An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector
Emergency Care Networks (ECNs) were created as a response to the increased demand for emergency services and the ever-increasing waiting times experienced by patients in emergency rooms. In this sense, ECNs are called to provide a rapid diagnosis and early intervention so that poor patient outcomes,...
- Autores:
-
Ortiz Barrios, Miguel Angel
Alfaro-Saiz, Juan-José
Ortiz Barrios, Miguel Angel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6533
- Acceso en línea:
- https://hdl.handle.net/11323/6533
https://doi.org/10.1371/journal.pone.0234984
https://repositorio.cuc.edu.co/
- Palabra clave:
- Emergency care networks
ECNs
Methodological approaches
- Rights
- openAccess
- License
- CC0 1.0 Universal
| id |
RCUC2_d2c60aea4782965e4adf758b9b6a61c3 |
|---|---|
| oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6533 |
| network_acronym_str |
RCUC2 |
| network_name_str |
REDICUC - Repositorio CUC |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| title |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| spellingShingle |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector Emergency care networks ECNs Methodological approaches |
| title_short |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| title_full |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| title_fullStr |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| title_full_unstemmed |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| title_sort |
An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector |
| dc.creator.fl_str_mv |
Ortiz Barrios, Miguel Angel Alfaro-Saiz, Juan-José Ortiz Barrios, Miguel Angel |
| dc.contributor.author.spa.fl_str_mv |
Ortiz Barrios, Miguel Angel Alfaro-Saiz, Juan-José |
| dc.contributor.author.none.fl_str_mv |
Ortiz Barrios, Miguel Angel |
| dc.subject.spa.fl_str_mv |
Emergency care networks ECNs Methodological approaches |
| topic |
Emergency care networks ECNs Methodological approaches |
| description |
Emergency Care Networks (ECNs) were created as a response to the increased demand for emergency services and the ever-increasing waiting times experienced by patients in emergency rooms. In this sense, ECNs are called to provide a rapid diagnosis and early intervention so that poor patient outcomes, patient dissatisfaction, and cost overruns can be avoided. Nevertheless, ECNs, as nodal systems, are often inefficient due to the lack of coordination between emergency departments (EDs) and the presence of non-value added activities within each ED. This situation is even more complex in the public healthcare sector of low-income countries where emergency care is provided under constraint resources and limited innovation. Notwithstanding the tremendous efforts made by healthcare clusters and government agencies to tackle this problem, most of ECNs do not yet provide nimble and efficient care to patients. Additionally, little progress has been evidenced regarding the creation of methodological approaches that assist policymakers in solving this problem. In an attempt to address these shortcomings, this paper presents a three-phase methodology based on Discrete-event simulation, payment collateral models, and lean six sigma to support the design of in-time and economically sustainable ECNs. The proposed approach is validated in a public ECN consisting of 2 hospitals and 8 POCs (Point of Care). The results of this study evidenced that the average waiting time in an ECN can be substantially diminished by optimizing the cooperation flows between EDs. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2020-07-13T13:02:46Z |
| dc.date.available.none.fl_str_mv |
2020-07-13T13:02:46Z |
| dc.date.issued.none.fl_str_mv |
2020-06-22 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
acceptedVersion |
| dc.identifier.issn.spa.fl_str_mv |
1932-6203 |
| dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6533 |
| dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1371/journal.pone.0234984 |
| dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
| dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
| dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
| identifier_str_mv |
1932-6203 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
| url |
https://hdl.handle.net/11323/6533 https://doi.org/10.1371/journal.pone.0234984 https://repositorio.cuc.edu.co/ |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.spa.fl_str_mv |
1. Sheard S. Space, place and (waiting) time: Reflections on health policy and politics. Health Econ Policy Law 2018; 13(3–4):226–250. https://doi.org/10.1017/S1744133117000366 PMID: 29457577 2. Soril LJJ, Leggett LE, Lorenzetti DL, Noseworthy TW, Clement FM. Reducing frequent visits to the emergency department:A systematic review of interventions. PLoS ONE 2015; 10(4). 3. Hsia RY, Sabbagh SH, Guo J, Nuckton TJ, Niedzwiecki MJ. Trends in the utilisation of emergency departments in California, 2005–2015: A retrospective analysis. BMJ Open 2018; 8(7). 4. Morley C, Stankovich J, Peterson G, Kinsman L. Planning for the future: Emergency department presentation patterns in Tasmania, Australia. Int Emerg Nurs 2018; 38:34–40. https://doi.org/10.1016/j. ienj.2017.09.001 PMID: 28958418 5. Steventon A, Deeny S, Friebel R, Gardner T, Thorlby R. Briefing: Emergency hospital admissions in England: which may be avoidable and how? London, UK: The Health Foundation, 2018. Available from: http://reader.health.org.uk/emergency-admissions. 6. Baier N, Geissler A, Bech M, Bernstein D, Cowling TE, Jackson T, et al. Emergency and urgent care systems in Australia, Denmark, England, France, Germany and the Netherlands–Analyzing organization, payment and reforms. Health Policy 2019; 123(1):1–10. https://doi.org/10.1016/j.healthpol.2018. 11.001 PMID: 30503764 7. Bedoya Marrugo EA. Emergency care service in the city Cartagena Colombia. Nova 2017; 15(27):91– 101. 8. Gaviria A, Ruı´z F, Da´vila C, Burgos G, Escobar G. Informe Nacional de Calidad de Atencio´n en Salud 2015. Bogota´, Colombia: Ministerio de Salud y Proteccio´n Social, 2015. Available from: http://calidadensalud.minsalud.gov.co/Paginas/INCAS.aspx 9. Kim J, Yun BJ, Aaronson EL, Kaafarani HMA, Linov P, Rao SK, et al. The next step to reducing emergency department (ED) crowding: Engaging specialist physicians. PLoS ONE 2018; 13(8) 10. Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department crowding: A systematic review of causes, consequences and solutions. PLoS ONE 2018; 13(8) 11. Turner J, Coster J, Chambers D, Cantrell A, Phung V-H, Knowles E, et al. What evidence is there on the effectiveness of different models of delivering urgent care? A rapid review. Southampton, UK: University of Lincoln, 2015. Available from: http://eprints.lincoln.ac.uk/17833/ 12. Porter ME, Kramer MR. Creating Shared Value. In: Lenssen G, Smith N, editors. Managing Sustainable Business. Springer; 2019. pp. 323–346. 13. Wilson KJ. Pay-for-performance in health care: What can we learn from international experience. Qual Manage Health Care 2013; 22(1):2–15 14. Barrios MAO, Caballero JE, Sa´nchez FS. A methodology for the creation of integrated service networks in outpatient internal medicine. Lect Notes Comput Sci 2015; 9456:247–257. 15. Glickman SW, Kit Delgado M, Hirshon JM, Hollander JE, Iwashyna TJ, Jacobs AK, et al. Defining and measuring successful emergency care networks: A research agenda. Acad Emerg Med 2010; 17 (12):1297–1305. https://doi.org/10.1111/j.1553-2712.2010.00930.x PMID: 21122011 16. Calvello EJB, Broccoli M, Risko N, Theodosis C, Totten VY, Radeos MS, et al. Emergency care and health systems: Consensus-based recommendations and future research priorities. Acad Emerg Med 2013; 20(12):1278–1288. https://doi.org/10.1111/acem.12266 PMID: 24341583 17. Konder MT, O’Dwyer G. The integration of the emergency care units (UPA) with healthcare services in the city of Rio de Janeiro, Brazil. Interface Commun Health Educ 2016; 20(59):879–892. 