritical Fluids, 194, 105838. https://doi.org/10.1016/J.SUPFLU.2023.105838Matin, A. (2022). Usability of Pumpkin for Nutritional Purposes and Green Energy Production. Tehnički Vjesnik, 29, 775–780. https://doi.org/10.17559/TV-20210513103418Mayer, F., Bhandari, R., & Gäth, S. (2019a). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708–721. https://doi.org/10.1016/J.SCITOTENV.2019.03.449Mayer, F., Bhandari, R., & Gäth, S. (2019b). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of The Total Environment, 672, 708–721. https://doi.org/10.1016/J.SCITOTENV.2019.03.449Mboumboue, E., & Njomo, D. (2018). Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass and Bioenergy, 118, 16– 23. https://doi.org/10.1016/J.BIOMBIOE.2018.08.002Mehta Uday R Badegaonkar, C. R., Asia, S.-W., & Tanaka, M. (2023). SUSTAINABLE MANAGEMENT OF CROP RESIDUES IN BANGLADESH, INDIA, NEPAL AND PAKISTAN: CHALLENGES AND SOLUTIONS South and South-West Asia Office Sustainable Management of Crop Residues in.Mesa Puyo, D. (2021). Transición energética: un legado para el presente y el futuro de Colombia Iván Duque Márquez Presidente de la República. www.laimprentaeditores.comMINAGRICULTURA. (2021). Evaluaciones Agropecuarias Municipales - EVA.MinAmbiente. (2022). Plan de Acción para la Gestión Sostenible de la Biomasa Residual.MINCIENCIAS. (2021). IDEAS PARA EL CAMBIO-CONSTRUCCIÓN SOCIAL DEL CONOCIMIENTO PARA LA GESTIÓN DEL CAMBIO CLIMÁTICO.Ministerio de Ambiente y Desarrollo Sostenible. (2015). ESTUFAS EFICIENTES PARA COCCIÓN CON LEÑA L I N E A M I E N T O S P A R A U N P R O G R A M A N A C I O N A L D E Presidente de la República Lineamientos para un programa nacional de estufas eficientes para cocción con leña.Ministerio De Minas Y Energía. (2022). PLAN NACIONAL DE SUSTITUCIÓN DE LEÑA Y OTROS COMBUSTIBLES DE USO INEFICIENTE Y ALTAMENTE CONTAMINANTE PARA LA COCCIÓN DOMÉSTICA DE ALIMENTOS Tomo I: Documento de Formulación del Plan Documento de consulta REPÚBLICA DE COLOMBIA. www.upme.gov.coMirmohamadsadeghi, S., & Karimi, K. (2020). Recovery of silica from rice straw and husk. Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes, 411–433. https://doi.org/10.1016/B978-0-444-64321-6.00021-5Mitchell, E. J. S., Gudka, B., Whittaker, C., Shield, I., Price-Allison, A., Maxwell, D., Jones, J. M., & Williams, A. (2020). The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel Processing Technology, 210, 106552. https://doi.org/10.1016/J.FUPROC.2020.106552Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/J.FOODCHEM.2022.132406Mohamad Aziz, N. S., Shariff, A., Abdullah, N., & Mohamed Noor, N. (2018). Characteristics of coconut frond as a potential feedstock for biochar via slow pyrolysis. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 408–413. https://doi.org/10.11113/MJFAS.V14N4.1014Mohammad Firman, L. O., Adji, R. B., Ismail, & Rahman, R. A. (2023). Increasing the feasibility and storage property of cellulose-based biomass by forming shape-stabilized briquette with hydrophobic compound. Case Studies in Chemical and Environmental Engineering, 8, 100443. https://doi.org/10.1016/J.CSCEE.2023.100443Mohd Dom, Z., Mujianto, L., Azhar, A., Masaudin, S., & Samsudin, R. (2021). Physicochemical properties of banana peel powder in functional food products. Food Research, 5, 209– 215. https://doi.org/10.26656/FR.2017.5(S1).037Montoya Arbeláez, J. I., Chejne Janna, F., & Garcia-Pérez, M. (2015). Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. Dyna, 82(192), 239–248.Moragues, J., & Rapallini, A. (2023). Conservación del medio ambiente a través del empleo de fuentes nuevas y renovables y del uso racional de la energía. Avances En Energías Renovables y Medio Ambiente - AVERMA, 1, 83–102. https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/3570Mothe, S., Muramreddy Jugal, S., Rao, P. V., & Sridhar, P. (2024). Rice straw anaerobic co digestion: Comparing various pre-treatment techniques to enhance biogas production. Bioresource Technology Reports, 25, 101788. https://doi.org/10.1016/J.BITEB.2024.101788Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2019). Sugarcane bagasse gasification: Simulation and analysis of different operating parameters, fluidizing media, and gasifier types. Biomass and Bioenergy, 122, 433–445. https://doi.org/10.1016/J.BIOMBIOE.2019.01.051Moura, P., Henriques, J., Alexandre, J., Oliveira, A. C., Abreu, M., Gírio, F., & Catarino, J. (2022). Sustainable value methodology to compare the performance of conversion technologies for the production of electricity and heat, energy vectors and biofuels from waste biomass. Cleaner Waste Systems, 3, 100029. https://doi.org/10.1016/J.CLWAS.2022.100029Munjeri, K., Ziuku, S., Maganga, H., Siachingoma, B., & Ndlovu, S. (2016). On the potential of water hyacinth as a biomass briquette for heating applications. International Journal of Energy and Environmental Engineering, 7(1), 37–43. https://doi.org/10.1007/S40095- 015-0195-8/TABLES/3Mwampamba, T. H., Owen, M., & Pigaht, M. (2013). Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy for Sustainable Development, 17(2), 158–170. https://doi.org/10.1016/J.ESD.2012.10.006Naciones Unidas. (2016). Objetivos de Desarrollo Sostenible | Naciones Unidas. https://www.un.org/es/impacto-académico/page/objetivos-de-desarrollo-sostenibleNakason, K., Khemthong, P., Mahasandana, S., Panyapinyopol, B., Mai Sci, C. J., & Kraithong, W. (2021). Effect of Alkaline Pretreatment on the Properties of Cassava Rhizome. Article in Chiang Mai Journal of Science, 48(6), 1511–1523. http://epg.science.cmu.ac.th/ejournal/Nathalíe, S., & Rincón, R. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv.National Renewable Energy Laboratory. (2012). ETM Library | COST AND PERFORMANCE DATA FOR POWER GENERATION TECHNOLOGIES. https://refman.energytransitionmodel.com/publications/1921Nations, U. (2022). Objetivo 7—Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | Naciones Unidas. https://www.un.org/es/chronicle/article/objetivo-7-garantizar-el-acceso-una-energia asequible-fiable-sostenible-y-moderna-para-todoNegrão, D. R., Grandis, A., Buckeridge, M. S., Rocha, G. J. M., Leal, M. R. L. V., & Driemeier, C. (2021). Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renewable and Sustainable Energy Reviews, 148, 111268. https://doi.org/10.1016/J.RSER.2021.111268Nerini, F. F., Ray, C., & Boulkaid, Y. (2017). The cost of cooking a meal. The case of Nyeri County, Kenya. Environmental Research Letters, 12(6), 065007. https://doi.org/10.1088/1748-9326/AA6FD0Nguyen, T. H., Doan, Q. Van, Khan, A., Derdouri, A., Anand, P., & Niyogi, D. (2024). The potential of agricultural and livestock wastes as a source of biogas in Vietnam: Energetic, economic and environmental evaluation. Renewable and Sustainable Energy Reviews, 199, 114440. https://doi.org/10.1016/J.RSER.2024.114440Nielsen, O.-K., Nielsen, M., & Plejdrup, M. S. (2021). AU Scientific Report from DCE-Danish Centre for Environment and Energy No. 442 UPDATING THE EMISSION MODEL FOR RESIDENTIAL WOOD COMBUSTIONNjenga, M., Gitau, J. K., & Mendum, R. (2021). Women’s work is never done: Lifting the gendered burden of firewood collection and household energy use in Kenya. Energy Research & Social Science, 77, 102071. https://doi.org/10.1016/J.ERSS.2021.102071Nunes, L. J. R., Casau, M., Dias, M. F., Matias, J. C. O., & Teixeira, L. C. (2023). Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results in Engineering, 17, 101010. https://doi.org/10.1016/J.RINENG.2023.101010Nurfaezzah, A. J., Nurashikin, S., & Salwani, A. A. D. (2023). Enhancement of glucose recovery from banana stem by 4-cycle enzymatic hydrolysis. Research Journal of Biotechnology, 18(11), 192–199. https://doi.org/10.25303/1811RJBT01920199Nzila, C., Dewulf, J., Spanjers, H., Tuigong, D., Kiriamiti, H., & van Langenhove, H. (2012). Multi criteria sustainability assessment of biogas production in Kenya. Applied Energy, 93, 496–506. https://doi.org/10.1016/j.apenergy.2011.12.020Oberoi, H. S., Sandhu, S. K., & Vadlani, P. V. (2012). Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food and Bioproducts Processing, 90(2), 257–265. https://doi.org/10.1016/J.FBP.2011.05.002Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7). https://doi.org/10.3390/EN15072426Observatorio de Ambiente y Salud. (2022). Observatorio de Ambiente y Salud.Ochs, A. (2021). Proyecto De la práctica a la política: análisis de las barreras a la inversión en biogás en Colombia y las medidas para abordarlas, a partir de la experiencia de los desarrolladores y otros actores relevantes.Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013a). Bioenergy potential of agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515–525. https://doi.org/10.1016/J.BIOMBIOE.2013.06.003Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013b). Bioenergy potential of agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515–525. https://doi.org/10.1016/J.BIOMBIOE.2013.06.003Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2019). Briquetting characteristics of bean straw maize cob blend. Biomass and Bioenergy, 126, 150–158. https://doi.org/10.1016/J.BIOMBIOE.2019.05.009Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2022). Thermo-chemical behaviour of maize cob and bean straw briquettes. Energy Conversion and Management: X, 16, 100313. https://doi.org/10.1016/J.ECMX.2022.100313Okot, D. K., Bilsborrow, P. E., Phan, A. N., & Manning, D. A. C. (2023). Kinetics of maize cob and bean straw pyrolysis and combustion. Heliyon, 9(6), e17236. https://doi.org/10.1016/J.HELIYON.2023.E17236OLADE. (2023). Uso racional y sostenible de la leña en los países de SICA.Olaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2016). How capacity mechanisms drive technology choice in power generation: The case of Colombia. Renewable and Sustainable Energy Reviews, 56, 563–571. https://doi.org/10.1016/J.RSER.2015.11.065OMS. (2021). La Organización Mundial de la Salud publica nuevos datos sobre la contaminación del aire a nivel mundial | Coalición Clima y Aire Limpio. https://www.ccacoalition.org/es/news/world-health-organization-releases-new-global-air pollution-datOMS. (2024). Contaminación del aire doméstico. https://www.who.int/es/news-room/fact sheets/detail/household-air-pollution-and-heOnchieku, J. (2018). Cost Benefit Analysis of Making Charcoal Briquettes Using Screw Press Machine Locally Designed and Fabricated. https://www.researchgate.net/publication/375824813ONU. (2021). La panela, una dulce apuesta para que los indígenas sigan viviendo en la Sierra de Colombia | Noticias ONU. https://news.un.org/es/story/2021/11/1500632ONU. (2022). Datos y cifras | Naciones Unidas. https://www.un.org/es/actnow/facts-and-figuresOrganización Mundial de la Salud (OMS). (2023). Household air pollution. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-healthOrhorhoro, E. K., Chukudi, O. M., Oghenekevwe, O., & Onogbotsere, M. E. (2017). Design and Fabrication of an Improved Low Cost Biomass Briquetting Machine Suitable for use in Nigeria. International Journal of Engineering Technology and Sciences, 4(2), 128–138. https://doi.org/10.15282/IJETS.8.2017.1.11.1086Ortiz Motta, D. C., Sabogal Aguilar, J., & Hurtado Aguirre, E. (2012). Una revisión a la reglamentación e incentivos de las energías renovables en Colombia. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, ISSN-e 0121-6805, Vol. 20, No . 