18. Qayyum H, Wardrope J. The future organisation of the emergency services. Care Crit Ill 2009; 25(1):1–4. 19. Stoner MJ, Mahajan P, Bressan S, Lam SHF, Chumpitazi CE, Kornblith AE, et al. Pediatric Emergency Care Research Networks: A Research Agenda. Acad Emerg Med 2018; 25(12):1336–1344. https://doi. org/10.1111/acem.13656 PMID: 30393902 20. Uchimura LYT, da Silva ATC, Viana ALD. Integration between primary health care and emergency services in brazil: Barriers and facilitators. Int J Integr Care 2018; 18(4). 21. Almeida AC, Gusmão Filho FAR, Caldas AF, Vidal SA, Campello RIC. From normative imaginary reality of the Network of Emergency Care. Medicina 2015; 48(6):557–572. 22. Navein J, McNeil I. The Surrey emergency care system: A countywide initiative for change. Emerg Med J 2003; 20(2):192–195. https://doi.org/10.1136/emj.20.2.192 PMID: 12642543 23. Harrop SN. Links between systems in Accident & Emergency and primary care. Informatics Prim Care 2005; 13(3):223–226. 24. Martinez R. Keynote address-redefining regionalization: Merging systems to create networks. Acad Emerg Med 2010; 17(12):1346–1348. https://doi.org/10.1111/j.1553-2712.2010.00945.x PMID: 21122017 25. A discrete event simulation model of an emergency department network for earthquake conditions. 6th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2015—Dedicated to the Memory of Late Ibrahim El-Sadek; 2015. 26.Preparedness of an emergency department network for a major earthquake: A discrete event simulation-based design of experiments study. Uncertainty Modelling in Knowledge Engineering and Decision Making—Proceedings of the 12th International FLINS Conference, FLINS 2016; 2016. 27.Gul M, Fuat Guneri A, Gunal MM. Emergency department network under disaster conditions: The case of possible major Istanbul earthquake. J Oper Res Soc 2019. View 28.Salisbury C, Bell D. Access to urgent health care. Emerg Med J 2010;27(3):186–188. pmid:20304879 View 29.Mousavi Isfahani H, Tourani S, Seyedin H. Lean management approach in hospitals: a systematic review. Int J Lean Six Sigma 2019;10(1):161–188. 30.Habidin NF, Yahya NZ, Ramli MFS. Using LSS DMAIC in improving emergency department waiting time. Int J Pharm Sci Rev Res 2015;35(2):151–155. 31.Ahmed S, Manaf NHA, Islam R. Effects of Lean Six Sigma application in healthcare services: A literature review. Rev Environ Health 2013;28(4):189–194. pmid:24413212 32.Furterer SL. Applying Lean Six Sigma methods to reduce length of stay in a hospital's emergency department. Qual Eng 2018;30(3):389–404. 33.Al Owad A, Karim MA, Ma L. Integrated Lean Six Sigma approach for patient flow improvement in hospital emergency department. Adv Mater Res 2013;834–836:1893–1902. 34.Romero-Conrado AR, Castro-Bolaño LJ, Montoya-Torres JR, Jiménez-Barros MÁ. Operations research as a decision-making tool in the health sector: A state of the art. DYNA 2017;84(201):129–137. 35.Modeling the Healthcare Services in Hilla Emergency Department. ICOASE 2018—International Conference on Advanced Science and Engineering; 2018. 36.Ibrahim IM, Liong C-, Bakar SA, Ahmad N, Najmuddin AF. Estimating optimal resource capacities in emergency department. Indian J Public Health Res Dev 2018;9(11):1558–1565. 37.Nuñez-Perez N, Ortíz-Barrios M, McClean S, Salas-Navarro K, Jimenez-Delgado G, Castillo-Zea A. Discrete-event simulation to reduce waiting time in accident and emergency departments: A case study in a district general clinic. Lect Notes Comput Sci 2017;10586 LNCS:352–363. 38.Bedoya-Valencia L, Kirac E. Evaluating alternative resource allocation in an emergency department using discrete event simulation. Simulation 2016;92(12):1041–1051. 39.Baril C, Gascon V, Vadeboncoeur D. Discrete-event simulation and design of experiments to study ambulatory patient waiting time in an emergency department. J Oper Res Soc 2019;70(12):2019–2038. 