2, 2012, Págs. 55-67, 20(2), 55–67. https://dialnet.unirioja.es/servlet/articulo?codigo=4242132&info=resumen&idioma=SPAOsaki, M. R. (2022). An energy optimization model comparing the use of sugarcane bagasse for power or ethanol production. Industrial Crops and Products, 187, 115284. https://doi.org/10.1016/J.INDCROP.2022.115284Osat, M., Shojaati, F., & Osat, M. (2023). A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and environmental assessments. Applied Energy, 340, 120999. https://doi.org/10.1016/J.APENERGY.2023.120999Paczkowski, S., Sarquah, K., Yankyera, J., Sarfo Agyemang Derkyi, N., Empl, F., Jaeger, D., & Pelz, S. (2023). Hydrothermal treatment (HTT) improves the combustion properties of regional biomass waste to face the increasing sustainable energy demand in Africa. Fuel, 351, 128928. https://doi.org/10.1016/J.FUEL.2023.128928Pan, Z., Li, X., Fu, L., Li, Q., & Li, X. (2023). Environmental sustainability by a comprehensive environmental and energy comparison analysis in a wood chip and rice straw biomass fueled multi-generation energy system. Process Safety and Environmental Protection, 177, 868–879. https://doi.org/10.1016/J.PSEP.2023.07.027Parascanu, M. M., Sandoval-Salas, F., Soreanu, G., Valverde, J. L., & Sanchez-Silva, L. (2017). Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renewable and Sustainable Energy Reviews, 71, 509–522. https://doi.org/10.1016/J.RSER.2016.12.079Paredes, J., Pretell, V., Pilco, A., Ramos, W., & Ubillas, C. (2022). Characterization of Two Lignocellulosic Biomasses Coffea Arabica L. for the production of Biochar. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2022-July. https://doi.org/10.18687/LACCEI2022.1.1.344Parvez, A. M., Afzal, M. T., Jiang, P., & Wu, T. (2020). Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: Product characterization, thermodynamic assessment and bio-hydrogen production. Biomass and Bioenergy, 139, 105651. https://doi.org/10.1016/J.BIOMBIOE.2020.105651Pati, S., De, S., & Chowdhury, R. (2023). Exploring the hybrid route of bio-ethanol production via biomass co-gasification and syngas fermentation from wheat straw and sugarcane bagasse: Model development and multi-objective optimization. Journal of Cleaner Production, 395, 136441. https://doi.org/10.1016/J.JCLEPRO.2023.136441Pattiya, A. (2011). Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology, 102(2), 1959–1967. https://doi.org/10.1016/J.BIORTECH.2010.08.117Pattiya, A., Sukkasi, S., & Goodwin, V. (2012). Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy, 44(1), 1067–1077. https://doi.org/10.1016/J.ENERGY.2012.04.035Pattiya, A., & Suttibak, S. (2017). Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter. Journal of the Energy Institute, 90(1), 110–119. https://doi.org/10.1016/J.JOEI.2015.10.001Pattiya, A., Titiloye, J. O., & Bridgwater, A. V. (2010). Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel, 89(1), 244–253. https://doi.org/10.1016/J.FUEL.2009.07.003Perea-Moreno, A. J., Aguilera-Ureña, M. J., & Manzano-Agugliaro, F. (2016). Fuel properties of avocado stone. Fuel, 186, 358–364. https://doi.org/10.1016/J.FUEL.2016.08.101Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555–565. https://doi.org/10.1016/J.RENENE.2008.05.047pers, G. (2016). PLAN DE ENERGIZACIÓN RURAL SOSTENIBLE PARA EL DEPARTAMENTO DE LA GUAJIRA. https://sig.upme.gov.co/SIPERS/Files/Index/1037Phichai, K., Pragrobpondee, P., Khumpart, T., & Hirunpraditkoon, S. (2013). Prediction Heating Values of Lignocellulosics from Biomass Characteristics. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering.Phyllis2. (2022). Phyllis2 - Clasificación ECN Phyllis. https://phyllis.nl/Browse/Standard/ECN Phyllis#tomatoPixabay. (2024). Imágenes Gratis Para Descargar. https://pixabay.com/es/Poddar, P., Asadulah Asad, M., Saiful Islam, M., Sultana, S., Parvin Nur, H., & Chowdhury, A. M. S. (2016). Mechanical and Morphological Study of Arecanut Leaf Sheath (ALS), Coconut Leaf Sheath (CLS) and Coconut Stem Fiber (CSF). Advanced Material Science, 1(2). https://doi.org/10.15761/AMS.1000112Poggio, D., Ferrer, I., Batet, L., & Velo, E. (2009). Adaptación de biodigestores tubulares de plástico a climas fríos.Posada Ochoa, S. L., & Rosero Noguera, J. R. (2017). Efecto del método de secado sobre la digestibilidad in situ de la pulpa de café (Coffea arabica). https://bibliotecadigital.udea.edu.co/handle/10495/31335Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305–3321. https://doi.org/10.1016/J.APENERGY.2010.05.011Prado-Martínez, M., Anzaldo-Hernández, J., Becerra-Aguilar, B., Palacios-Juárez, H., Vargas Radillo, J. de J., & Rentería-Urquiza, M. (2012). Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera Bosques, 18(3), 37–51. https://doi.org/10.21829/MYB.2012.183357Preston, K. M. (2012). Fuelwood collection and consumption: a case study in Lupeta Fuelwood collection and consumption: a case study in Lupeta Tanzania Tanzania. https://doi.org/10.37099/mtu.dc.etds/164Priyadarsini, A., Swain, B., Mishra, A., Nanda, S., Dash, M., Swain, N., Jena, P. K., & Mohanty, M. K. (2023). Study on biofuel efficiency of tropical banana leaf biomass using spectroscopy, kinetic and thermodynamic parameters. Bioresource Technology Reports, 23, 101522. https://doi.org/10.1016/J.BITEB.2023.101522Promigas. (2023). IMPE - Fundación Promigas. https://fundacionpromigas.org.co/impe/Public utility information systems (SUI). (2023). Reportes del sector | Portal SUI | Superintendencia de Servicios Públicos Domiciliarios. https://sui.superservicios.gov.co/Reportes/Filtro?q=Reportes/Filtro&field_sspd_sui_repor te_entidad_value=4&field_sspd_sui_reporte_categoria_value=All&page=1Puzzolo, E., Zerriffi, H., Carter, E., Clemens, H., Stokes, H., Jagger, P., Rosenthal, J., & Petach, H. (2019). Supply Considerations for Scaling Up Clean Cooking Fuels for Household Energy in Low- and Middle-Income Countries. GeoHealth, 3(12), 370–390. https://doi.org/10.1029/2019GH000208Rabea, K., Bakry, A. I., Khalil, A., El-Fakharany, M. K., & Kadous, M. (2021a). Real-time performance investigation of a downdraft gasifier fueled by cotton stalks in a batch-mode operation. Fuel, 300, 120976. https://doi.org/10.1016/J.FUEL.2021.120976Rabea, K., Bakry, A. I., Khalil, A., El-Fakharany, M. K., & Kadous, M. (2021b). Real-time performance investigation of a downdraft gasifier fueled by cotton stalks in a batch-mode operation. Fuel, 300, 120976. https://doi.org/10.1016/J.FUEL.2021.120976Rajendra, I. M., Winaya, I. N. S., Ghurri, A., & Wirawan, I. K. G. (2019). Pyrolysis study of coconut leaf’s biomass using thermogravimetric analysis. IOP Conference Series: Materials Science and Engineering, 539(1). https://doi.org/10.1088/1757- 899X/539/1/012017Rajendran, K., Aslanzadeh, S., & Taherzadeh, M. J. (2012). Household biogas digesters-A review. Energies, 5(8), 2911–2942. https://doi.org/10.3390/en5082911Redondo-Gómez, C., Quesada, M. R., Astúa, S. V., Zamora, J. P. M., Lopretti, M., & Vega Baudrit, J. R. (2020). Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules, 25(17). https://doi.org/10.3390/MOLECULES25173829Reith, H., De Wild, P., & Heeres, E. (2011). Biomass pyrolysis for chemicals. Biofuels, 2(2), 185–208.REN21. (2024). INFORME SOBRE LA SITUACIÓN GLOBAL DE LAS ENERGÍAS RENOVABLES 2024. https://www.ren21.net/gsr-2024/Renewable Energy Agency, I. (2022). World Energy Transitions Outlook 2022: 1.5°C Pathway - Executive Summary. www.irena.orgRenewable Energy Sources and Climate Change Mitigation. (2023). Renewable Energy Sources and Climate Change Mitigation — IPCC. https://www.ipcc.ch/report/renewable-energy sources-and-climate-change-mitigatioReza Rizkiansyah, R., Mardiyati, Y., Hariyanto, A., Steven, S., & Dirgantara, T. (2024). Non Wood paper from coffee pulp Waste: How its performance as coffee filter. Cleaner Materials, 12, 100241. https://doi.org/10.1016/J.CLEMA.2024.100241Rhenals Julio, J. D., & Torres Montes, M. L. (2018). Análisis exergoeconómico de la gasificación de tusa de maíz empleando vapor de agua como agente gasificante, integrado a un sistema de generación de potencia. https://repositorio.unicordoba.edu.co/handle/ucordoba/669Rodríguez Arias, A. D., Carrasco García, S. Y., Julio López Bastida, E., Jiménez Borges, R., Arias, R., García, C., & Bastida, L. (2019). Metodología para la evaluación del proceso de co/combustión de biomasas a partir de diferentes tecnologías en una caldera retal. Revista Universidad y Sociedad, 11(1), 295–302. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218- 36202019000100295&lng=es&nrm=iso&tlng=esRodríguez Frómeta, R. A., Sánchez, J. L., & Ros García, J. M. (2020). Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates Journal of Food and Agriculture, 32(2), 117–124. https://doi.org/10.9755/EJFA.2020.V32.I2.2068Rodríguez Imán, Y. M. (2022). Fermentación aeróbica y anaeróbica de aguas mieles de cacao en control de malezas en campo de cafeto, caserío Tunal, distrito Lalaquiz, Huancabamba, Piura-Perú - 2020. Universidad Nacional de Piura. https://renati.sunedu.gob.pe/handle/sunedu/3204642Rodríguez, N., Diego, V. ;, Zambrano, A., César, F. ;, & Ramírez Gómez, A. (2013). Manejo y disposición de los subproductos y de las aguas residuales del beneficio del café. https://doi.org/10.38141/CENBOOK-0026_31Rojas, E. R., David, M., Ruiz, F., Universidad, M., Francisco, D., De Caldas, J., & Tecnológica, F. (2019). DETERMINACIÓN DEL NIVEL DE MADUREZ Y LAS CAPACIDADES DE LAS TECNOLOGÍAS EXISTENTES PARA LA TRANSFORMACIÓN DE BIOMASA RESIDUAL EN ENERGÍA ELÉCTRICA.Roma. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina.Romallosa, A. R. D. (2014). Technical and economic evaluation of the jack-driven briquetting machine. Patubas, 9(1), 45–86. https://repository.cpu.edu.ph/handle/20.500.12852/62Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Foppa Pedretti, E., & Riva, G. (2013). Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass and Bioenergy, 51, 177–182. https://doi.org/10.1016/J.BIOMBIOE.2013.01.018Rueda-Ordóñez, Y. J., & Tannous, K. (2015). Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresource Technology, 196, 136–144. https://doi.org/10.1016/J.BIORTECH.2015.07.062Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, 174–183. https://doi.org/10.1016/J.RSER.2012.10.021Sagastume, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/j.jclepro.2020.122317Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021a). The available waste-to energy potential from agricultural wastes in the department of Córdoba, Colombia. International Journal of Energy Economics and Policy, 11(3), 44–50. https://doi.org/10.32479/IJEEP.10705Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021b). The available waste-to energy potential from agricultural wastes in the department of Córdoba, Colombia. International Journal of Energy Economics and Policy, 11(3), 44–50. https://doi.org/10.32479/IJEEP.10705Sagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020a). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/J.JCLEPRO.2020.122317Sagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020b). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269, 122317. https://doi.org/10.1016/J.JCLEPRO.2020.122317Sagastume Gutiérrez, A., Mendoza Fandiño, J. M., Cabello Eras, J. J., & Sofan German, S. J. (2022). Potential of livestock manure and agricultural wastes to mitigate the use offirewood for cooking in rural areas. The case of the department of Cordoba (Colombia). Development Engineering, 7, 100093. https://doi.org/10.1016/J.DEVENG.2022.100093Saini, R., M Mahajani, S., Deb Barma, S., & Srinivas Rao, D. (2024). Valorization of coconut and banana wastes with petcoke and coal via steam gasification in a fluidized bed reactor. Journal of Cleaner Production, 434, 139955. https://doi.org/10.1016/J.JCLEPRO.2023.139955Sakhiya, A. K., Anand, A., Aier, I., Vijay, V. K., & Kaushal, P. (2021). Suitability of rice straw for biochar production through slow pyrolysis: Product characterization and thermodynamic analysis. Bioresource Technology