40.Gartner D, Padman R. Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care. J Oper Res Soc 2019. 41.Combined forecasting of patient arrivals and doctor rostering simulation modelling for hospital emergency department. IEEE International Conference on Industrial Engineering and Engineering Management; 2018. 42.Hussein NA, Abdelmaguid TF, Tawfik BS, Ahmed NGS. Mitigating overcrowding in emergency departments using Six Sigma and simulation: A case study in Egypt. Oper Res Health Care 2017;15:1–12. 43.Mandahawi N, Shurrab M, Al-Shihabi S, Abdallah AA, Alfarah YM. Utilizing six sigma to improve the processing time: a simulation study at an emergency department. J Ind Prod Eng 2017;34(7):495–503. 44.Integrated simulation and data envelopment analysis models in emergency department. AIP Conference Proceedings; 2016. 45.Ortíz-Barrios MA, Escorcia-Caballero JP, Sánchez-Sánchez F, De Felice F, Petrillo A. Efficiency Analysis of Integrated Public Hospital Networks in Outpatient Internal Medicine. J Med Syst 2017;41(10). 46.Barrios MO, Jiménez HF, Isaza SN. Comparative analysis between anp and anp-dematel for six sigma project selection process in a healthcare provider. Lect Notes Comput Sci 2014;8868:413–416. 47.Ortiz Barrios MA, Felizzola Jiménez H. Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. J Med Syst 2016;40(10). 48.Ortiz Barrios MA, Felizzola Jiménez H. Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. J Med Syst 2016;40(10): 220. pmid:27580729 49.Ortiz-Barrios MA, Herrera-Fontalvo Z, Rúa-Muñoz J, Ojeda-Gutiérrez S, De Felice F, Petrillo A. An integrated approach to evaluate the risk of adverse events in hospital sector: From theory to practice. Manage Decis 2018;56(10):2187–2224. 50.Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling using discrete event simulation: A report of the ISPOR-SMDM modeling good research practices task force-4. Value Health 2012;15(6):821–827. pmid:22999131 51.Gillespie J, McClean S, Garg L, Barton M, Scotney B, Fullerton K. A multi-phase DES modelling framework for patient-centred care. J Oper Res Soc 2016;67(10):1239–1249. 52.Becker JB, Lopes MCBT, Pinto MF, Campanharo CRV, Barbosa DA, Batista REA. Triage at the Emergency Department: Association between triage levels and patient outcome. Rev Escola Enferm 2015;49(5):783–789. 53.Kaushal A, Zhao Y, Peng Q, Strome T, Weldon E, Zhang M, et al. Evaluation of fast track strategies using agent-based simulation modeling to reduce waiting time in a hospital emergency department. Socio-Econ Plann Sci 2015;50:18–31. 54.Kuo Y-, Rado O, Lupia B, Leung JMY, Graham CA. Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions. Flexible Serv Manuf J 2016;28(1–2):120–147. 55.Hawkins RC. Laboratory turnaround time. Clin Biochem Rev 2007; 28(4):179–194. pmid:18392122 56.Brouns SHA, Stassen PM, Lambooij SLE, Dieleman J, Vanderfeesten ITP, Haak HR. Organisational factors induce prolonged emergency department length of stay in elderly patients—A retrospective cohort study. PLoS ONE 2015;10(8). 57.Driesen BEJM, Van Riet BHG, Verkerk L, Bonjer HJ, Merten H, Nanayakkara PWB. Long length of stay at the emergency department is mostly caused by organisational factors outside the influence of the emergency department: A root cause analysis. PLoS ONE 2018;13(9). 58.Ortíz Barrios MA, Felizzola Jiménez HA. Miceps methodology for statistical process control: a case study applied in production process of tempered glass. Prospectiva 2014, 12(2): 73–81. 59.Ortíz-Barrios MA, Alfaro-Saíz J-. Methodological Approaches to Support Process Improvement in Emergency Departments: A Systematic Review. Int J Environ Res Public Health 2020;17(8): 2664 |
| dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
| dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.publisher.spa.fl_str_mv |
Plos One |
| institution |
Corporación Universidad de la Costa |
| bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6894873d-38da-4530-a42e-2f131069b1c5/download https://repositorio.cuc.edu.co/bitstreams/181d1c09-e31e-43ad-9e98-1bc94c4e7051/download https://repositorio.cuc.edu.co/bitstreams/cbed0a5e-a1d8-496c-9821-3b824e52b738/download https://repositorio.cuc.edu.co/bitstreams/6c937fed-decb-4bbb-aa60-b11ed1f7d890/download https://repositorio.cuc.edu.co/bitstreams/ace60586-1026-43df-a6c1-db74b22e2762/download https://repositorio.cuc.edu.co/bitstreams/cc6f7f60-99df-43cc-be19-4330edbafc29/download |
| bitstream.checksum.fl_str_mv |
f1586069f9da3b4cb0352f6bbbbc4234 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 441526229266e708c179402eeeeab858 441526229266e708c179402eeeeab858 941143327a003bfd12a15726f027c32f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
| repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
| _version_ |
1849967859457851392 |
| spelling |
Ortiz Barrios, Miguel AngelAlfaro-Saiz, Juan-JoséOrtiz Barrios, Miguel Angelvirtual::2348-12020-07-13T13:02:46Z2020-07-13T13:02:46Z2020-06-221932-6203https://hdl.handle.net/11323/6533https://doi.org/10.1371/journal.pone.0234984Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Emergency Care Networks (ECNs) were created as a response to the increased demand for emergency services and the ever-increasing waiting times experienced by patients in emergency rooms. In this sense, ECNs are called to provide a rapid diagnosis and early intervention so that poor patient outcomes, patient dissatisfaction, and cost overruns can be avoided. Nevertheless, ECNs, as nodal systems, are often inefficient due to the lack of coordination between emergency departments (EDs) and the presence of non-value added activities within each ED. This situation is even more complex in the public healthcare sector of low-income countries where emergency care is provided under constraint resources and limited innovation. Notwithstanding the tremendous efforts made by healthcare clusters and government agencies to tackle this problem, most of ECNs do not yet provide nimble and efficient care to patients. Additionally, little progress has been evidenced regarding the creation of methodological approaches that assist policymakers in solving this problem. In an attempt to address these shortcomings, this paper presents a three-phase methodology based on Discrete-event simulation, payment collateral models, and lean six sigma to support the design of in-time and economically sustainable ECNs. The proposed approach is validated in a public ECN consisting of 2 hospitals and 8 POCs (Point of Care). The results of this study evidenced that the average waiting time in an ECN can be substantially diminished by optimizing the cooperation flows between EDs.Ortiz Barrios, Miguel Angel-will be generated-orcid-0000-0001-6890-7547-600Alfaro-Saiz, Juan-JoséengPlos OneCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Emergency care networksECNsMethodological approachesAn integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sectorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Sheard S. Space, place and (waiting) time: Reflections on health policy and politics. Health Econ Policy Law 2018; 13(3–4):226–250. https://doi.org/10.1017/S1744133117000366 PMID: 294575772. Soril LJJ, Leggett LE, Lorenzetti DL, Noseworthy TW, Clement FM. Reducing frequent visits to the emergency department:A systematic review of interventions. PLoS ONE 2015; 10(4).3. Hsia RY, Sabbagh SH, Guo J, Nuckton TJ, Niedzwiecki MJ. Trends in the utilisation of emergency departments in California, 2005–2015: A retrospective analysis. BMJ Open 2018; 8(7).4. Morley C, Stankovich J, Peterson G, Kinsman L. Planning for the future: Emergency department presentation patterns in Tasmania, Australia. Int Emerg Nurs 2018; 38:34–40. https://doi.org/10.1016/j. ienj.2017.09.001 PMID: 289584185. Steventon A, Deeny S, Friebel R, Gardner T, Thorlby R. Briefing: Emergency hospital admissions in England: which may be avoidable and how? London, UK: The Health Foundation, 2018. Available from: http://reader.health.org.uk/emergency-admissions.6. Baier N, Geissler A, Bech M, Bernstein D, Cowling TE, Jackson T, et al. Emergency and urgent care systems in Australia, Denmark, England, France, Germany and the Netherlands–Analyzing organization, payment and reforms. Health Policy 2019; 123(1):1–10. https://doi.org/10.1016/j.healthpol.2018. 