Reports, 15, 100818. https://doi.org/10.1016/J.BITEB.2021.100818San José, M. J., Alvarez, S., & López, R. (2023). Conical spouted bed combustor to obtain clean energy from avocado waste. Fuel Processing Technology, 239, 107543. https://doi.org/10.1016/J.FUPROC.2022.107543Sánchez, E. A., Pasache, M., & García, M. E. (2014). Development of Briquettes from Waste Wood (Sawdust) for Use in Low-income Households in Piura, Peru.Sánchez Pisco, L. A. H. O. W. A. , & V. C. P. J. (2024). Análisis de casos para el desarrollo de Electrificación Rural por medio del uso de Energías Renovables. Dominio de Las Ciencias, 10(2), 1710–1725. https://doi.org/10.23857/DC.V10I2.3903Sander, B., Energy, D., & Skøtt, T. (2007). Bioenergy for electricity and heat 2007 Bioenergy for electricity and heat-experiences from biomass-fired CHP plants in Denmark.Santa-Maria, M., Ruiz-Colorado, A. A., Cruz, G., & Jeoh, T. (2013). Assessing the Feasibility of Biofuel Production from Lignocellulosic Banana Waste in Rural Agricultural Communities in Peru and Colombia. Bioenergy Research, 6(3), 1000–1011. https://doi.org/10.1007/S12155-013-9333-4Santangelo, E., Carnevale, M., Migliori, C. A., Picarella, M. E., Dono, G., Mazzucato, A., & Gallucci, F. (2020). Evaluation of tomato introgression lines diversified for peel color as a source of functional biocompounds and biomass for energy recovery. Biomass and Bioenergy, 141, 105735. https://doi.org/10.1016/J.BIOMBIOE.2020.105735Sattar, A., Arslan, C., Ji, C., Sattar, S., Umair, M., Sattar, S., & Bakht, M. Z. (2016). Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. International Journal of Hydrogen Energy, 41(26), 11050–11061. https://doi.org/10.1016/J.IJHYDENE.2016.04.087Saura-Calixto, F., Cañellas, J., & Garcia-Raso, J. (1983). Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data comparison. Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 177(3), 200– 202. https://doi.org/10.1007/BF01146796/METRICSSchaffer, S., Pröll, T., Al Afif, R., & Pfeifer, C. (2019). A mass- and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass and Bioenergy, 120, 281–290. https://doi.org/10.1016/J.BIOMBIOE.2018.11.019Schilmann, A., Ruiz-García, V., Serrano-Medrano, M., De La Sierra De La Vega, L. A., Olaya García, B., Estevez-García, J. A., Berrueta, V., Riojas-Rodríguez, H., & Masera, O. (2021). Just and fair household energy transition in rural Latin American households: are we moving forward? Environmental Research Letters, 16(10), 105012. https://doi.org/10.1088/1748-9326/AC28B2Secretariat of Environment. (2019). Energías Limpias Renovables Biomasa. https://old.sma.gob.mx/SGA-CC-EL-CLAS-ER-BIOMASA.phpSeglah, P. A., Neglo, K. A. W., Wang, H., Cudjoe, D., Kemausuor, F., Gao, C., Bi, Y., & Wang, Y. (2023). Electricity generation in Ghana: Evaluation of crop residues and the associated greenhouse gas mitigation potential. Journal of Cleaner Production, 395, 136340. https://doi.org/10.1016/J.JCLEPRO.2023.136340Seljeskog, M., Goile, F., & Skreiberg, O. (2017). Recommended Revisions of Norwegian Emission Factors for Wood Stoves. Energy Procedia, 105, 1022–1028. https://doi.org/10.1016/J.EGYPRO.2017.03.447Sellin, N., Krohl, D. R., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/J.RENENE.2016.04.032Semana. (2023). Impresionante, en Colombia hay millones de hogares que tienen el tubo del gas, pero no han podido pagar la conexión interna para recibir el servicio - Semana. https://www.semana.com/economia/empresas/articulo/impresionante-en-colombia-hay millones-de-hogares-que-tienen-el-tubo-del-gas-pero-no-han-podido-pagar-la-conexion interna-para-recibir-el-servicio/202318/?utm_source=chatgpt.comSerna-Jiménez, J. A., Torres-Valenzuela, L. S., Sanín Villarreal, A., Roldan, C., Martín, M. A., Siles, J. A., & Chica, A. F. (2023). Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods. LWT, 177, 114571. https://doi.org/10.1016/J.LWT.2023.114571Shahzad, K., Sohail, M., & Hamid, A. (2019). Green ethanol production from cotton stalk. IOP Conference Series: Earth and Environmental Science, 257(1). https://doi.org/10.1088/1755-1315/257/1/012025Shankar, K., Kulkarni, N. S., Sajjanshetty, R., Jayalakshmi, S. K., & Sreeramulu, K. (2020). Co production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Industrial Crops and Products, 155, 112809. https://doi.org/10.1016/J.INDCROP.2020.112809Shariff, A. and A. S. and M. S. N. and R. N. (2016, December). (PDF) The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes. https://www.researchgate.net/publication/311349228_The_Effect_of_Feedstock_Type_a nd_Slow_Pyrolysis_Temperature_on_Biochar_Yield_from_Coconut_WastesShen, G., Hays, M. D., Smith, K. R., Williams, C., Faircloth, J. W., & Jetter, J. J. (2018). Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves. Environmental Science and Technology, 52(2), 904–915. https://doi.org/10.1021/ACS.EST.7B05155Shimizu, F. L., Monteiro, P. Q., Ghiraldi, P. H. C., Melati, R. B., Pagnocca, F. C., Souza, W. de, Sant’Anna, C., & Brienzo, M. (2018). Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115, 62–68. https://doi.org/10.1016/J.INDCROP.2018.02.024Silva, J. C. da, Oliveira, R. C. de, Neto, A. da S., Pimentel, V. C., & Santos, A. de A. dos. (2015). Extraction, Addition and Characterization of Hemicelluloses from Corn Cobs to Development of Paper Properties. Procedia Materials Science, 8, 793–801. https://doi.org/10.1016/J.MSPRO.2015.04.137Silva-González, J. A., Chandel, A. K., da Silva, S. S., & Balagurusamy, N. (2020). Biogas in Circular Bio-Economy: Sustainable Practice for Rural Farm Waste Management and Techno-economic Analyses. Biogas Production, 389–414. https://doi.org/10.1007/978-3- 030-58827-4_17Simeone, B. R., Peña, F., Andrea, B., Rosario, D., & Franco, V. (2022). UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA AGROINDUSTRIAL TESIS “EFECTOS DEL PRETRATAMIENTO DE BIOMASA SOBRE PODER CALORÍFICO Y NIVEL DE EMISIONES DE BRIQUETAS DE RESIDUOS DEL OLIVAR Y ORÉGANO” PARA OPTAR: TÍTULO PROFESIONAL DE INGENIERO AGROINDUSTRIAL PRESENTADO POR.Singh, K. J., & Sooch, S. S. (2004). Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Conversion and Management, 45(9), 1329–1341. https://doi.org/10.1016/j.enconman.2003.09.018Singh, R., & Patel, M. (2022). Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass and Bioenergy, 159, 106411. https://doi.org/10.1016/J.BIOMBIOE.2022.106411Sirijanusorn, S., Sriprateep, K., & Pattiya, A. (2013). Pyrolysis of cassava rhizome in a counter rotating twin screw reactor unit. Bioresource Technology, 139, 343–348. https://doi.org/10.1016/J.BIORTECH.2013.04.024Sirinwaranon, P., Sricharoenchaikul, V., & Atong, D. (2021). Catalytic performance of Co, Fe on MCM-41 synthesized from illite waste for gasification of torrefied cassava rhizome. Energy Reports, 7, 149–162. https://doi.org/10.1016/J.EGYR.2021.08.100Sivamani, S., Chandrasekaran, A. P., Balajii, M., Shanmugaprakash, M., Hosseini-Bandegharaei, A., & Baskar, R. (2018). Evaluation of the potential of cassava-based residues for biofuels production. Reviews in Environmental Science and Biotechnology, 17(3), 553– 570. https://doi.org/10.1007/S11157-018-9475-0/TABLES/3Skreiberg, Ø., Seljeskog, M., & Kausch, F. (2022). A Critical Review and Discussion on Emission Factors for Wood Stoves. Chemical Engineering Transactions, 92, 235–240. https://doi.org/10.3303/CET2292040Sombatpraiwan, S., Junyusen, T., Treeamnak, T., & Junyusen, P. (2019). Optimization of microwave-assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food and Energy Security, 8(4), e00174. https://doi.org/10.1002/FES3.174Sornkade, P., Atong, D., & Sricharoenchaikul, V. (2015). Conversion of cassava rhizome using an in-situ catalytic drop tube reactor for fuel gas generation. Renewable Energy, 79(1), 38–44. https://doi.org/10.1016/J.RENENE.2014.07.043Sousa, D., Rodrigues, D., Castro, P. M., & Matos, H. A. (2024). Equation-Oriented Modeling and Optimization of a Biorefinery Based on Avocado Waste. Processes, 12(1). https://doi.org/10.3390/PR12010091Stojilovska, A., Thomson, H., & Mejía-Montero, A. (2023). Making a case for centring energy poverty in social policy in light of the climate emergency: A global integrative review. Social Policy and Society, 22(4), 715–729. https://doi.org/10.1017/S1474746423000209Sui, H., Shao, J., Agblevor, F. A., Zhang, Y., Wang, X., Yang, H., & Chen, H. (2023). Fractional condensation and aging of pyrolysis oil from cotton stalk. Biomass and Bioenergy, 174, 106837. https://doi.org/10.1016/J.BIOMBIOE.2023.106837Sulaiman, S. M., Nugroho, G., Saputra, H. M., Djaenudin, Permana, D., Fitria, N., & Putra, H. E. (2023). Valorization of Banana Bunch Waste as a Feedstock via Hydrothermal Carbonization for Energy Purposes. Journal of Ecological Engineering, 24(7), 61–74. https://doi.org/10.12911/22998993/163350Sultana, A., & Kumar, A. (2012). Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94, 192–201. https://doi.org/10.1016/J.APENERGY.2012.01.052Suman, S., & Gautam, S. (2017). Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(8), 761–767. https://doi.org/10.1080/15567036.2016.1263252Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Wang, F., Wang, T., Chang, X., Lei, Y., Xu, H., Cao, J., Zhang, N., Liu, S., & Li, X. (2019). Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China. Fuel, 244, 379– 387. https://doi.org/10.1016/J.FUEL.2019.02.031Sun, Y., Fan, S., Yang, T., Zhang, H., & Chen, Y. (2020). Study on the Characteristics of Pyrolysis Gas and Oil from Corn Stalk Pyrolysis. IOP Conference Series: Earth and Environmental Science, 446(3). https://doi.org/10.1088/1755-1315/446/3/032099Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015Surra, E., Bernardo, M., Lapa, N., Esteves, I. A. A. C., Fonseca, I., & Mota, J. P. B. (2019). Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management, 249, 109351. https://doi.org/10.1016/J.JENVMAN.2019.109351Suttibak, S., Sriprateep, K., & Pattiya, A. (2012). Production of Bio-oil via Fast Pyrolysis of Cassava Rhizome in a Fluidised-Bed Reactor. Energy Procedia, 14, 668–673. https://doi.org/10.1016/J.EGYPRO.2011.12.993Taib, R. M., Abdullah, N., & Aziz, N. S. M. (2021). Bio-oil derived from banana pseudo-stem via fast pyrolysis process. Biomass and Bioenergy, 148, 106034. https://doi.org/10.1016/J.BIOMBIOE.2021.106034Tang, Z. H., Liang, C., & Zhang, R. C. (2023). Optimizing crop residues collection patterns in rural areas to reduce transportation costs and carbon emissions. Environmental Technology & Innovation, 32, 103367. https://doi.org/10.1016/J.ETI.2023.103367Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173, 113097. https://doi.org/10.1016/J.RSER.2022.113097Thakur, A. (2011). Power Generation from Forest Residues by.The World Bank Group. (2007). Energy Sector Management Assistance Program Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies.Tippayawong, N., Rerkkriangkrai, P., Aggarangsi, P., & Pattiya, A. (2017). Biochar Production from Cassava Rhizome in a Semi-continuous Carbonization System. Energy Procedia, 141, 109–113. https://doi.org/10.1016/J.EGYPRO.2017.11.021Tolessa, A. (2023). Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon, 9(2), e13572. https://doi.org/10.1016/J.HELIYON.2023.E13572Torres-Torres, J. J., Mena-Mosquera, V. E., & Álvarez-Dávila, E. (2017). Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacifíco, Chocó, Colombia. Entramado, 13(1), 200–209. https://doi.org/10.18041/ENTRAMADO.2017V13N1.25110Tucho, G. T., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies 2015, Vol. 8, Pages 9565-9583, 8(9), 9565–9583. https://doi.org/10.3390/EN8099565Tutus, A., Ezici, A. C., & Ates, S. (2010). Chemical, morphological and anatomical properties and evaluation of cotton stalks (Gossypium hirsutum l.) in pulp industry. Scientific Research and Essays, 5(12), 1553–1560. http://www.academicjournals.org/SREUkoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Ojapah, M. M., Owebor, K., Nwachukwu, C., Aminu, M. D., Okedu, K. E., Kalam, A., & Colak, I. (2023a). Optimal sites for agricultural and forest residues energy conversion plant using geographic information system. Heliyon, 9(9), e19660. https://doi.org/10.1016/J.HELIYON.2023.E19660Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Ojapah, M. M., Owebor, K., Nwachukwu, C., Aminu, M. D., Okedu, K. E., Kalam, A., & Colak, I. (2023b). Optimal sites for agricultural and forest residues energy conversion plant using geographic information system. Heliyon, 9(9), e19660. https://doi.org/10.1016/J.HELIYON.2023.E19660Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Owebor, K., & Nwachukwu, C. O. (2023). Geographic information systems (GIS) approach for assessing the biomass energy potential and identification of appropriate biomass conversion technologies in Nigeria. Biomass and Bioenergy, 170, 106726. https://doi.org/10.1016/J.BIOMBIOE.2023.106726Uma, R., Lata, K., & Joshi, V. (2000). GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES: PHASE IIA Household Stoves in IndiaUNESCO. (2024). Educación para el Desarrollo Sostenible | UNESCO. https://www.unesco.org/es/sustainable-development/educationUPME. (2010a). Atlas del Potencial Energético de la Biomasa Residual en Colombia.UPME. (2010b). Atlas del potencial energético de la Biomasa residual en Colombia. https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la biomasa.aspUPME. (2011). Atlas del potencial energético de la Biomasa residual en Colombia. https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la biomasa.aspxUPME. (2012). Cobertura de energía eléctrica base por municipio en Colombia. http://www.upme.gov.co/generadorconsultas/Consulta_Series.aspx?idModulo=2&tipoSer ie=206&grupo=558UPME. (2019a). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU Residencial.pdfUPME. (2019b). UPME a 2019-12-19 Informe Final - Plan de Sustitución Progresiva de Leña. www.corpoema.netUPME, & Fecop. (2016). UPME Calculadora de Emisiones. https://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.htmlUPRA. (2022). Microanálisis Evaluaciones agropecuarias-EVAs.Upra. (2023). Evaluaciones Agropecuarias Municipales - EVA. https://upra.gov.co/es-coUS EPA. (2024). Particulate Matter (PM) Pollution | US EPA. https://www.epa.gov/pm pollutioValle-Vargas, M. F., Durán-Barón, R., Quintero-Gamero, G., & Valera, R. (2020). Caracterización fisicoquímica, químico proximal, compuestos bioactivos y capacidad antioxidante Caracterización fisicoquímica, químico proximal, compuestos bioactivos y capacidad antioxidante de pulpa y corteza de sandía (Citrullus lanatus). Información Tecnológica, 31. https://doi.org/10.4067/S0718-07642020000100021Vanegas Salazar, C. M. (2017). Manejo del bagazo en la agroindustria de la caña panelera en el nordeste antioqueño a partir de la gestión integral de residuos: estudio de caso municipio de Yolombó. https://ridum.umanizales.edu.co/handle/20.500.12746/2880Vázquez Calvo, M. A., Cruz León, A., Santos Cervantes, C., Pérez Torres, M. Á., & Sangerman-Jarquín, D. Ma. (2016). Lorena stoves: firewood use and vegetation conservation. Revista Mexicana de Ciencias Agrícolas, 7(SPE16), 3159–3172. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 09342016001203159&lng=es&nrm=iso&tlng=enVega, A., De León, J. A., Miranda, S., & Reyes, S. M. (2022). Agro-industrial waste improves the nutritional and antioxidant profile of Pleurotus djamor. Cleaner Waste Systems, 2, 100018. https://doi.org/10.1016/J.CLWAS.2022.100018Vega-Araújo, J., & Heffron, R. J. (2022). Assessing elements of energy justice in Colombia: A case study on transmission infrastructure in La Guajira. Energy Research & Social Science, 91, 102688. https://doi.org/10.1016/J.ERSS.2022.102688Velásquez-Arredondo, H. I., Ruiz-Colorado, A. A., & De Oliveira, S. (2010). Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis. Energy, 35(7), 3081–3087. https://doi.org/10.1016/J.ENERGY.2010.03.052Venderbosch, R. H., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178–208.Wang, M., Liu, P., Liu, L., Geng, M., Wang, Y., & Zhang, Z. (2022). The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling. Renewable Energy, 201, 1026–1037. https://doi.org/10.1016/J.RENENE.2022.11.015Wang, M., Zhou, D., Wang, Y., Wei, S., Yang, W., Kuang, M., Ma, L., Fang, D., Xu, S., & Du, S. kui. (2016). Bioethanol production from cotton stalk: A comparative study of various pretreatments. Fuel, 184, 527–532. https://doi.org/10.1016/J.FUEL.2016.07.061Wang, Q., & Tuohedi, N. (2020). Polyurethane foams and bio-polyols from liquefied cotton stalk agricultural waste. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/SU12104214Wang, Y., Wei, W., Dai, X., & Ni, B.-J. (2021). Coconut shell ash enhances short-chain fatty acids production from anaerobic algae fermentation. Bioresource Technology, 338, 125494. https://doi.org/10.1016/j.biortech.2021.125494Wang, Z., Wu, M., Chen, G., Zhang, M., Sun, T., Burra, K. G., Guo, S., Chen, Y., Yang, S., Li, Z., Lei, T., & Gupta, A. K. (2023). Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis. Fuel, 337, 127206. https://doi.org/10.1016/J.FUEL.2022.127206Welfle, D. A., Chingaira, S., & Kassenov, A. (2020). Decarbonising Kenya’s domestic & industry Sectors through bioenergy: An assessment of biomass resource potential & GHG performances. Biomass and Bioenergy, 142, 105757. https://doi.org/10.1016/J.BIOMBIOE.2020.105757Wenting, Z., Chuang, L., Kun, Y., Yinhong, X., Jie, L., Guangqing, L., Chunyu, X., Wenting, Z., Chuang, L., Kun, Y., Yinhong, X., Jie, L., Guangqing, L., & Chunyu, X. (2020). Field evaluation of pollutant emissions and reduction effects of biomass pellets burning in improved heating stoves in rural China. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, Vol. 36, Issue 12, Pages: 229-235, 36(12), 229–235. https://doi.org/10.11975/J.ISSN.1002-6819.2020.12.028Weyant, C. L., Thompson, R., Lam, N. L., Upadhyay, B., Shrestha, P., Maharjan, S., Rai, K., Adhikari, C., Fox, M. C., & Pokhrel, A. K. (2019). In-Field Emission Measurements from Biogas and Liquified Petroleum Gas (LPG) Stoves. https://doi.org/10.3390/atmos10120729Wiesberg, I. L., de Medeiros, J. L., Paes de Mello, R. V., Santos Maia, J. G. S., Bastos, J. B. V., & Araújo, O. de Q. F. (2021). Bioenergy production from sugarcane bagasse with carbon capture and storage: Surrogate models for techno-economic decisions. Renewable and Sustainable Energy Reviews, 150, 111486. https://doi.org/10.1016/J.RSER.2021.111486Wiese, A. (2013). Biomass Combustion for Electricity Generation. Renewable Energy Systems, 290–327. https://doi.org/10.1007/978-1-4614-5820-3_254Winijkul, E., & Bond, T. C. (2016). Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios. Atmospheric Environment, 124, 1–11. https://doi.org/10.1016/J.ATMOSENV.2015.10.011Xing, R., Hanaoka, T., Kanamori, Y., & Masui, T. (2017). Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition. Sustainability 2017, Vol. 9, Page 614, 9(4), 614. https://doi.org/10.3390/SU9040614Xu, X. L., & Chen, Y. J. (2020). A comprehensive model to analyze straw recycling logistics costs for sustainable development: Evidence from biomass power generation. Environmental Progress & Sustainable Energy, 39(4), e13394. https://doi.org/10.1002/EP.13394Yang, W., Zhu, Y., Li, Y., Cheng, W., Zhang, W., Yang, H., Tan, Z., & Chen, H. (2022). Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk. Renewable Energy, 190, 893–902. https://doi.org/10.1016/J.RENENE.2022.03.157Yepes-Quintero, A., Duque-Montoya, Á. J., Navarrete-Encinales, D., Phillips-Bernal, J., Cabrera-Montenegro, E., Corrales-Osorio, A., Álvarez-Dávila, E., Galindo-García, G., García-Dávila, M. C., Idárraga, Á., & Vargas-Galvis, D. (2017). Estimación de las reservas y pérdidas de carbono por deforestación en los bosques del departamento de Antioquia, Colombia. Actualidades Biológicas, 33(95), 193–208. https://doi.org/10.17533/udea.acbi.14306Yirijor, J., & Bere, A. A. T. (2024). Production and characterization of coconut shell charcoal based bio-briquettes as an alternative energy source for rural communities. Heliyon, 10(16), e35717. https://doi.org/10.1016/J.HELIYON.2024.E35717Young, P., & Khennas, S. (2003). FINAL DRAFT Feasibility and Impact Assessment of a Proposed Project to Briquette Municipal Solid Waste for Use as a Cooking Fuel in Rwanda Consultancy Report to the Business Linkages Challenge Fund (BLCF) 2 Feasibility Assessment of Proposed Briquetting p.Yousefian, F., Babatabar, M. A., Eshaghi, M., Poor, S. M., & Tavasoli, A. (2023). Pyrolysis of Rice husk, Coconut shell, and Cladophora glomerata algae and application of the produced biochars as support for cobalt catalyst in Fischer–Tropsch synthesis. Fuel Processing Technology, 247, 107818. https://doi.org/10.1016/J.FUPROC.2023.107818Zaini, H. M., Saallah, S., Roslan, J., Sulaiman, N. S., Munsu, E., Wahab, N. A., & Pindi, W. (2023). Banana biomass waste: A prospective nanocellulose source and its potential application in food industry – A review. Heliyon, 9(8), e18734. https://doi.org/10.1016/J.HELIYON.2023.E18734Zheng, H., Ma, W., & Bahadur, D. (2025). Fuel choices for cooking and heating and gender empowerment: Implications for promoting gender equality and sustainable rural development. Energy Economics, 141(November 2024), 108104. https://doi.org/10.1016/J.ENECO.2024.108104Zhu, X., Ho, K. F., Yang, T. T., Laiman, V., Sun, J., Shen, Z., & Chuang, H. C. (2024). Emission Factors of PAHs Components and Bioreactivity in PM2.5 from Biomass Burning. Aerosol and Air Quality Research, 24(1), 230068. https://doi.org/10.4209/AAQR.230068Zulay, S., & Guillen, E. (2022a). EVALUACIÓN DE EMISIONES ATMOSFÉRICAS POR CONSUMO DE CARBÓN VEGETAL EN VIVIENDAS FAMILIARES DE LAS COMUNIDADES DE ISHOTSHIMANA Y PUJURU, CABO DE LA VELA, URIBIA-LA GUAJIRA, COLOMBIA.Zulay, S., & Guillen, E. (2022b). Evaluación de emisiones atmosféricas por consumo de carbón vegetal en viviendas familiares de las comunidades de Ishotshimana y Pujuru, Cabo de la Vela, Uribia-La Guajira, Colombia. Universidad de La Guajira Riohacha-La.Yazmín, I., & Muñoz, R. (2023). Fermentación del mucílago de café para la obtención de celulosa bacteriana con aislados nativos de Komagataeibacter spp.BriquetasBiomasaDigestión anaeróbicaLeñaResiduos agrícolasBriquettesBiomassAnaerobic digestionFirewoodAgricultural wastesPublicationORIGINALPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdfPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdfapplication/pdf4944845https://repositorio.cuc.edu.co/bitstreams/aca97647-0f14-4f1c-abb6-f625999250a9/downloadee49b9910f419e982db90b2590938335MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/240f8ee0-d2b2-452b-826c-e99934a7c78c/download73a5432e0b76442b22b026844140d683MD52TEXTPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdf.txtPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdf.txtExtracted texttext/plain101829https://repositorio.cuc.edu.co/bitstreams/f270bfb0-4f7e-48b9-a1f2-1d7afca3d8d3/downloaddc9dd60e0548b25e284c8febfa808681MD53THUMBNAILPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdf.jpgPotencial energético aprovechable de la biomasa en el departamento de la Guajira.pdf.jpgGenerated Thumbnailimage/jpeg7352https://repositorio.cuc.edu.co/bitstreams/ce77479c-1a62-4747-8759-2af1cb6fab32/download7ac12d7d5bd2469ab50f9f2d62e3942eMD5411323/14343oai:repositorio.cuc.edu.co:11323/143432025-08-02 04:02:47.109https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K