11.001 PMID: 305037647. Bedoya Marrugo EA. Emergency care service in the city Cartagena Colombia. Nova 2017; 15(27):91– 101.8. Gaviria A, Ruı´z F, Da´vila C, Burgos G, Escobar G. Informe Nacional de Calidad de Atencio´n en Salud 2015. Bogota´, Colombia: Ministerio de Salud y Proteccio´n Social, 2015. Available from: http://calidadensalud.minsalud.gov.co/Paginas/INCAS.aspx9. Kim J, Yun BJ, Aaronson EL, Kaafarani HMA, Linov P, Rao SK, et al. The next step to reducing emergency department (ED) crowding: Engaging specialist physicians. PLoS ONE 2018; 13(8)10. Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department crowding: A systematic review of causes, consequences and solutions. PLoS ONE 2018; 13(8)11. Turner J, Coster J, Chambers D, Cantrell A, Phung V-H, Knowles E, et al. What evidence is there on the effectiveness of different models of delivering urgent care? A rapid review. Southampton, UK: University of Lincoln, 2015. Available from: http://eprints.lincoln.ac.uk/17833/12. Porter ME, Kramer MR. Creating Shared Value. In: Lenssen G, Smith N, editors. Managing Sustainable Business. Springer; 2019. pp. 323–346.13. Wilson KJ. Pay-for-performance in health care: What can we learn from international experience. Qual Manage Health Care 2013; 22(1):2–1514. Barrios MAO, Caballero JE, Sa´nchez FS. A methodology for the creation of integrated service networks in outpatient internal medicine. Lect Notes Comput Sci 2015; 9456:247–257.15. Glickman SW, Kit Delgado M, Hirshon JM, Hollander JE, Iwashyna TJ, Jacobs AK, et al. Defining and measuring successful emergency care networks: A research agenda. Acad Emerg Med 2010; 17 (12):1297–1305. https://doi.org/10.1111/j.1553-2712.2010.00930.x PMID: 2112201116. Calvello EJB, Broccoli M, Risko N, Theodosis C, Totten VY, Radeos MS, et al. Emergency care and health systems: Consensus-based recommendations and future research priorities. Acad Emerg Med 2013; 20(12):1278–1288. https://doi.org/10.1111/acem.12266 PMID: 2434158317. Konder MT, O’Dwyer G. The integration of the emergency care units (UPA) with healthcare services in the city of Rio de Janeiro, Brazil. Interface Commun Health Educ 2016; 20(59):879–892.18. Qayyum H, Wardrope J. The future organisation of the emergency services. Care Crit Ill 2009; 25(1):1–4.19. Stoner MJ, Mahajan P, Bressan S, Lam SHF, Chumpitazi CE, Kornblith AE, et al. Pediatric Emergency Care Research Networks: A Research Agenda. Acad Emerg Med 2018; 25(12):1336–1344. https://doi. org/10.1111/acem.13656 PMID: 3039390220. Uchimura LYT, da Silva ATC, Viana ALD. Integration between primary health care and emergency services in brazil: Barriers and facilitators. Int J Integr Care 2018; 18(4).21. Almeida AC, Gusmão Filho FAR, Caldas AF, Vidal SA, Campello RIC. From normative imaginary reality of the Network of Emergency Care. Medicina 2015; 48(6):557–572.22. Navein J, McNeil I. The Surrey emergency care system: A countywide initiative for change. Emerg Med J 2003; 20(2):192–195. https://doi.org/10.1136/emj.20.2.192 PMID: 1264254323. Harrop SN. Links between systems in Accident & Emergency and primary care. Informatics Prim Care 2005; 13(3):223–226.24. Martinez R. Keynote address-redefining regionalization: Merging systems to create networks. Acad Emerg Med 2010; 17(12):1346–1348. https://doi.org/10.1111/j.1553-2712.2010.00945.x PMID: 2112201725. A discrete event simulation model of an emergency department network for earthquake conditions. 6th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2015—Dedicated to the Memory of Late Ibrahim El-Sadek; 2015.26.Preparedness of an emergency department network for a major earthquake: A discrete event simulation-based design of experiments study. Uncertainty Modelling in Knowledge Engineering and Decision Making—Proceedings of the 12th International FLINS Conference, FLINS 2016; 2016.27.Gul M, Fuat Guneri A, Gunal MM. Emergency department network under disaster conditions: The case of possible major Istanbul earthquake. J Oper Res Soc 2019. View28.Salisbury C, Bell D. Access to urgent health care. Emerg Med J 2010;27(3):186–188. pmid:20304879 View29.Mousavi Isfahani H, Tourani S, Seyedin H. Lean management approach in hospitals: a systematic review. Int J Lean Six Sigma 2019;10(1):161–188.30.Habidin NF, Yahya NZ, Ramli MFS. Using LSS DMAIC in improving emergency department waiting time. Int J Pharm Sci Rev Res 2015;35(2):151–155.31.Ahmed S, Manaf NHA, Islam R. Effects of Lean Six Sigma application in healthcare services: A literature review. Rev Environ Health 2013;28(4):189–194. pmid:2441321232.Furterer SL. Applying Lean Six Sigma methods to reduce length of stay in a hospital's emergency department. Qual Eng 2018;30(3):389–404.33.Al Owad A, Karim MA, Ma L. Integrated Lean Six Sigma approach for patient flow improvement in hospital emergency department. Adv Mater Res 2013;834–836:1893–1902.34.Romero-Conrado AR, Castro-Bolaño LJ, Montoya-Torres JR, Jiménez-Barros MÁ. Operations research as a decision-making tool in the health sector: A state of the art. DYNA 2017;84(201):129–137.35.Modeling the Healthcare Services in Hilla Emergency Department. ICOASE 2018—International Conference on Advanced Science and Engineering; 2018.36.Ibrahim IM, Liong C-, Bakar SA, Ahmad N, Najmuddin AF. Estimating optimal resource capacities in emergency department. Indian J Public Health Res Dev 2018;9(11):1558–1565.37.Nuñez-Perez N, Ortíz-Barrios M, McClean S, Salas-Navarro K, Jimenez-Delgado G, Castillo-Zea A. Discrete-event simulation to reduce waiting time in accident and emergency departments: A case study in a district general clinic. Lect Notes Comput Sci 2017;10586 LNCS:352–363.38.Bedoya-Valencia L, Kirac E. Evaluating alternative resource allocation in an emergency department using discrete event simulation. Simulation 2016;92(12):1041–1051.39.Baril C, Gascon V, Vadeboncoeur D. Discrete-event simulation and design of experiments to study ambulatory patient waiting time in an emergency department. J Oper Res Soc 2019;70(12):2019–2038.40.Gartner D, Padman R. Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care. J Oper Res Soc 2019.41.Combined forecasting of patient arrivals and doctor rostering simulation modelling for hospital emergency department. IEEE International Conference on Industrial Engineering and Engineering Management; 2018.42.Hussein NA, Abdelmaguid TF, Tawfik BS, Ahmed NGS. Mitigating overcrowding in emergency departments using Six Sigma and simulation: A case study in Egypt. Oper Res Health Care 2017;15:1–12.43.Mandahawi N, Shurrab M, Al-Shihabi S, Abdallah AA, Alfarah YM. Utilizing six sigma to improve the processing time: a simulation study at an emergency department. J Ind Prod Eng 2017;34(7):495–503.44.Integrated simulation and data envelopment analysis models in emergency department. AIP Conference Proceedings; 2016.45.Ortíz-Barrios MA, Escorcia-Caballero JP, Sánchez-Sánchez F, De Felice F, Petrillo A. Efficiency Analysis of Integrated Public Hospital Networks in Outpatient Internal Medicine. J Med Syst 2017;41(10).46.Barrios MO, Jiménez HF, Isaza SN. Comparative analysis between anp and anp-dematel for six sigma project selection process in a healthcare provider. Lect Notes Comput Sci 2014;8868:413–416.47.Ortiz Barrios MA, Felizzola Jiménez H. Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. J Med Syst 2016;40(10).48.Ortiz Barrios MA, Felizzola Jiménez H. Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. J Med Syst 2016;40(10): 220. pmid:2758072949.Ortiz-Barrios MA, Herrera-Fontalvo Z, Rúa-Muñoz J, Ojeda-Gutiérrez S, De Felice F, Petrillo A. An integrated approach to evaluate the risk of adverse events in hospital sector: From theory to practice. Manage Decis 2018;56(10):2187–2224.50.Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling using discrete event simulation: A report of the ISPOR-SMDM modeling good research practices task force-4. Value Health 2012;15(6):821–827. pmid:2299913151.Gillespie J, McClean S, Garg L, Barton M, Scotney B, Fullerton K. A multi-phase DES modelling framework for patient-centred care. J Oper Res Soc 2016;67(10):1239–1249.52.Becker JB, Lopes MCBT, Pinto MF, Campanharo CRV, Barbosa DA, Batista REA. Triage at the Emergency Department: Association between triage levels and patient outcome. Rev Escola Enferm 2015;49(5):783–789.53.Kaushal A, Zhao Y, Peng Q, Strome T, Weldon E, Zhang M, et al. Evaluation of fast track strategies using agent-based simulation modeling to reduce waiting time in a hospital emergency department. Socio-Econ Plann Sci 2015;50:18–31.54.Kuo Y-, Rado O, Lupia B, Leung JMY, Graham CA. Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions. Flexible Serv Manuf J 2016;28(1–2):120–147.55.Hawkins RC. Laboratory turnaround time. Clin Biochem Rev 2007; 28(4):179–194. pmid:1839212256.Brouns SHA, Stassen PM, Lambooij SLE, Dieleman J, Vanderfeesten ITP, Haak HR. Organisational factors induce prolonged emergency department length of stay in elderly patients—A retrospective cohort study. PLoS ONE 2015;10(8).57.Driesen BEJM, Van Riet BHG, Verkerk L, Bonjer HJ, Merten H, Nanayakkara PWB. Long length of stay at the emergency department is mostly caused by organisational factors outside the influence of the emergency department: A root cause analysis. PLoS ONE 2018;13(9).58.Ortíz Barrios MA, Felizzola Jiménez HA. Miceps methodology for statistical process control: a case study applied in production process of tempered glass. Prospectiva 2014, 12(2): 73–81.59.Ortíz-Barrios MA, Alfaro-Saíz J-. Methodological Approaches to Support Process Improvement in Emergency Departments: A Systematic Review. Int J Environ Res Public Health 2020;17(8): 2664Publicationb2762503-902d-495c-a50a-491512d065a4virtual::2348-1b2762503-902d-495c-a50a-491512d065a4virtual::2348-1https://scholar.google.com/citations?user=V2kIFw4AAAAJ&hl=esvirtual::2348-10000-0001-6890-7547virtual::2348-1ORIGINALAn integrated approach for designing in-time.pdfAn integrated approach for designing in-time.pdfapplication/pdf2665482https://repositorio.cuc.edu.co/bitstreams/6894873d-38da-4530-a42e-2f131069b1c5/downloadf1586069f9da3b4cb0352f6bbbbc4234MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/181d1c09-e31e-43ad-9e98-1bc94c4e7051/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/cbed0a5e-a1d8-496c-9821-3b824e52b738/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAn integrated approach for designing in-time.pdf.jpgAn integrated approach for designing in-time.pdf.jpgimage/jpeg68327https://repositorio.cuc.edu.co/bitstreams/6c937fed-decb-4bbb-aa60-b11ed1f7d890/download441526229266e708c179402eeeeab858MD54THUMBNAILAn integrated approach for designing in-time.pdf.jpgAn integrated approach for designing in-time.pdf.jpgimage/jpeg68327https://repositorio.cuc.edu.co/bitstreams/ace60586-1026-43df-a6c1-db74b22e2762/download441526229266e708c179402eeeeab858MD54TEXTAn integrated approach for designing in-time.pdf.txtAn integrated approach for designing in-time.pdf.txttext/plain91422https://repositorio.cuc.edu.co/bitstreams/cc6f7f60-99df-43cc-be19-4330edbafc29/download941143327a003bfd12a15726f027c32fMD5511323/6533oai:repositorio.cuc.edu.co:11323/65332025-08-30 15:22:40.575http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |
